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Abstract: At present, a range of clinical indicators are used to gain insight into the course a newly-presented 
individual’s disease may take, and so inform treatment regimes. However, such indicators are not absolutely 
predictive and patients with apparently low-risk disease may follow a more aggressive course. Advances in 
molecular medicine offer the hope of improved disease stratification and personalised treatment. For 
example, the identification of “genetic signatures” characteristic of disease subtypes is facilitated by high-
throughput transcriptional profiling techniques (microarrays) in which gene expression levels for thousands 
of genes are measured across a range of biopsy samples. However, the selection of a compact gene set 
conferring the most clinically-relevant information from complex and high-dimensional microarray datasets 
is a challenging task. We reduced this complexity using a Pathway Enrichment and Gene Network Analysis 
(PEGNA) method, which integrates gene expression data with prior biological knowledge to select a group 
of strongly-correlated genes providing accurate discrimination of complex disease subtypes. In our method, 
pathway enrichment analysis was applied to a microarray dataset in order to identify the most impacted 
biological processes. Secondly, we used gene network analysis to find a group of strongly-correlated genes 
from which subsets of genes were selected to use for disease classification with a support vector machine 
classifier. In this way, we were able to more accurately classify disease states, using smaller numbers of 
genes, compared to other methods across a range of biological datasets.  

1 INTRODUCTION 

The identification of disease biomarkers from 
genetic data, notably high-throughput transcriptional 
profiling screens, has attracted a great deal of recent 
interest due to their importance in diagnosis and 
prognostication. Biomarker discovery can be 
modelled as a feature selection problem that aims to 
find the most discriminating features (genes) for 
accurate disease classification (Ibrahim, Jassim,  
Cawthorne and Langlands, 2011b). 

Gene selection methods can be broadly 
categorized into two main groups (Asyali, Colak, 
Demirkaya and Inan, 2006): gene-based methods, 
and group-based methods (also known as filter 
methods and wrapper methods). Typical gene-based 
prediction methods rank genes individually 
according to pre-defined criteria such as t-test, 

relative entropy, and Wilcoxon test. The disease- 
discriminating power of each gene in such methods 
is considered separately.  

Group-based methods aim to identify a small 
subset of genes r out of n genes that minimize the 
classification error where nr  . A straightforward 
approach to select the best r features out of n is to 
try all possible combinations C where:  

 
(1)

However, this approach involves an exhaustive 
search problem, which is computationally 
intractable. For example, selecting the most 
informative group of 10 genes out of 100 genes, 
with a minimum classification error requires more 
than 1310 1.731  attempts. However, genes in a 
typical microarray experiments number in the tens of 
thousands, so such methods are very 
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computationally-demanding. Well-known traditional 
approximation solutions of exhaustive search 
problems such as Branch-and-bound-search, 
sequential forward/ backward selection and 
sequential forward/ backward floating search have 
been proposed to enhance the efficiency of group-
based methods (Jain, Duin and Mao, 2000; Jain and 
Zongker, 1997; Simon, 2003). However, the gene 
groupings for these and similar algorithms are based 
on statistically-derived clusters, not on biological 
knowledge. In this paper we describe an alternative 
solution based on limiting the search space to a 
group of correlated genes of greatest biological 
relevance to the disease type. This rationale is 
informed by the importance of combining gene 
expression data with prior biological knowledge to 
achieve better disease classification and provide 
additional contextual biological information 
compared to other methods. The complexity of 
biological systems has necessitated the 
categorisation of genes in the context of discrete 
biological processes (pathways), generating a vast 
repository of information curated in publicly-
available databases. This classification has taken 
different forms, including categorizing genes 
according to narrowly defined descriptive terms 
(specifically cellular component, biological process 
and molecular function) by the Gene Ontology (GO) 
consortium (Ashburner, Ball, Blake, Botstein, 
Butler, Cherry, Davis, Dolinski, Dwight, Eppig and 
others, 2000), or by grouping genes using pathways, 
such as in the database maintained by KEGG (The 
Kyoto Encyclopaedia of Genes and Genomes 
database) (Kanehisa and Goto, 2000). 

