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Abstract: By embedding random factors in the Gaussian mixture model (GMM), we propose a new model called faGTM.
Our approach is based on a flexible hierarchical prior for a generalization of the generative topographic map-
ping (GTM) and the mixture of principal components analyzers (MPPCA). The parameters are estimated
with expectation-maximization and maximum a posteriori. Empirical experiments show the interest of our
proposal.

1 INTRODUCTION

In data analysis (Bishop, 1995), partioning the space
of the rows or columns of a numerical data matrix
and reducing its dimension lead to synthetic and un-
derstandable representations. Among the existing
methods in the literature, the Kohonen’s map (Koho-
nen, 1997) or more generally the family of the self-
organizing maps (SOM) yield informative results. In-
deed, they make possible to synthesize efficiently the
distribution of a set of high dimensional vectors with
an unique two dimensional map. These methods con-
struct a discretized surface by constraining the clus-
ters which are laid over the mapping plane. The fam-
ily of the SOM methods includes several paramet-
ric alternative models with particular constraints over
their parameters. Different methods have been devel-
oped in the literature. One of the most efficient is
the Generative Topographic Mapping (GTM) model
of (Bishop et al., 1998).

As usually, it is considered the sample ofn con-
tinuous i.i.d vectorsD = {x1,x2, · · · ,xn}. Eachxi is a
d-dimensional random vector[xi1,xi2, · · · ,xid ]

T with
a probability density function (pdf) of parameterθ. In
the following, the random variables are not be in bold
font and are named as their observed values for lighter
notation. In GTM, the densities of the components of
a Gaussian Mixture model (GMM) (McLachlan and
Peel, 2000) have same spherical covariance matrices
Σk = σ2

Id with Id thed-dimensional identity matrix.
They have same prior probabilitiesπk = g−1 and are
denotedf (xi |k;θ) ∼ N (µk,Σk) whereθ is the vector

or set of parameters andµk is the mean center. The
means are constrained by considering a grid discretiz-
ing [−1;1]× [−1;1]. The bidimensional coordinates
of this mesh are kept constant and denoted:

S = {sk = [s(k,1),s(k,2)]
T ,1≤ k≤ g}.

The mean centers are parameterized byµk = Wξk
whereW is a matrix for a linear projection whileξk
comes from a nonlinear transformation of thesk by h
kernel functionsφℓ(sk) such as:

ξk = [φ1(sk),φ2(sk), · · · ,φh(sk)]
T .

Like the Mixture of Factor Analyzers (MFA)
(Ghahramani and Hinton, 1996) and the Mixture of
PPCA (MPPA) (Tipping and Bishop, 1999a), GTM
is a particular model of Linear Latent Gaussian
Model. The GTM model is often presented as a
crude Monte-Carlo of the probabilistic PCA (PPCA)
(Tipping and Bishop, 1999b), by writing the model
with a marginalization over a discrete random vari-
able equally distributed for theg valuessk. The con-
straints on its centers derive from an underlying reg-
ular mesh. Its factorsξk are shared in the clusters
as MFA with common loading matrix (Baek et al.,
2009) but they are constant. In the following, we in-
troduce a random noise over theξk by a hierarchical
prior for modelling random factors and the resulting
coordinatessk are no longer fixed. Without loss of
generality, the data are supposed centered hereafter.

The paper is organized as follows. In section 2, we
present the proposed prior and the new method named
faGTM. In section 3, we propose an estimation of the
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Figure 1: Representation by the plate notation for GTM and
faGTM with corresponding variables. In faGTM, a factor is
modeled by the random variable denotedξ while the vari-
ableξ becomes its random expectation.

parameters of the model. Then we present a way to
perform the mapping in section 4 and the results of
our experiments in section 5. Finally, we conclude
with perspectives.

2 GTM AND HIERARCHICAL
FACTOR PRIOR

In the following, the fixed coordinatessk of GTM are

denoteds(0)k while the vectorsξ(0)k are the constant ini-
tial basis of GTM with corresponding matrixΨ(0).

The vectors of basis functions are supposed dis-
tributed according to independent Gaussian random
variables. Their variances are chosen small in order
to induce slow updates of the mean parameters dur-
ing learning, and the covariances are not null between
components. Letρ be a positive value for parameter-
ization of the prior pdf and the symmetric matrixC
chosen such as:

C =

[

exp

(

−
1

2νC
||ξ(0)( j)−ξ(0)( j ′)||

2
)]

j, j ′
,

with νC a positive real scalar andξ(0)( j) the j-th row

of Ψ(0). The quantityνC is automatically chosen by
maximizing the entropy of the vector of probability
defined by the normalized cell values of the matrixC,
except its diagonal. An alternative forC is the sample
correlation matrix, for instance. A random variableξk

is then defined conditionally to the values ofξk as:

f (ξk|ξk;θ)∼ N (ξk,ρC).

