ON THE VC-DIMENSION OF UNIVARIATE DECISION TREES

Olcay Taner Yildiz
Department of Computer Engineering, Isik University, 34980, Esilanbul, Turkey

Keywords:  VC-Dimension, Decision trees.

Abstract: In this paper, we give and prove lower bounds of the VC-dimension of the univariate decision tree hypothesis
class. The VC-dimension of the univariate decision tree depends on the VC-dimension values of its subtrees
and the number of inputs. In our previous work (Aslan et al., 2009), we proposed a search algorithm that
calculates the VC-dimension of univariate decision trees exhaustively. Using the experimental results of that
work, we show that our VC-dimension bounds are tight. To verify that the VC-dimension bounds are useful,
we also use them to get VC-generalization bounds for complexity control using SRM in decision trees, i.e.,
pruning. Our simulation results shows that SRM-pruning using the VC-dimension bounds finds trees that are
more accurate as those pruned using cross-validation.

1 INTRODUCTION 1995) uses the VC dimension of the estimators to se-
lect the best model by choosing the model with the

In pattern recognition the knowledge is extracted as smallest upper bound for the generalization error. In

patterns from a training sample for future prediction. SRM, the possible models are ordered according to

Most pattern recognition algorithms such as neural their complexity

networks (Bishop, 1995) or support vector machines

(Vapnik, 1995) make accurate predictions but are not MoCMi1C M2C... Q)

interpretable, on the other hand decision trees areFor example, if the problem is selecting the best de-

simple and easily comprehensible. They are robust gree of a polynomial functionvlg will be the polyno-

to noisy data and can learn disjunctive expressions. mial with degree OM; will be the polynomial with

Whatever the learning algorithm is, the main goal of degree 1, etc. For each model, the upper bound for its

the learner is to extract the optimal model (the model generalization error is calculated. For binary classifi-

with least generalization error) from a training set. In cation, the upper bound for the generalization error is

the penalization approaches, the usual idea is to de-(Cherkassky and Mulier, 1998)

fine the generalization error in terms of the training

error and the complexity of the model. _ € [, AR
One problem in estimating the generalization error Bo =B+ 2 <1+ 1+ € (2)

is to specify the number of free parametershen the

estimator is not linear. In the statistical learning the- ande is given by the formula

ory (\_/apn_ik, 1995), Vapnik-CherV(_)nenki_s (VC) di- __ V[log(aN/V) + 1] —log(v)

mension is a measure of complexity defined for any E=a N )

type of estimator. VC dimension for a class of func-

tions f(x,a) wherea denotes the parameter vector WhereV represents the VC dimension of the model,

is defined to be the largest number of points that can represents the confidence level, &depresents the

be shattered by members @tx,(])_ A set of data training error. It is recommended to use= \/Aﬁ for

points isshatteredby a class of functiong (x,a) if large sample sizes.

for each possible class labeling of the points, one can  In this work, we use decision trees as our hypothe-

find a member off (x,a) which perfectly separates sis class. In a univariate decision tree (Quinlan, 1993),

them. For example, the VC dimension of the linear the decision atinternal nodeuses only one attribute,

estimator class id dimensions isl + 1 whichisalso  i.e., one dimension of, x;. If that attribute is discrete,

the number of free parameters. there will beL children (branches) of each internal
Structural risk minimization (SRM) (Vapnik, node corresponding to thedifferent outcomes of the
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decision. ID3 is one of the best known univariate de-
cision tree algorithm with discrete features (Quinlan,
1986).

As far as our knowledge, there is no explicit for-
mula for the VC-dimension of a decision tree. Al-
though there are certain results for the VC-dimension
of decision trees such as (i) it is known that the VC
dimension of a binary decision tree withnodes and
dimensiond is betweerQ(N) and o (Nlogd) (Man-
sour, 1997) (ii) it is shown that the VC dimension of
the set of all boolean functions dhboolean variables
defined by decision trees of rank at moss 31_ ()

(Simon, 1991), the bounds are structure independent,

that is, they give the same bound for all decision trees
of sizeN.