These initiatives have facilitated new approaches 
for disease classification and biomarker discovery 
by combining gene expression data with 
standardised functional annotations. Guo, Zhang, Li, 
Wang, Xu, Yu, Zhu, Wang, Wang, Topol, Wang and 
Rao (2005) used an arithmetic mean and median of 
all the gene expression values in each category 
defined by GO to capture the activity of that 
category, represented as a vector. Rapaport, 
Zinovyev, Dutreix, Barillot and Vert (2007) and 
Chen and Wang (2009) relied on Principal 
Component Analysis (PCA) to summarize all genes 
in every pathway in a compact representation. Su, 
Yoon and Dougherty (2009) computed the log-
likelihood ratio comparing different disease 
phenotypes based on the expression level of each 
gene. The activity of a given pathway was inferred 
by combining the log-likelihood ratios of the 
constituent genes. Tai and Pan (2007) used all genes 
in a pathway with no transformation. Others have 

applied a greedy search algorithm to find subsets of 
discriminating genes in each pathway summarized 
using the mean (Chuang et al., 2007) or sum of z-
scores (Hwang and Park, 2009). These algorithms 
output gene sets able to provide disease 
classification accuracies that are comparable to 
conventional gene selection methods. However, 
while summarizing a set of genes using one or more 
of the values described above might provide 
accuracy in disease classification, they do not 
necessarily facilitate the identification of those genes 
germane to disease pathogenesis (Ibrahim et al., 
2011b). 

The Gene Expression Network Analysis Tool 
(GXNA) described by Nacu et al., (2007) uses 
interaction data to build small networks of 
mammalian genes. Yousef et al., (2009), described a 
method that ranked microarray genes individually 
using t-test criteria before selecting a subset of genes 
to be subjected to gene network analysis with 
GXNA. However this method did not strive to 
identify the smallest number of strongly-correlated 
genes, and a pre-filtering step may more effectively 
identify compact sets of biologically-relevant 
targets. 

Ibrahim et al., (2011b) described a gene selection 
method that exploited pathway enrichment analysis 
to identify the most relevant pathways perturbed in a 
given microarray dataset. From this a set of 
differentially-expressed genes (DEGs) was isolated 
for disease classification. Although this approach 
involves pathway enrichment analysis, the critical 
problem remains the selection of the smallest 
number of genes correlating with outcomes. 
Pathways may contain hundreds of genes (as shown 
in  Table 1, which presents the number of expressed 
genes (nGene) in the top 10 most perturbed 
pathways in a dataset derived from patients with 
leukaemia). However, while the selection of 
biomarkers from pathway-enriched datasets 
performed well, an additional step to increase 
biological relevance could more effectively identify 
those genes correlating most strongly with disease 
subtypes. 

Herein we describe a Pathway Enrichment and 
Gene Network Analysis (PEGNA) method to 
facilitate more accurate disease classification. 
PEGNA integrates gene expression data with prior 
biological knowledge at two levels to select a group 
of correlated genes able to accurately discriminate 
complex as well as simple disease traits. Initially, 
PEGNA applies pathway enrichment analysis to a 
microarray dataset, followed by the selection of the 
top active (impacted) pathways most relevant to the 
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disease type before merging their genes into one 
common group. Secondly, the common genes are 
fed into gene network analysis (using GXNA) to 
construct a gene network of a given size, thereby 
enriching for a group of genes most relevant to the 
disease under study. 

2 PATHWAY ENRICHMENT AND 
GENE NETWORK ANALYSIS  

Figure 1 illustrates the PEGNA method for enriching 
microarray data. Datasets are randomly split into 
training and testing sets of equal size, with an equal 
representation of disease subtypes and correlated 
genes identified as described below. Median 
expression values for different disease states were 
determined across arrays within the sets. 

i. Pathway Enrichment Analysis. Pathways are sets 
of correlated genes interacting together to perform 
specific biological tasks, thus pathway enrichment 
analysis is more informative for biologists compared 
to unsorted lists of genes (Tian, Greenberg, Kong, 
Altschuler, Kohane and Park, 2005). Such analysis 
helps to identify the most relevant pathways to the 
phenotype. A number of statistical methods have 
been described for pathway enrichment; including 
Fisher exact and Chi-squared tests to calculate the 
probability of obtaining the observed number of 
significantly altered genes in a pathway by chance 
(Curtis et al., 2005). Others methods, such as gene 
set enrichment analysis (GSEA) (Subramanian et al, 
2005) and z-score (Cheadle et al., 2003), assign each 
pathway a statistical score representing its 
contribution to the phenotype under analysis. 
Several tools such as GenMapp (Dahlquist et al., 
2002), Gene-Sifter (GeneSifter® Analysis Edition), 
and Pathway Miner (Pandey et al., 2004) use z-
scores in evaluating either GO term or pathway 
enrichment (reviewed in (Curtis et al., 2005)). 

