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Abstract: Intergenic regions are unstable, owing totrans-regulatory factors that regulate chromatin structure. Nucleo-
some organization at promoter has been shown to exhibit distinct patterns corresponding to the level of gene
expression. Post-translational modifications (PTMs) of histone proteins and transcriptional regulators, includ-
ing chromatin remodeling complexes (CRCs), general transcription factors (GTFs), and RNA polymerase II
(PolII), are presumably related to the establishment of such nucleosome dynamics. However, their concrete
relationships, especially in gene regulation, remain elusive. We, therefore, sought to understand the functional
linkages among these factors and nucleosome dynamics by deriving a Bayesian network (BN)-based model
representing their interactions. Based on the recovered network, learnt from 8 PTMs and 15 transcriptional
regulators at 4034S.cerevisiae promoters, we speculate that nucleosome organization at promoter is intention-
ally volatile in various regulatory pathways. Notably, interactions of CRCs/GTFs andH3 histone methylation
were inferred to co-function with nucleosome dynamics in gene repression and pre-initiation complex (PIC)
formation. Our results affirm the hypothesis that extrinsic factors take part in regulating nucleosome dynamics.
More thorough investigation can be made by adding more factors and using our proposed method.

1 INTRODUCTION

Eukaryotic genomes are packaged inside cell nucleus
under chromatin structure like a bead-on-string fiber
of nucleosomes. As a fundamental unit, nucleosome
contains a core of octamer histone proteins wrapped
around by 147bp of DNA (Luger et al., 1997). More
than DNA packaging, chromatin involves in various
cellular processes such as transcription, DNA replica-
tion, etc., by occluding the access of biological ma-
chineries tocis-regulatory elements and/or modify-
ing related epigenetic information. To overcome the
obstacle imposed by chromatin, cells have developed
complicated pathways (Li et al., 2007), in which nu-
cleosome must be dislocated from chromatin to pro-
vide access to the underlying DNA sequences. While
positioning are strongly influenced by intrinsic DNA
sequence preference (Kaplan et al., 2010), the rear-
rangement can be flexibly modulated by extrinsic fac-
tors, e.g., DNA-binding factors and CRCs (Wan et al.,
2009). They help to maintain the periodicity, hence
the corresponding transcription activities, by directly
altering nucleosome organization in various manners
(Venters and Pugh, 2009). PTMs were shown in vari-

ous works to be related to nucleosome spatial organi-
zation (Cui et al., 2010). These two factors interact in
that PTMs serve as their targeting marks, and in turn,
the locations of PTMs is modulated by those regula-
tory proteins. Such series of highly regulated interac-
tions may necessarily be characterized by a network
featuring variable correlations. Since the data in use
here are all related to transcriptional activities, we ref-
erenced to the common resulting effects on gene ex-
pression to infer possible functional linkages.

Taken together, we speculated that in complex in-
teraction network, the nucleosome dynamics at pro-
moter may play an intermediate role, i.e. affecting as
well as being affected by other factors, in regulatory
pathways, assuming that there are two classes of pro-
moters,unstable with periodic nucleosome arrange-
ments, andstable without. We employed Bayesian
network (BN), a class of probabilistic graphical mod-
els that can capture not only co-occurrence pattern
but also interaction/dependency among variables, for
interaction modeling. BN has been used to recon-
struct many kinds of cellular networks, such as gene
regulatory networks and protein interaction networks
(Friedman et al., 2000). Compared with previous
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findings, we showed that the built network can re-
cover known relationships as well as functional link-
ages consistent with knowledge about various DNA-
mediated processes.

2 METHOD

2.1 Datasets

The experimental data of 24 featuresSaccharomyces
cerevisiae were gathered as follows: Two classes
of 4043 yeast promoters, including 1355unsta-
ble/dynamic (no periodicity and high expression) and
2688stable (explicit periodicity and low expression)
were obtained from (Wan et al., 2009); 8 PTMs (from
−1000bp to TSSs) were obtained from (Pokholok et
al., 2005); 15 transcriptional regulators including 6
GTFs, 1 PolII component, and 8 CRCs from (Ven-
ters and Pugh, 2009). Data was discretized using
proportional k-interval discretization (PIKD) (Yu et
al., 2008) with intervals of[33%,66%], [20%,80%],
[40%,60%], and determined by K-means clustering
(k = 3). As a result,[20%,80%] proportional 3-
interval scheme gave us the most reasonable network
(data not shown).