In this work, we first focus on the easiest case
of univariate trees with binary features and we prove
that the VC-dimension of a univariate decision tree
with binary features depends on the number of bi-
nary features and the tree structure. As a next step,
we generalize our work to the univariate decision tree
hypothesis class, where a decision node can lhave
children depending on the number of values of the se-
lected feature. We show that the VC-dimension of
L-ary decision tree is greater than or equal to the VC-
dimension of its subtrees. Based on this result, we
give an algorithm to find a lower bound of the VC-
dimension of d_-ary decision tree. We use these VC-
dimension bounds in pruning to validate that they are
indeed tight bounds.

This paper is organized as follows: In Section
2, we give and prove the lower bounds of the VC-
dimension of the univariate decision trees with binary
features. We generalize our work teary decision
trees in Section 3. We give experimental results in
Section 4 and conclude in Section 5.

2 VC-DIMENSION OF THE
UNIVARIATE DECISION TREES
WITH BINARY FEATURES

We consider the well-known supervised learning set-
ting where the decision tree algorithm uses a sample
of mlabeled pointS= ((x,y®), ... (x(M yM) ¢

(X xY)™ whereX is the input space and the label
set, which is{0,1}. The input spac& is a vectorial
space of dimensiod, the number of features, where
each feature can take values frd@ 1}. From this
point on, we refer only internal nodes of the decision
tree as node(s).

Theorem 1. The VC-dimension of a single decision
node univariate decision tree that classifies d dimen-
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Figure 1: Example for Theorem 1 with=7 andm= 4. If
the class labeling d®is {1, 1, 0, G we select feature 5 (left
decision tree). If the class labeling 8fis {0, 0, 1, G we
select feature 3 (right decision tree).

sional data is|log,(d+ 1) | 4 1.

Proof. To show the VC-dimension of the single de-
cision node univariate decision tree is at leastve
need to find such a samp®of sizem that, for each
possible class labelings of thesepoints, there is an
instantiationh of our single node decision tree hy-
pothesis clas$l that classifies it correctly. We con-
struct the samples such that each featurg cor-
responds to a distinct possible class labelingnof
points, implying a one-to-one mapping between class
labelings and features (namely identity function since
both features and class labelings come from the same
set). So for each possible class labeling, we will
choose the decision tree hypothesighich has the
corresponding feature as the split feature (See Figure
1 for an example). A sample witln examples can be
divided into two classes in™2 ! — 1 different ways. If

we set the number of features to that number:

d 2™l
d+1 = 2™+
logy(d+1) = m-1
m log,(d+1)+1

O

Theorem 2. The VC-dimension of a degenerate uni-
variate decision tree with N nodes that classifies d
dimensional data is at leagiog,(d — N +2)| + N.
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Figure 3: Example for Theorem 3 with=5 andm = 12.
Using feature 5 in the first level and feature 4 in the second

x@0)  x(1) = v e
x@ (1) level, one divides the class labelings into 4 subproblems of
Figure 2: Example for Theorem 2 with= 7 andm = 7 m= 3. Each subproblem can then be shattered with a single
' i node.

If the class labeling oBis {1, 1, 0,x, X, X, X} we select

feature 3 in the bottom node. The labelings of the last four

examples do not matter since they are alone in the leavesProof. Similar to the Theorem 2 we proceed in a bot-

they reside. tom up fashion. Each bottom node (For this case,
. there are 21 of them) can classifyn examples by

In a degenerate decision tree each node (except thegetting up 21 — 1 features to produce a one-to-one

bottom one) has a single child node. mapping between class labelings and those features