In this paper, we use the z-score for pathway 
enrichment analysis as it is straightforward to 
implement, although any pathway enrichment 
method could be used. The z-score is a statistical test 
under the hypergeometric distribution, and herein we 
use it as a measure of significance of the 108 
predefined signalling pathways imported from 
KEGG after superimposing expression data. We 
chose to focus on signalling pathways due to their 
relevance to cancer and relative ease in removing 
redundancies, a process described in (Ibrahim et al., 
2011a). The z-score of a pathway p (p=1, 2, .., 108)  
is given by the following formula: 

 

(2)

Where N is the total number of expressed genes 
detected by the microarray, R is the total number of 
significant genes (i.e. genes that meet the criteria for 
fold change above threshold, and p-value below 
threshold), n is the total number of expressed genes 
in the pathway p, and r is the number of significant 
genes in the pathway p. 
 

ii. Pathway Ranking. Pathway enrichment analysis 
assigns a score to each predefined pathway based on 
perturbations in gene expression. Ranking pathways 
by descending score readily allows identification of 
those most relevant to the phenotype. 
 

iii. Isolation of Significant Genes from k High 
Scoring Pathways to Create a Gene Cluster p. We 
selected the top 10 most relevant pathways (k=10) as 
this provides the best compromise between 
identifying informative genes and redundancy. 

 

iv. Creation of Gene Networks with GXNA. The 
genes in group p might number in hundreds as 
mentioned earlier. Therefore, we used GXNA (Nacu 
et al., 2007) to build gene networks of strongly 
correlated genes. In addition to prior biological 
information obtained from the KEGG database, 
GXNA relies on statistical measures for scoring 
networks and uses a search algorithm to output m 
user defined networks with high scores.  
 

v. Identification of Networks with the Lowest 
Classification Error Rate. We assigned a score for 
each of the m networks based on classification error 
rates obtained using the training set achieved with a 
Support Vector Machine (SVM) classifier. The gene 
network giving the lowest classification error was 
selected. 
 

vi. Identification of N Discriminating Features 
(Genes). As illustrated in Figure 1, steps 4, 5, and 6 
are repeated for different sizes of gene networks. In 
this paper, we selected N= 2, 4, 6, ... 24 genes.  

To evaluate the performance of the PEGNA 
algorithm, we used the test dataset to calculate 
disease classification accuracy achieved with the 
SVM classifier, based on the N genes from the 
selected network, using a K-fold cross-validation 
testing strategy. 
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Figure 1: A flowchart of the Pathway Enrichment and Gene Network Analysis (PEGNA) method. 

3 RESULTS 

3.1 Datasets 

3.1.1 AML 

Acute Myeloid Leukaemia (AML) is a 
haematopoietic malignancy resulting from the 
deregulated proliferation of myeloid precursor cells 
(or blasts).  Microarray studies have been used to 
identify gene expression changes that are unique to 
AML blasts in order to identify those genes whose 
expression profile differentiates leukaemic cells 
from normal cells in order to generate effective 
therapeutic targets. 

We reanalysed an AML dataset that compared 38 
myeloid cell samples derived from healthy donors 
and 26 samples of blasts from AML patients 
(Stirewalt, Meshinchi, Kopecky, Fan, Pogosova-
Agadjanyan, Engel, Cronk, Dorcy, McQuary and 
Hockenbery, 2008). RNA from these tissues was 

analysed using an Affymetrix GeneChip U133A 
platform (GEO (Gene Expression Omnibus 
database) accession GSE9476). Typical output of the 
first stage of our analysis pipeline, pathway 
enrichment, is shown in Table 1. A number of 
critical pathways are identified, as previously 
discussed (Ibrahim et al, 2011a). 

3.1.2 Psoriasis  

Psoriasis is a common skin disease that causes 
enhanced epidermal cell division resulting in red, 
dry patches of thickened skin. Understanding the 
pathogenesis of this disease and identification of its 
potential mediators has been investigated through 
profiling genome-wide transcriptional changes with 
microarray technology.  

We reanalysed a dataset containing matched 
samples of uninvolved and lesional skin from 28 
psoriatic patients (Yao, Richman, Morehouse, de 
Los Reyes, Higgs, Boutrin, White, Coyle, Krueger, 
Kiener and others, 2008). The Affymetrix® whole 
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genome U133 plus v2.0 array platform (GEO 
accession GSE14905) was used to profile genes 
expression in the different groups. In our analyses, 
we focused on identifying the list of genes best able 
to differentiate lesional from non-lesional samples. 