The variablesξk are so random version of the fixed

basis vectorξ(0)k in the previous section, and theξk are
their unknown means. According to these hypotheses,
for xi ∈ D , the proposed model is written using the
variablesξzi such as:

f (xi |ξzi ;θ) = N (Wξzi ,σ
2
Id).

If no constraint is further added, then the model re-
duces to a MPPCA with its factor having their com-
ponents non independent. The parameterρ helps to
keep a slow convergence forξk during the learning
when it is chosen small enough. Then the induced
self-organization of the mean centers behaves like in
GTM if the updates of the mean vectorsξk are bound.
In order to constrain theξk basis vectors, we suppose
these variables random and distributed as a Gaussian
pdf with an expectation equal to the initialξ(0)k . The
variance of the noise is modeled with the same corre-
lation matrixC as forξk parameterized with a positive
constantλ, and:

f (ξk;Ψ(0)) = N (ξ(0)k ,λC).

Such a hierarchical prior with a chain of three vari-
ables(ξk,ξk,ξk

(0)) has never been proposed for gen-
erative self-organizing maps. Theg×h dimensional
matrix of basis functions is unknown and denoted
Ψ = [ξ1|ξ2| · · · |ξg]. In Figure 1, the proposed model
calledfaGTMand GTM are graphically pictured with
a plate notation. In the proposed model,ρ, C, λ, and
(π1, ...,πg), are constant, whileθ = (σ,W,Ψ) needs
to be estimated. Finally, the whole parametric pdf of
our proposed flexible modelfaGTM is written in sum-
mary:

f (D ,Ψ;σ,W,Ψ(0))

= ∏
i

∑
k

πk f (xi |ξk;σ,W)×∏
k

f (ξk;Ψ(0)).

In order to estimate the unknown parametersθ, it is
proposed an a posteriori maximization, by process-
ing the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) over the pdf of the model
for solvingθ̂ = argmaxθ log f (D ,Ψ;σ,W,Ψ(0)). The
corresponding numerical problem is how to find a (lo-
cal) maximum a posteriori to the proposed parametric
distribution. In the next section, the expressions for
the iterative updates of the parameter values are pre-
sented in closed-form.

3 ESTIMATION BY EM

In this section we denotet(t)zi |xi
the posterior probability

that thei-th datum is generated by thezi-th component
having:

f (xi |zi = k;θ) = N (Wξk,σ2
Id +ρWCWT).

Then it can be written for the posterior joint distri-
bution of the component and the vector of basis func-

tionst(t)k,ξk|xi
= f (ξk|xi ,θ(t)) f (zi = k|xi ;θ(t)). The func-

tion that we maximize, up to an additive constant, can
be written:
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Qσ,W,Ψ|θ(t) =∑
i,k

t(t)k|xi



−d logσ−
qik

W|θ(t)

2σ2 −
qik

Ψ|θ(t)

2ρλ



 ,

where:

qik
W|θ(t) = trace(WTWu(t)ik )+xT

i xi −2xT
i We(t)ik ,

qik
Ψ|θ(t) = (ρ+λ)ξk

TC−1ξk

− 2ξk
TC−1

(

λe(t)ik +ρξk
(0)
)

.

Hereeik = ξk+ρΓTxik, uik = ρ(I−ρΓTW)C+eikeik
T , Γ=

(σ2
Id + ρWCWT)−1WC, andxik = xi −Wξk at thet-th

step of EM.
The previousQ function computed with previous

parameters at stept is maximized in order to get the
new current estimateθ(t+1). By resolving∂Q

∂W = 0 and
∂Q
∂σ = 0, the updates forW andσ can be written:

W(t+1) =

(

∑
i,k

t(t)k|xi
x(t)i e(t)ik

T
)(

∑
i,k

t(t)k|xi
u(t)ik

)−1

,

σ(t+1) =

√

√

√

√

√∑
i,k

t(t)k|xi

nd
qik

W(t)|θ(t) .

With β = ρ/λ, derivation of the criterion and resolv-
ing ∂Q

∂ξk
= 0 provides the updates for the vectors of

basis functions such as:

ξ(t+1)
k =

1

∑i t
(t)
k|xi

+β

(

∑
i

t(t)k|xi
e(t)ik +β ξ(0)k

)

.

Evaluating thetk|xi
,eik, uik andΓ from θ(t) is the t-

th E-step of EM which provides theQ function to be
maximized. Solutions of the resulting null equations
give new values forW andξk for the M-step which
completes an EM step at timet+1. Iterating this pro-
cess converges to a stable solution for the maximum
likelihood estimatêθ of θ, while t̂k|xi

are the final pos-

terior probabilitiest(t)k|xi
at the end of the learning.