Proof. Similar to the Theorem 1, we produce a sam- (S€€ Theorem 1). We also atid- 1 features to the
ple S such that, for each possible class labelings of S&mple, where the first feature will be used in the first
this sample, there is an instantiationf our degener-  €vel, the second feature will be used in the second
ate decision tree hypothesis classhat classifies the  |€vel, €tc. (See Figure 3 for an example). This way
sample correctly. We proceed in a bottom-up fash- €ach bottom node can be labeled &s-al digit bi-

ion. The bottom node can classify examples by ~ nary number, which corresponds to the values of the
setting up 21 — 1 features to produce a one-to-one newh — 1 features of the examples forwarded to that
mapping between class labelings and those featured0de- F,or example, the values of the first, second,
(See Theorem 1). We also add one feature and one --» N — 1'th features (added features) of the examples
example for each remaining node, where the value of forwarded to leftmost bottom node will be 0. On the
the new feature is 1 for the corresponding example Other hand, the values of the first, second,h —1'th
and 0 for the remaining examples (See Figure 2 for features of examples forwarded to the rightmost bot-

an example). The classification of the sample goes tom node will be 1. Given such a setup, one can pro-
as follows: N — 1 nodes (which have a single child duce a full decision tree which can classify2m

node) will select the new — 1 features respectively points for e.ach possible class labeling. The number
as the split features so that each added example willOf featuresiis,
be forwarded to the leaf of the corresponding node d = 2™ _1.ph_1
alone. The remainingn examples will be forwarded me1

to the bottom node, where the decision node can clas- d-h+2 = 2

sify those examples whatever their class combination m = log,(d—h+2)+1

is. The JurEERof featuresl|s, So the VC-dimension of the full decision tree is at
d = 2Mm* —14N-1 least 2~Im, thatis 2~1(|log,(d —h+2)|+1). O
d—N+2 = 2m1
m

Theorem 4. The VC-dimension of a univariate deci-
logy(d —N+2)+1 sion tree with binary features that classifies d dimen-
So the VC-dimension of the degenerate decision treesional data is at least the sum of the VC-dimensions
is at least h-+ N — 1), that is|log,(d —N+2)| + of its left and right subtrees those classifying-d
N. O dimensional data.

Theorem 3. The VC-dimension of a full univariate Proof. Let the VC-dimension of two decision trees
decision tree of height h that classifies d dimensional (DT, andDT,) beVC; andV G, respectively. Under
data is at leas2"%(|log,(d —h+2)| +1). In a full this assumption, those trees can clasgi§ andv G
decision tree each node has two child nodes. examples under all possible class labelings of those
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VCDimension LBOT, d)

if DT is a leaf node
returnl

if left and right subtrees dT are leaves
return [log,(d+1)| +1

DT_ = Left subtree oDT

DTr = Right subtree oDT

return LB(DT.,d—1) + LB(DTg,d—1)

No ok, WNBE

Figure 4: The pseudocode of the recursive algorithm for
finding a lower bound of the VC-dimension of univariate
decision tree with binary feature®T: Decision tree hy-
pothesis clasg]: Number of inputs

examples. Now we form the following tree: We add

a new feature to the dataset and use that feature on

VCDimension LB-L-aryDT, d)
if DT is a leaf node
returnl
if all subtrees oDT are leaves
return [logy(yL4(2571—1)+1)] +1
sum=0
for i = 1to number of subtrees
sum += LB-L-aryQT;,d — 1)
return sum

O~NO UL WN P

Figure 5: The pseudocode of the recursive algorithm for
finding a lower bound of the VC-dimension bfary deci-
sion tree:DT: Decision tree hypothesis clask, Number

of inputs

The proofs are similar to the proofs of Theorems

the root node of the new decision tree, which has its 1 and 4. We omit them due to lack of space.

left and right subtreeBT; andDT, respectively. The

Figure 5 shows the recursive algorithm that calcu-

value of the new feature will be 0 for those instances |ates a lower bound for the VC-dimension of an ar-

forwarded to the left subtreeD{;), 1 for those in-
stances forwarded to the right subtrd&T{). Now
the new decision tree can classify at led&y + V&

examples for all possible class labelings of those ex-

amples.