2.2 Bayesian Networks

2.2.1 Definition

A Bayesian network for a set of variablesX =
{X1,X2, . . . ,Xn} is a probabilistic model consisting of
two components (Heckerman, et al., 1995):
• A network structureS, which is a directed acyclic

graph, representing conditional (in)dependence
relationships among variables inX

• A set P of local probability distributions associ-
ated with each variable.

Because the main target of our work is to uncover
the relationships among the PTMs so we are inter-
ested in the problem of learning BN structure. We
employed the score-based search method (Jensen and
Nielsen, 2007) to learn a BN structure representing
relationships among PTMs. To score a candidate net-
work, we used a Bayesian scoring metric, namely
BDe (Bayesian metric with Dirichlet prior and equiv-
alence) (Heckerman, et al., 1995).

2.2.2 Bootstrapping and Selection of Cut-off
Threshold

The search-and-score method generates a different
network on each run, and only one with highest score

is output. Hence, we employed the bootstrapping
method (Friedman et al., 2000) to estimate the con-
fidence level for each edge in the resulting network.
Then following hybrid method was proposed to de-
rive a suitable threshold value for confidence level of
each edge in the resulting network:

1. Divide data inton datasets usingn-fold cross-
validation,t times.

2. At each time, n bootstrapped consensus BNs
N1 . . .Nn are output, using a fixedτ. Then,n cross-
validated networks are combined into one by in-
cluding edges agreed byθ graphs. Thus, with
each pair of (τ and θ), one final networkN is
learnt.

3. To measure the goodness of the learnt network,
accuracy (acc) and coverage (cov) are used and
plotted as receiver operating characteristic (ROC)
curve. Co-ordinates of each point in the curve is
the average oft times (with standard deviation).
The chosen network hasτ andθ that generate the
largest area under the curve (AUC).

acci =
♯(Ni ∩N)

♯Ni
,covi =

♯(Ni ∩N)

♯N
, i = 1, . . . ,n

(1)
where the numerator is the number of overlapping
edges of each network with the common one; the
denominator is the number of edges in each net-
work and the common one, respectively.

In our experiment, we split data into 5 datasets (ac-
cording to 5-fold cross-validation) fort = 50 times;
on each, we bootstrapped 100 times (m= 100), which
totally resulted in 25,000 input datasets for learning.
Each edge in the consensus network has a related con-
fidence score, measured by the number of times it ap-
pears in 100 bootstrapped ones. Thresholdτ was cho-
sen in the range of[0.5,0.8]with the step of 0.05. The
combined network consisted of overlapping edges by
θ = {2,3,4} cross-validated ones. We then chose pa-
rametersθ = 3 andτ = 0.65 to produce a network
with 24 features as its nodes and 36 edges represent-
ing the functional linkages among PTMs, transcrip-
tional regulators, and nucleosome dynamics (Fig. 1).

3 RESULTS AND DISCUSSION

3.1 Network Recovers Reliable
Functional Linkages

Comparing our network (Fig. 1) with previous find-
ings, we found a remarkable consistency with original
results reported in (Venters and Pugh, 2009). CRCs
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Figure 1: PTMs, TFs, and nucleosome dynamics network with confidence level (in range [0,1]). Note that the edge direction-
ality does not show definite causality, due to the nature of the learning algorithm; thus in most cases, we inferred correlations
or interactions among network nodes.