3.1.3 Breast Cancer 

The histological grade of invasive breast carcinoma 
(designated 1, 2 or 3) provides clinically-important 
prognostic information. Grades 1 and 3 are 
associated with low and high risk of recurrence 
respectively, while grade 2 is associated with an 
intermediate risk of recurrence. 

We studied a previously reported breast cancer 
dataset (Sotiriou, Wirapati, Loi, Harris, Fox, Smeds, 
Nordgren, Farmer, Praz, Haibe-Kains and others, 
2006) consisting of 189 samples in total (67 grade 1, 
59 grade 2, 46 grade 3, and 17 unknown) analysed 
using Affymetrix U133A platform (GEO accession 
GSE2990). We focused on discriminating Types 1 
and 3 in this report. 

Table 1: Top 10 AML pathways ranked by z-score. 

rank pathway z-score nGene
1 Osteoclast differentiation 4.67 126 

2 
Antigen processing and 
presentation 

4.09 76 

3 
Natural killer cell mediated 
cytotoxicity 

4.06 127 

4 Acute myeloid leukemia 3.87 58 

5 T cell receptor signaling pathway 3.69 105 

6 Malaria 3.69 50 
7 Systemic lupus erythematosus 3.54 120 
8 Staphylococcus aureus infection 3.35 54 
9 Endocytosis 3.29 183 

10 
Bacterial invasion of epithelial 
cells 

2.89 66 

3.2 Performance 

We compared the performance of the PEGNA 
algorithm with two other pathway enrichment based 
approaches: Pathway Enrichment with 
Differentially-Expressed Genes (PE_DEGs, 
(Ibrahim et al., 2011b) and Pathway Enrichment 
with Principal Component Analysis (PE_PCA) using 
a support vector machine (SVM) classifier. The 
three approaches share the first three steps illustrated 
in Figure 1 and differ in the selection of gene groups 
from the k most impacted pathways. PE_DEGs 
ranks the genes according to their fold change and p-
value in a descending manner and selects a group of 
size N from the top ranked genes, which are used 

without further network enrichment. Alternatively, it 
is attractive to use a dimension reduction technique 
to produce a compact representation of the data. 
PCA has been used extensively in the area of 
microarray-based disease classification to effectively 
reduce the dimensionality of microarray data 
(Rapaport et al., 2007; Chen and Wang, 2009). In 
the PE_PCA method, we applied PCA on the genes 
identified by pathway analysis to extract a summary 
of N transformed metaGenes. Importantly, PEGNA 
and PE_DEGs have an advantage over PE_PCA in 
as much as they output a group of identifiable genes 
rather than metaGenes, with implications for 
understanding pathogenic mechanisms and creating 
diagnostic assays. 

For all methods, raw array data extracted from 
GEO were normalized by the Robust Multichip 
Average (RMA) method using built-in functions in 
Matlab 7.10.0, and the significant genes 
discriminating normal and disease tissue, or disease 
sub-types were detected using criteria of fold 
change>=1.5 and p-value<0.05 prior to pathway 
enrichment. 

Experimental results in this paper are achieved 
using a SVM classifier applied to the test data using 
K-fold cross validation (k=10). Test samples are 
divided into k subsets so the SVM is trained on k-1 
subsets and tested on the remaining subset. The 
process is then repeated 10 times as each subset is 
taken to be a test set in turn (leave-one-out method). 

Figure 2 illustrates the increased accuracy 
achieved with PEGNA compared to alternative 
methods in the AML dataset. PEGNA achieves the 
highest disease classification accuracy across a 
range of gene group sizes. Moreover, PEGNA 
achieves 100% classification accuracy using a group 
of 8, 14, 16, 18, and 20 genes. 

 

Figure 2: AML classification accuracies achieved with 
PE_DEGs, PE_PCA and PEGNA using gene groups of 
different sizes [2, ... 24]. 
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Analysis of the psoriasis microarray dataset 
shows that PEGNA outperforms PE_DEGs and 
PE_PCA in terms of classification accuracy (Figure 
3). Specifically, our method consistently achieves 
100% accuracy between 2 and 12 genes. 

 

Figure 3: Psoriasis classification accuracies achieved with 
PE_DEGs, PE_PCA, and PEGNA using gene groups of 
different sizes [2, ... 24]. 

