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Abstract: The latest development (Huang et al., 2011) has shown that better generalization performance can be obtained
for extreme learning machine (ELM) by adding a positive value to the diagonal ofHT H or HHT , whereH is
the hidden layer output matrix. This paper further extends this enhanced ELM to online sequential learning
mode. An online sequential learning algorithm is proposed for SLFNs and other regularization networks,
consisting of two formulas for two kinds of scenarios: when initial training data is of small scale or large scale.
Performance of proposed online sequential learning algorithm is demonstrated through six benchmarking data
sets for both regression and multi-class classification problems.

1 INTRODUCTION

Training algorithms for feedforward networks, in-
cluding least-square based extreme learning machine
(ELM) (Huang et al., 2006b; Huang et al., 2006a;
Huang and Chen, 2007; Huang and Chen, 2008) for
single-hidden layer feedforward networks (SLFNs)
and gradient-descent based backpropagation (BP)
method (Rumelhart et al., 1986) for multi-layer feed-
forward neural networks, have attracted the attention
of many researchers for the past years. Main focus
is given to the batch learning mode of the aforemen-
tioned algorithms. However, in real world applica-
tions, the training data may not come at once or the
size of training data may be too large. In such circum-
stances, online sequential learning instead of batch
learning is preferred.

Sequential learning algorithms based on BP for
SLFNs with additive nodes have been proposed in lit-
erature (Ngia et al., 1998; Asirvadam et al., 2002).
Resource allocation network (RAN), one of the train-
ing algorithms for feedforward networks with RBF
nodes, has been extended to sequential learning mode
as well (Huang et al., 2004; Huang et al., 2005).
These sequential learning algorithms may not be ef-
ficient enough due to the disadvantages in conver-
gence rate, training speed and parameter tuning com-
plexity. Moreover, the data can be learned only on
a one by one basis.Online sequential extreme learn-
ing machine (OS-ELM) was proposed by Liang, et

al (Liang et al., 2006) where the training data can be
learned not only on a one-by-one basis but also on a
chunk-by-chunk basis. OS-ELM is based on the orig-
inal ELM where the SLFN can be viewed as a linear
system with the solution being the left pseudo-inverse
of the hidden layer output matrixH in the following
form: H† = (HT H)−1HT . Inheriting the advantage of
simplicity from original ELM, which randomly gen-
erates the hidden layer nodes, OS-ELM outperforms
the state-of-art sequential learning algorithms both in
generalization capability and in computational effi-
ciency. Therefore, the performance comparison with
the state-of-art method in this paper is conducted over
OS-ELM.

As mentioned in ridge regression theory (Hoerl
and Kennard, 1970), the solution tends to be more
stable and better generalization performance can be
achieved by adding a positive value to the diagonal of
HT H or HH T . The resultant enhanced ELM withsig-
moid additive nodes has been studied in the work of
Toh (Toh, 2008) and Deng, et al (Deng et al., 2009).
In the recent work of Huang, et al (Huang et al.,
2011), the idea of a unified solution based on ELM
(referred to aseELM) for SLFNs and other regular-
ization networks with wide type of feature mappings
or kernels was first proposed and fulfilled.

OS-ELM is derived on the basis of batch mode
original ELM using left pseudo-inverse. However,
latest development in ELM (Huang et al., 2011) has
shown much better advantage in generalization ca-
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pability than the original ELM. On the other hand,
to the best of our knowledge, very few work has
been done about the sequential learning using right
pseudo-inverse. In this paper, we propose an on-
line sequential learning algorithm based on eELM
using the right pseudo-inverse (referred to asOS-
eELM-right). Moreover, the online sequential learn-
ing for SLFNs and other regularization networks is
built regarding both left pseudo-inverse (referred to as
OS-eELM-left) and right pseudo-inverse (OS-eELM-
right). The performance of the proposed framework is
compared with original OS-ELM through six bench-
marking data sets for regression and multi-class clas-
sification applications.