with subunits such asSwr1, Ioc2, Ioc3, Ino80, etc.,
appear in the upper part of the network, showing
causal relationships towards GTFs, which generally
reflects the role of CRCs as an ATP-dependent nucle-
osome translocator giving way to GTFs accessing the
buried DNA. From the network topology, it is clear
that nucleosome dynamics bridges two groups of tran-
scriptional regulators and PTMs, for which, unfortu-
nately, we have yet to find direct evidence. Nodes
of high out degree (number of edges pointing away
from node), such asSwr1 (out degree of 6) andSsl1
(out degree of 5), may play a central role;Swr1, (sub-
unit of SWR-C), is implicated in the deposition of
histone variantH2A.Z in promoter, which provides
a molecular mechanism to regulate transcription and
DNA repair (Luksend et al., 2010). Especially, to-
gether withNuA4, an essential histone acetyltrans-
ferase, they function inNuA4/SWR-C/H2A.Z pathway
to regulate chromosome stability.

3.2 Nucleosome Dynamics in
Regulatory Processes

3.2.1 PIC Formation by GTFs and PolII Affects
Nucleosome Dynamics

It is agreed that GTFs assemble at promoter to form
pre-initiation complex (PIC). The interactions among
them have been well investigated, and the related sub-
graph(TFIIH(Ssl1) → TFIIE(Tfa1) → THIIE(Tfg1))
→ TFIIB(Sua7) → TBP) → PolII (Rpo21) → State
in our network is consistent with previous findings
(Samorodnitsky and Pugh, 2010). Especially, these
factors were considered in (Samorodnitsky and Pugh,
2010), a modeling work (PathCom) towards the or-
dering of PIC assembly/disassembly at the genes of
yeast. The proposed assembly order was recruit-
ment ofTBP, TFIIB first, thenPolII and other GTFs
(TFIIB, TFIIE, TFIIF, TFIIH in order); disassembly
goes backwards. Interpretation from our network that
the binding of factor at child node correlates with that
of parent node in an order manner, i.e., the biding
of parent affects that of child, not vice versa, is rea-
sonably consistent with this model. Hence, from our
network, nucleosome organization (node State) may
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inferably alter along with PIC forming (most impor-
tantly,PolII), which well matches with the known hy-
pothesis that nucleosome dynamics facilitates access
to GTFs (Morse, 2007) and CRCs.

3.2.2 Limited Gene Expression by CRCs is
Related to Periodic Nucleosome
Organization at Promoter

We analyzed the chain ofSWR-C(Swr1) →
INO80(Ino80) → ISWIa/b(Isw1) → PolII(Rpo021)
→ State to understand the mechanism of gene repres-
sion, which is observable in our data as the periodic
nucleosome organization of limitedly expressed
genes. As pointed out in (Lindstrom et al., 2006),
Isw1 shows parallel functions withNuA4 and Swr1
complexes in repressing genes.ISWa/b plays a role
in repressing transcription (Pinskaya et al., 2009).
Hence, the interactions ofSwr1, NuA4, Isw1, and
Rpo21 at promoter can reasonably reason the gene
repressing directionality. In our network, however,
INO80 stands as a bridge betweenSwr1 and Isw1,
which is explainable becauseINO80 is essential in
H2A.Z correct deposition (Lindstrom et al., 2011)
and may catalyze the removal of unacetylatedH2A.Z.
We, therefore, speculated that the presence ofNuA4
as histone acetyltransferase andINO80 as remover
of unacetylatedH2A.Z at promoter in repressing
pathway defines the low level of gene expression;
and that in the pathway,INO80 help establishing the
periodicity of nucleosome organization.

4 CONCLUSIONS

We present here the reconstruction of interaction net-
work among various PTMs and transcriptional regu-
lators, with focus on their relationships with the dy-
namic nucleosome organization at promoter. Having
a large number of relationships correctly recovered,
the network features the regulatory processes that
show their presence by changing nucleosome orga-
nization at promoter, e.g., gene repression, postinitia-
tion regulation and PIC assembly/disassembly. Also,
we provide evidences for the hypothesis that nucleo-
some dynamics at promoter is regulated by extrinsic
factors, such as CRCs and GTFs. With these results,
the reliability of our method is proved, in addition to
the proposed valid learning procedure; hence, it can
be used to build networks of other factors.
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