In the next sections, we construct several nonlin-
ear maps with the faGTM method for three datasets,
after introducing a way to perform the projection of a
dataset with the method.

4 MAPPING WITH THE MODEL

During the learning, the vectorsξk = Φ(sk) are up-
dated and the positionssk are also indirectly updated.
It is proposed an approach to retrieve the not constant

positionssk of the clusters by usings(0)k as first com-

ponents ofξ(0)k . Let P2d(u) be the projection of the

vectoru to its two first components. The final posi-
tions at the maximum likelihood are:

ŝk = [ŝ(k,1), ŝ(k,2)]
T = P2d{ξ̂k} .

Then, for thei-th datum the projection ˜sf aGTM
i is writ-

ten with the projected expectation:

s̃i = P2d

{

g

∑
k=1

Eξk|xi ;θ̂

[

ξk

]

}

=
g

∑
k=1

t̂k|xi

[(

ŝ(k,1)
ŝ(k,2)

)

+ρP2d

{

Γ̂T(xi −Ŵξ̂k)
}

]

In comparison with the GTM, the coordinates dis-
cretizing the projection space are flexible and an ad-
ditive smoothing term appears in the mapping.

In the case of faGTM the evolution with the time
stept of the positions of the nodess(t)k during EM is
also informative. As the proposed algorithm is able to
move the positionssk during the learning process, the
trajectory of these quantities can be observed by using

the projectionP2d of ξ(t)k after each EM iteration. It is
then drawn theg curves passing through theg sets of
points:

Tk =
{

s(0)k ,s(1)k ,s(2)k , · · · , ŝk

}

As ρ is chosen small, the difference between two con-

secutive positionss(t−1)
k ands(t)k should be small too,

and theseg curves should be smooth as observed next
section.

5 EXPERIMENTS

In this section we test the method with several
datasets, two simulated ones and a real one:

- Art1. This dataset is a sample drawn from
five Gaussian pdf in a high dimensional space.
The data are generated from a mixture with
the prior probabilities(0.15,0.2,0.15,0.2,0.3),
transposed center means,[0.0,3.5], [−3.5,0.0],
[3.5,0.0], [0.0,−3.5], [0.0,0.0] and diagonal co-
variance matricesΣk with diagonal [0.10,0.45]
[0.45,0.10], [0.45,0.10], [0.10,0.45] for k =
1, . . . ,4 and a fifth matrix equal to a correla-
tion matrix with non-diagonal components equal
to 0.90. A sample of 1000 data from the
mixture is projected in a space of dimension
10 by the matrix B = [B1|B2]

T , and BT
1 =

[.5,−.9, .3, .6, .2,−.7, .0, .0, .0, .0] and BT
2 =

[.0, .0, .0, .8,−.7, .5, .6,−.4, .3,−.5]. An uni-
form noise supported on the interval[0;0.1] is also
added. Finally each resulting data vector is com-
pleted with 5 variables which are i.i.d. from an
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Figure 2: The results for the three datasets are given in column 1 forArt1, column 2 forArt2 and column 3 forIris. The 1-th
row is for the map from the faGTM model. The 2-nd row is for the graphs of theg sets of curvesTk. The mesh resulting of

the first EM step with coordinatess(1)k is in red dot line.

uniform distribution on[0;0.15]. This resulting
dataset countsn= 1000 vectors withd = 15 fea-
tures.

- Art2. This dataset is a random sample from one
half of a sphere centered at origin inR3 with ra-
dius 1, plus a circular band surrounding the 2-
th hemisphere near the great circle. This dataset
countsn = 1479 vectors ofd = 3 features. The
sample from the hemisphere is clustered artifi-
cially into 10 non-overlapping classes.

- Iris. The dataset of the Iris is compound of 150
vectors in a 4-dimensional space and 3 classes.
The trajectory plot is less relevant in this situation
to reveal the 3 clusters which are less separated.

The projections for the three datasets are shown in
Figure 2. The points for the different classes have
different colors on the graphics. The results are very
encouraging, the method adds flexibility to the vec-
tors of basis function, and leads to a novel graphical
representation for the GTM.

6 CONCLUSIONS AND
PERSPECTIVE

We have proposed a hierarchical factor prior with pa-
rametersC, ρ and λ for generalizing MPPCA and
GTM. The faGTM and its prior offer several per-
spectives. For instance, the trajectory map as a com-
plement to the magnification factors (Bishop et al.,
1997; Maniyar and Nabney, 2006; Tiňo and Giannio-
tis, 2007) can be studied further.
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