Analysis of the breast cancer data, illustrated in 
Figure 4, is more challenging compared to the other 
two datasets as a consequence of the complex 
pathogenesis of the disease and the fact that we are 
comparing disease subtypes, rather than performing 
a disease versus normal compartment analysis. As a 
consequence of this, the three methods achieve less 
accurate classification compared to the previous two 
datasets, although PEGNA consistently achieves the 
highest classification accuracy. For example, using a 
group of just 2 genes, classification accuracy of 
PEGNA, PE_PCA, and PE_DEGs are 82.5%, 
78.5%, and 76% respectively. A maximal accuracy 
of 86.5% is achieved with PEGNA, which can be 
contrasted with the values of 84.9% and 83.3% 
achieved with PE_PCA and PE_DEGs respectively. 

 

Figure 4: Breast cancer classification accuracies achieved 
with PE_DEGs, PE_PCA, and PEGNA using gene groups 
of different sizes [2, ... 24]. 

The most informative genes isolated from our 
analysis of the breast cancer data are shown in Table 
2. Notably, five of the eight genes are known to be 
informative in breast cancer, with the remaining two 
showing a strong cancer association and one 
(CCNB1) implicated in drug metabolism. While 
biomarker identification is a problem distinct from 
the improved understanding of disease processes, it 
will be of interest to investigate further the roles of 
ZBT16, CCNB1 and CDC20 in the pathogenesis of 
breast cancer. 

Table 2: Disease association in breast cancer biomarkers 
isolated with PEGNA. 

Gene Disease association Reference 

RXR 
Increased risk invasive 

breast cancer 

(Lawrence, Merino, 
Simpson, Manrow, Page, 

DL and Steeg, 1998) 

ZBTB16
Associated with long-
term ovarian cancer 

survival 

(Bonome, Levine, Shih, 
Randonovich, Pise-Masison 

et al., 2008) 

CDK1 
Increased risk of relapse 

in breast cancer 
(Kim, Nakayama, Miyoshi, 

Taguchi et al., 2007) 

CCNB1 
Breast cancer drug 

sensitivity 
(Shen, Huang, Jee and Kuo, 

1998) 

CDC20 
Over-expressed in gastric 

cancers 
(Kim, Sohn,  Yoon, Oh, 

Yang et al., 2005) 

PTTG1 
Associated with poor 

breast cancer prognosis 
(Lo, Yu, Chen, Hsu, Mau, 
Yang, Wu and Shen, 2007)

BIRC5 
Associated with poor 

breast cancer prognosis 
(Span, Sweep, Wiegerinck, 
Tjan-Heijnen et al., 2004) 

MAD2L1
Associated with poor 

breast cancer prognosis 
(Sotiriou, Neo, McShane, 
Korn, Long et al., 2003) 

Table 3: Comparison of classification accuracy (%Acc) 
obtained with PE_DEGs, PE_PCA, and PEGNA using 
three disease datasets. 

 Leukaemia Psoriasis 
Breast 
Cancer 

PE_DEGs 
nGene 20 18 6 
% Acc. 98.4 98.2 83.3 

PE_PCA 
nMetaGene 16 6 14 

% Acc. 98.4 100 84.9 

PEGNA 
nGene 8 2 8 
% Acc. 100.0 100.0 86.5 

Table 3 summarises optimal performances 
achieved with the three methods, i.e. the highest 
classification accuracy based on a minimum number 
of genes/ metaGenes obtained across three disease 
datasets. It is clear that PEGNA achieves better 
accuracy in discriminating discrete (such as 
psoriasis) as well as more complex (such as breast 
cancer) disease states using fewer genes compared to 
the other two methods. Moreover, PEGNA outputs a 
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group of genes rather than metaGenes. 

4 CONCLUSIONS 

By systematically filtering complex microarray 
datasets, we identified the minimal gene sets able to 
discriminate disease states. This is important as any 
diagnostic test needs to be cost effective, and testing 
small numbers of genes in disease biopsies is much 
more cost-effective compared to performing, for 
example, genome-wide analyses. While PCA may 
be useful in reducing array dimensionality, methods 
that isolate identifiable genes are preferred. 
Moreover, the identity of critical genes yields insight 
into mechanisms of disease pathogenesis. A further 
increase in accuracy may be provided by the 
inclusion of currently unannotated transcripts, or by 
increasing pathway definitions, but at the present 
time this is algorithmically complex. Ultimately, 
diagnostic gene expression fingerprints must be 
rigorously evaluated in prospective analyses, and we 
are currently refining our methods to facilitate 
discrimination of ever more complex disease types. 
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