The rest of this paper is organized as follows. Sec-
tion 2 gives a brief introduction of ELM and its en-
hanced version eELM. Section 3 derives the proposed
framework including OS-eELM-left and OS-eELM-
right. Performance evaluation over benchmarking
data sets is provided in Section 4. A summary is pre-
sented in Section 5.

2 BRIEF REVIEW OF ELM

2.1 Review of ELM

ELM (Huang et al., 2006b) was originally proposed
for the single-hidden layer feedforwardneural net-
works and was then extended to the SLFNs where
the hidden layer need not be neuron alike (Huang and
Chen, 2007; Huang and Chen, 2008). The main fea-
ture of ELM lies in that the hidden layer need not
be tuned. Instead of iterative tuning as in traditional
learning algorithms, in ELM, the hidden nodes are
randomly generated which is independent of the train-
ing data.

After randomly generatingL hidden nodes, with
the (row) vectorh(x) = [h1(x), · · · ,hL(x)] presenting
the outputs of theL hidden nodes with respect to the
inputx, the SLFNs is essentially a linear system

Hβ = T, (1)

where β = [β1, · · · ,βL] is the vector of the output
weights, andH is the hidden layer output matrix

H =







h(x1)
...

h(xN)






. (2)

In the original implementation of ELM, the minimal
norm least square solution is

β = H†T, (3)

whereT is the label matrix, andH† is the Moore-
Penrose generalized inverse of matrix H (Rao and
Mitra, 1971; Serre, 2002). One of the methods
to calculate Moore-Penrose generalized inverse of
a matrix is the orthogonal projection method (Rao
and Mitra, 1971): H† =

(

HT H
)−1HT (called left

pseudo-inverse) when HT H is nonsingular orH† =

HT
(

HH T
)−1

(called right pseudo-inverse) when
HH T is nonsingular. Usually the left pseudo-inverse
is suitable when the size of training data is large; oth-
erwise the right pseudo-inverse is better in terms of
training speed.

2.2 Review of eELM

According to the ridge regression theory (Hoerl and
Kennard, 1970), one can add a positive value to the
diagonal ofHH T or HT H, the resultant solution is
more stable and tends to have better generalization
performance. In (Huang et al., 2011) a unified so-
lution framework for SLFNs, SVM and other regular-
ization networks were proposed where solution based
on right pseudo-inverse for small scale of dataset and
solution based on left pseudo-inverse for large scale
dataset are given by

Right: β = H†T = HT
(

I
C
+HH T

)−1

T

Left: β = H†T =

(

I
C
+HT H

)−1

HT T

(4)

whereC is determined by users. Observed from sim-
ulations on wide types of datasets, the hidden node
numberL is normally set as a large value to obtain
good generalization performance, while the regular-
ization termC in (4) is the only parameter user needs
to specify according to various datasets.

3 THE PROPOSED ONLINE
SEQUENTIAL LEARNING
ALGORITHM

In this section, the online sequential learning al-
gorithm based on eELM is proposed, comprising
of OS-eELM-left which calculates the left pseudo-
inverse when small scale of initial training data is
observed, and OS-eELM-right which calculates the
right pseudo-inverse when large scale of initial train-
ing data is presented.

3.1 OS-eELM-left

The only difference between OS-eELM-left and OS-
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ELM is that OS-eELM is derived on the basis of
the latest development of ELM (Huang et al., 2011),
which we call eELM in this paper. Hence, it is not
difficult to find out that only a slight change need to
be made to extend OS-ELM to OS-eELM-left. The
solution is to obtain the initial output weightβ(0) as

β(0) =
( I

C +HT
0 H0

)−1
HT

0 T0 = P0HT
0 T0. The rest of

the equations in the training procedure remains ex-
actly the same as OS-ELM. Therefore, more focus
is given to the derivation of OS-eELM-right which
makes a great difference to OS-ELM by using right
pesudo-inverse.