Figure 4 shows the recursive algorithm that calcu-
lates a lower bound for the VC-dimension of an arbi-

bitrary L-ary decision tree using Theorems 5 and 6.
There are two base cases; (i) the L-ary decision tree
is a leaf node whose VC-dimension is 1, (ii) the L-
ary decision tree is a single node decision tree whose
VC-dimension is given in Theorem 5.

trary univariate decision tree using Theorems 1 and 4.4 EXPERIMENTS
There are two base cases; (i) the decision tree is a leaf

node whose VC-dimension is 1, (ii) the decision tree

is a single node decision tree whose VC-dimension is

given in Theorem 1.

3 GENERALIZATION TO L-ARY
DECISION TREES

Until now, we considered the VC-dimension of uni-
variate decision trees with binary features. In this

4.1 Exhaustive Search Algorithm

To show the bounds found using Theorems 1-4 or us-
ing the algorithm in Figure 4 are tight, we run the ex-
haustive search algorithm explained in our previous
work (Aslan et al., 2009) on different decision tree hy-
pothesis classes. Since the computational complexity
of the exhaustive search algorithm is exponential, we
run the algorithm only on cases with smaland|H|.
Figure 6 shows our calculated lower bound and

section, we generalize our idea to univariate decision 8act VC-dimension of decision trees for datasets
trees with discrete features. In a univariate decision With 3 and 4 input features. It can be seen that the

tree generated for such a dataset, there will lodil-

VC-dimension increases as the number of nodes in

dren (branches) of each internal node correspondingth® decision tree increases, but there are exceptions
to theL different outcomes of the decision. For this Where the VC-dimension remains constant though the

case, the input spac€is a vectorial space of dimen-
siond, the number of features, where each fealXjre
can take values from discrete 4t 2, ...,L;}.

Theorem 5. The VC-dimension of a single node L-

ary decision tree that classifies d dimensional data is

llogy(3fL4 (251~ 1) +1)] + 1.
Theorem 6. The VC-dimension of L-ary decision tree

number of nodes increases, which shows that the VC-
dimension of a decision tree not only depends the
number of nodes, but also the structure of the tree.
The results show that our bounds are tight: the max-
imum difference between the calculated lower bound
and the exact VC-dimension is 1. Also for most of
the cases (70 percent), our proposed algorithm based
on lower bounds finds the exact VC-dimension of the

that classifies d dimensional data is at least the sum decision tree.

of the VC-dimensions of its subtrees those classifying

d — 1 dimensional data.
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Set NOprune CVprune  SRMprune
Acc| 171+16 155+23 156+1.6
Art 0.0+ 0.0 05+14 00+ 00
Don 8.0+11 7.1+£1.1 6.7+ 11
Krv 03+0.3 1.2+0.7 0.6+ 0.4
Mon 424+59 10.0+7.6 42+59
Mus 00+0.0 0.0+ 0.1 0.0+ 00
Pro| 23.64+ 125 24.7+129 20.6+123
Spe| 25.4+79 209+36 221471
Tic | 1424+38 185+42 142+38
Tit | 21.0+17 215+21 226+2.1
Vot 6.3+ 3.6 44429 39+34

@)

Figure 6: Calculated lower bound and the exact VC-
dimension of univariate decision trees for datasets with 3
(a) and 4 (b) input features. Only the internal nodes are
shown.

Set| NOprune CVprune SRMprune

4.2 Complexity Control using AAC;? 101156128 5?5145 8356133
. . I

VC-Dimension Bounds Don | 1489+ 32 145+35 910+ 74
Krv 138+6 80+ 13 122+9
In this section to show that our VC-dimension bounds Mon | 121+50 574+17 121+50
are useful, we use them for complexity control in de- Mus 43+ 0 41+ 4 43+ 0
cision trees. Controlling complexity in decision trees Pro 48+ 5 13+ 6 39+ 3
could be done in two ways. We can control the com- Spe 165+ 9 5+ 10 60+ 16
plexities of the decision nodes by selecting the appro- Tic | 437+£31 123+25 436+31
priate model for a node (Yildiz and Alpaydin, 2001), Tit 32+1 16+ 4 5+2
or we can control the overall complexity of the de- Vot 89+ 8 9+8 23+8

cision tree via pruning. Since this paper covers only

Table 1: The average and standard deviations of error rates
of decision trees generated using NOprune, CVprune, and
SRMprune.