3.2 The Proposed OS-eELM-right

Given the initial training setℵ0 = {(xi, ti)}
N0
i=1, the

minimum norm least square solution to minimize
‖ H0β − T0 ‖ is given by β(0) = Ĥ†

0T0 = HT
0 (

I
C +

H0HT
0 )

−1T0. Given another chunk of dataℵ1 =

{(xi, ti)}
N0+N1
i=N0+1 of size N1, from the batch learning

point of view, the problem is to minimize
[

H0
H1

]

β(1)−

[

T0
T1

]

. (5)

According to (4), the output weightβ becomes

β(1) =

[

H0

H1

]T
(

I
C
+

[

H0

H1

][

H0

H1

]T
)−1

[

T0

T1

]

.

(6)

Let A = I
C +

[

H0
H1

][

H0
H1

]T

, we have

A−1 =

[ I
C +H0HT

0 H0HT
1

H1HT
0

I
C +H1HT

1

]−1

=

[

A11 A12
A21 A22

]

.

This 2×2 block matrix is invertible if and only if
( I

C +H0HT
0 ) and its schur complement are invertible

(Boyd et al., 1994). From the initial step, it is easy to
show that( I

C +H0HT
0 ) is invertible. Similar to (Feng

et al., 2009), it can be proved that schur complement
of ( I

C +H0HT
0 ), denoted byS, is invertible with prob-

ability one. And according to (Boyd et al., 1994), we
have

A11 =

(

I
C
+H0HT

0

)−1

+

(

I
C
+H0HT

0

)−1

(

H0HT
1

)

S−1
(

H1HT
0

)

(

I
C
+H0HT

0

)−1

A12 =−

(

I
C
+H0HT

0

)−1
(

H0HT
1

)

S−1

A21 =−S−1
(

H1HT
0

)

(

I
C
+H0HT

0

)−1

A22 = S−1

(7)

where

S=

(

I
C
+H1HT

1

)

−
(

H1HT
0

)

(

I
C
+H0HT

0

)−1
(

H0HT
1

)

=
I
C
+H1

(

I −H†
0H0

)

HT
1 .

(8)

DenoteP0 = I −H†
0H0, thenS1, which represents

the state ofS after the first chunk data arrives, can

be expressed as:S1 =
I
C +H1

(

I −H†
0H0

)

HT
1 = I

C +

H1P0HT
1 . Thus we have

β(1) =
[

HT
0 HT

1

]

[

A11 A12
A21 A22

][

T0
T1

]

=HT
0 A11T0+HT

1 A21T0+HT
0 A12T1+HT

1 A22T1

=β(0)+H†
0H0HT

1 S−1
1 H1β(0)−HT

1 S−1
1 H1β(0)

−H†
0H0HT

1 S−1
1 T1+HT

1 S−1
1 T1

=β(0)−
(

I −H†
0H0

)

HT
1 S−1

1

(

H1β(0)−T1

)

=β(0)−P0HT
1 S−1

1

(

H1β(0)−T1

)

.

(9)

In completion of the learning of the first chunk of
data,P is updated as follows

P1 =I −
[

H0
H1

]†[ H0
H1

]

=I −H†
0H0−H†

0H0HT
1 S−1

1 H1H†
0H0+HT

1 S−1
1 H1

H†
0H0+H†

0H0HT
1 S−1

1 H1−HT
1 S−1

1 H1

=(I −H†
0H0)+ (I −H†

0H0)HT
1 S−1

1 H1H†
0H0

− (I −H†
0H0)HT

1 S−1
1 H1

=P0−P0HT
1 S−1

1 H1P0.

(10)

As seen from equation (9), the output weightβ(1)

is expressed as a function ofβ(0), S1, P0 and newly ar-
riving chunk of dataH1; S1 can actually be expressed
as the function ofP0 and newly arriving chunkH1; P0
is updated using itself and newly arriving data only in
each iteration. Therefore, whenever new data arrives,
a recursive algorithm for updating the output weight
β can be derived. Given(k+1)th chunk of data, the
hidden layer output matrix of which isHk+1, the re-
cursive algorithm works as follows

Sk+1 =
I
C
+Hk+1PkHT

k+1

β(k+1) = β(k)−PkHT
k+1S−1

k+1

(

Hk+1β(k)−Tk+1

)

(11)
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Finally, the proposed OS-eELM-right can be summa-
rized as follows.

The proposed algorithm can learn data chunk by
chunk or one by one, thus is able to handle the situ-
ation where data is arriving sequentially. In general,
there are two stages during training, namely the ini-
tialization stage and incremental learning stage.

(1) Initialization. Given the chunk of initial training
dataℵ0 = {(xi, ti)}

N0
i=1 andxi ∈ Rn

, ti ∈ Rm,

a) Randomly generateL hidden nodes (additive
hidden nodes or RBF hidden nodes). Good per-
formance can be achieved normally whenL is
assigned a large value.

b) Calculate the initial hidden layer output matrix
H0.

c) Compute the initial output weightβ(0) =
HT

0 (
I
C +H0HT

0 )
−1T0.

d) Calculate P0 = I − Ĥ0
†
H0 = I − HT

0 (
I
C +

H0HT
0 )

−1H0.
e) Setk = 0.

(2) Incremental Learning. Given (k + 1)th chunk
of data

ℵk+1 = {(xi, ti)}
∑k+1

j=0 N j

i=(∑k
j=0 N j)+1

, where Nk+1

presents the number of training samples in the
(k+1)th chunk,

a) Calculate the hidden layer output matrixHk+1
for the(k+1)th chunk of data.

b) Update the output weight:

Sk+1 =
I
C
+Hk+1PkHT

k+1

β(k+1) = β(k)−PkHT
k+1S−1

k+1

(

Hk+1β(k)−Tk+1

)

(12)

c) UpdatePk+1:
Pk+1 = Pk −PkHT

k+1S−1
k+1Hk+1Pk.

d) Setk = k+1. Go to (2).

4 DISCUSSIONS

The choice of OS-eELM-left or OS-eELM-right is de-
pendent on the size of initial training dataN0. It is
wise to choose OS-eELM-right when a small scale of
initial training data is provided, otherwise OS-eELM-
left is a better choice. Since good performance is
achieved normally when the number of hidden nodes
is set a large value, which is 1,000 in (Huang et al.,
2011) corresponding to up to 40,000 observations, the
threshold for the choice of left or right is set the same

as 1,000. OS-eELM-left is recommended when more
than 1,000 observations are given during the initial
training phase; otherwise OS-eELM-right is supposed
to save the computation and time.

Both of OS-eELM-left and OS-eELM-right can
learn data on a one-by-one basis or chunk-by-chunk
basis where the chunk size can be varied. When only
one observation(xk+1, tk+1) is provided during the in-
cremental learning phase, the updating equation for
β(k+1) andPk+1 can be further simplified

β(k+1) = β(k)−
PkhT

k+1(hk+1β(k)− tk+1)
1
C +hk+1PkhT

k+1

Pk+1 = Pk −
PkhT

k+1hk+1Pk
1
C +hk+1PkhT

k+1

.

(13)

Similar to OS-ELM, batch mode eELM-left can
be considered as the special case of OS-eELM-left
while batch mode eELM-right is the special case of
OS-eELM-right, whenN0 = N.

5 PERFORMANCE EVALUATION

Since OS-ELM has been verified to have better per-
formance than other well-known sequential learning
algorithms (Liang et al., 2006), in this paper, the
proposed OS-eELM-right is compared with OS-ELM
and OS-eELM-left. For sequential learnings, the
number of initial training samples is set the same as in
(Liang et al., 2006). All simulations are conducted on
a laptop with Pentium Dual CPU 1.86GHz and 2GB
memory.