Table 2: The average and standard deviations of tree
complexities of decision trees generated using NOprune,
CVprune, and SRMprune.

discrete univariate trees, we take the second approactbioinformatics datasets. We use 400 fold cross-

and use the VC-dimension bounds found in the previ-
ous section for pruning.

When we prune a node using SRM (SRMprune),
we first find the VC generalization error using Equa-
tion 2 whereV is the VC-dimension and; is the
training error of the subtree. Then, we find the train-
ing error of the node as if it is a leaf node. Since
the VC-dimension of a leaf node is 1, we can find
the generalization error of the tree as if it is pruned.
If the generalization error of the leaf node is smaller

validation to generate training and test sets. For
CVprune, 20 percent of the training data is put aside
as the pruning set. for SRMprune we did a grid-search
ona; anday using cross-validation and usag= 0.1
anda; = 2.0.

Tables 1 and 2 show the average and standard de-
viations of error rates and tree complexities of deci-
sion trees generated using NOprune, CVprune, and
SRMprune respectively. On four datasedstificial,
monks mushroomandtictactog there is no need to

than the generalization error of the subtree, we pruneprune, i.e., pruning decreases performance and in this
the subtree, otherwise we keep it. We compare SRM cases, CVprune prunes trees aggressively by sacrific-
based pruning with CVprune, where we evaluate the ing from accuracy, whereas SRMprune does not prune
performance of the subtree with a leaf replacing the and gets the best performance with NOprune.

subtree on a separate validation set. For the sake of On five datasetsagceptors donors spect pro-
generality, we also include the results of trees be- moters andvote pruning helps, i.e., pruning both re-
fore any pruning is applied (NOprune). We use a duces both the error rate and the tree complexity as
total of 11 data sets where 9 of them aeetificial, needed. For those datasets, on two datasets CVprune
krvskp monks mushroom promoters spect tictac- is better than SRMprune, whereas on three datasets
toe, titanic, and vote from UCI repository (Blake =~ SRMprune is better than CVprune.

and Merz, 2000) and 2 aredceptorsand donorg On two datasets tifanic and krvskp, both
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CVprune and SRMprune prune more than needed andvapnik, V. (1995). The Nature of Statistical Learning The-

therefore can not decrease error rate. In general, ory. Springer Verlag, New York.
CVprune prunes more aggresively than SRMprune Yildiz, O. T. and Alpaydin, E. (2001). Omnivariate deci-

12(6):1539-1546.

5 CONCLUSIONS

This paper tries to fill the gap in the statistical learning
theory, where there is no explicit formula for the VC-
dimension of a decision tree. In this work, we first
focused on the easiest case of univariate trees with bi-
nary features. Starting from basic decision tree with a
single decision node, we give and prove lower bounds
of the VC-dimension of different decision tree struc-
tures. We also prove that the VC-dimension of a uni-
variate decision tree with binary features depends on
the number of features and the VC-dimension of the
left and right subtrees of it (tree structure).

We use the exhaustive search algorithm given
in (Aslan et al., 2009) to calculate the exact VC-
dimension of simple trees and compare our bounds
with the exact VC-dimension values, where the re-
sults show that our bounds are tight. These VC-
dimension bounds are then used in pruning us-
ing SRM and when compared with cross-validation
pruning, we see that SRM pruning using our VC-
dimension values work well and find trees that are
as accurate as CV pruning without the overhead of
cross-validation or needing to leave out some data for
training set.
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