Table 1: Specification of Benchmark Data Sets.

Dataset #Attributes #Classes #Train Data #Test Data

Auto-MPG 7 - 320 72

Abalone 8 - 3,000 1,177

California Housing 8 - 8,000 12,640

Image Segment 19 7 1,500 810

Satellite Image 36 6 4,435 2,000

DNA 180 3 2,000 1,186

5.1 Data Sets Specification

As shown in Table 1, six benchmarking data sets
(Blake and Merz, 1998) have been studied in the sim-
ulations, including three regression problems (auto-
MPG and abalone), and three multi-class classifica-
tion problems (image segmentation and satellite im-
age). Same as in (Liang et al., 2006), the input at-
tributes and output attributes of regression problems
are normalized into the range of [0,1]; the input at-
tributes of classification problems are normalized into
the range of [-1,1].

ONLINE SEQUENTIAL LEARNING BASED ON ENHANCED EXTREME LEARNING MACHINE USING LEFT OR
RIGHT PSEUDO-INVERSE

303



Table 2: Performance comparison on regression problems.

Regression Auto-MPG Abalone California Housing

ELM-Based Time RMSE Parameter Time RMSE Parameter Time RMSE Parameter

Algorithms (s) Training Testing C L (s) Training Testing C L (s) Training Testing C L

Sequential OS-ELM 0.0103 0.0686 0.0759 - 25 0.0437 0.0753 0.0779 - 25 0.3204 0.1304 0.1331 - 50

20-by-20 OS-eELM-left 3.9827 0.0607 0.0724 28 1000 23.9346 0.0719 0.0774 212 1000 75.1894 0.1246 0.1282 210 1000

OS-eELM-right 2.1338 0.0610 0.0709 28 1000 2.1338 0.0610 0.0709 28 1000 78.7415 0.1247 0.1282 210 1000

Sequential OS-ELM 0.0115 0.0680 0.0781 - 25 0.0711 0.0752 0.0783 - 25 0.4842 0.1303 0.1322 - 50

[10,30] OS-eELM-left 3.8794 0.0612 0.0706 28 1000 26.3018 0.0724 0.0771 210 1000 78.7824 0.1200 0.1294 214 1000

OS-eELM-right 2.6289 0.0578 0.0701 210 1000 15.8310 0.0752 0.0769 24 1000 71.4949 0.1203 0.1300 214 1000

Sequential OS-ELM 0.0365 0.0690 0.0739 - 25 0.2315 0.0755 0.0780 - 25 3.4161 0.1300 0.1338 - 50

1-by-1 OS-eELM-left 17.3220 0.0643 0.0714 26 1000 131.1391 0.0736 0.0766 28 1000 537.7711 0.1185 0.1285 216 1000

OS-eELM-right 14.1596 0.0644 0.0708 26 1000 106.4070 0.0724 0.0769 210 1000 497.1973 0.1203 0.1300 214 1000

Table 3: Performance comparison on multi-class classification problems.

Classification Image Segment Satellite Image DNA

ELM-Based Time Rates(%) Parameter Time Rates(%) Parameter Time Rates(%) Parameter

Algorithms (s) Training Testing C L (s) Training Testing C L (s) Training Testing C L

Sequential OS-ELM 0.7806 97.02 94.88 - 180 19.9366 91.96 88.95 - 400 1.9425 92.67 87.94 - 200

20-by-20 OS-eELM-left 17.7426 98.19 95.91 28 1000 55.5763 94.62 89.95 26 1000 20.5104 97.26 93.75 2−8 1000

OS-eELM-right 11.9593 98.11 95.99 28 1000 52.0285 93.92 90.04 24 1000 20.1678 97.25 93.73 2−8 1000

Sequential OS-ELM 1.1691 97.05 94.89 - 180 28.7451 91.97 88.98 - 400 1.8754 92.87 88.06 - 200

[10,30] OS-eELM-left 15.6828 98.54 95.94 210 1000 55.2733 94.64 89.91 26 1000 20.9615 97.30 93.66 2−8 1000

OS-eELM-right 9.4103 98.56 96.00 210 1000 51.5571 95.03 89.67 28 1000 21.3806 97.32 93.77 2−8 1000

Sequential OS-ELM 10.3722 97.05 94.75 - 180 377.1901 92.00 89.00 - 400 24.2925 92.57 87.91 - 200

1-by-1 OS-eELM-left 93.6714 97.58 95.88 26 1000 284.5552 93.93 89.99 24 1000 120.4346 97.28 93.74 2−8 1000

OS-eELM-right 88.2663 98.17 95.92 28 1000 280.7665 93.94 89.98 24 1000 132.8770 97.24 93.65 2−8 1000

5.2 Parameter Settings

Sigmoidal additive hidden nodes are selected for all
the algorithms. Other hidden nodes, such as RBF
nodes, can be studied in the future work. Similar to
(Huang et al., 2011; Huang et al., 2010), good perfor-
mance is achieved usually when the number of hidden
nodesL is large. The performances of our proposed
algorithm and OS-eELM-left are insensitive toL as
well (Figure 1). Therefore, it is convenient thatL is
fixed as 1000 for both algorithms. Another parameter
C which determines the positive value added to the
diagonal needs to be specified by users. A wide rage
of C {2−24

,2−23
, · · · ,224

,225} is validated for the op-
timal testing rate.
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Figure 1: Testing RMSE of abalone with respect toC and
L.

5.3 Comparison of Average Testing
Accuracy

The average testing RMSE for regression problems
and average testing rate for classification problems
are obtained over 50 trials.

It can be observed from Table 2 and Table 3 that
for online sequential learning, the accuracy on test-
ing data is improved when a positive value is added to
the diagonal ofHT H for left pseudo-inverse orHH T

for right pseudo-inverse. It is also shown that the se-
quential algorithms using right or left pseudo-inverse
obtain similar testing accuracy.

5.4 Comparison of Training Time

Different from the original ELM, the number of hid-
den nodes is fixed as a large value (1000) in the en-
hanced ELM. That is the reason why enhanced ELM
tends to be slower than the original ELM in both batch
and sequential learning mode.

It is not difficult to find out from (12) that the
computational complexity of the incremental learn-
ing phases for both OS-eELM-left and OS-eELM-
right are similar. Therefore, Main focus on analy-
sis of computational complexity is given to the initial
phases for both formulas. For right pseudo-inverse of
the formH† = HT ( I

C +HH T )−1, matrix inversion is
carried out on aN ×N matrix. While it is L× L in
the case of left pseudo-inverse. Therefore, in terms of
the training speed, right pseudo-inverse is preferred
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when the size of training data is small; otherwise left
pseudo-inverse is more appropriate. Hence, it can be
observed from Table 2 and Table 3 that OS-eELM-
right runs relatively faster than OS-eELM-left since
the size of initial training data is chosen much smaller
than the number of hidden nodes.

6 CONCLUSIONS

In this paper, an online sequential learning algorithm
for SLFNS and other regularization networks based
on the enhanced ELM is proposed, which is capa-
ble of learning data on a one-by-one basis or chunk-
by-chunk basis. Simulations on six benchmarking
datasets have shown that, by adding a positive value
to the diagonal ofHH T andHT H, the generalization
performance of our proposed methods outperform the
original OS-ELM. In addition, in the simulations, OS-
eELM-right is more suitable for sequential learning
than OS-eELM-left concerning the issue of training
speed since there are less than 1,000 observations dur-
ing the initial training phase. Different hidden nodes,
such as RBF nodes, can be implemented in the future
work.
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