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Abstract: This paper presents a vaccination strategy for fighting against the propagation of epidemic diseases. The 
disease propagation is described by a SEIR (susceptible plus infected plus infectious plus removed by 
immunity populations) epidemic model. The model takes into account the total population amounts as a 
refrain for the illness transmission since its increase makes more difficult contacts among susceptible and 
infected. The vaccination strategy is based on a continuous-time nonlinear control law synthesized via an 
exact feedback input-output linearization approach. The control objective is to asymptotically eradicate the 
infection. Moreover, the positivity and stability properties of the controlled system are investigated. 

1 INTRODUCTION 

A relevant area in the mathematical theory of 
epidemiology is the development of models for 
studying the propagation of epidemic diseases in a 
host population. The epidemic mathematical models 
analysed include the most basic ones (De la Sen and 
Alonso-Quesada, 2010); (Keeling and Rohani, 
2008); (Li et al., 1999); (Makinde, 2007); (Mollison, 
2003), namely: (i) SI models where only susceptible 
and infected populations are assumed to be present 
in the model, (ii) SIR models which include 
susceptible plus infected plus removed-by-immunity 
populations and (iii) SEIR models where the 
infected population is split into two ones, namely, 
the “infected” (or “exposed”) which incubate the 
disease but they do not still have any disease 
symptoms and the “infectious” (or “infective”) 
which do have the external disease symptoms. Those 
models can be divided in two main classes, namely, 
the so-called “pseudo-mass action models”, where 
the total population is not taken into account as a 
relevant disease contagious factor and the so-called 
“true-mass action models”, where the total 
population is more realistically considered as an 
inverse factor of the disease transmission rates. 

There are many variants of the above models as, 
for instance, the SVEIR epidemic models which 
incorporate the dynamics of a vaccinated population 
in comparison with the SEIR models (De la Sen et 
al., 2011); (Song et al., 2009), the SEIQR-SIS model 
which adds a quarantine population (Jumpen et al., 
2011) and the model proposed in (Safi and Gumel, 
2011) which incorporates vaccinated, quarantine and 
hospitalized populations. Other variant consists of 
the generalization of such models by incorporating 
point and/or distributed delays (De la Sen et al., 
2010); (Zhang et al., 2009). Another one is 
concerned with the inclusion of a saturated disease 
transmission incidence rate for taking into account 
the inhibition effect from the behavioural change of 
susceptible individuals when the infectious 
individual number increases (Xu et al., 2010). 

The analysis of the existence of equilibrium 
points, relative to either the persistence or extinction 
of the epidemics, the conditions for the existence of 
a backward bifurcation where both equilibrium 
points co-exist and the constraints for guaranteeing 
the positivity and the boundedness of the solutions 
of such models have been some of the main 
objectives in the aforementioned papers. Also, the 
conditions that generate an oscillatory behaviour in 
such solutions has been dealt with in the literature 
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about epidemic mathematical models 
(Mukhopadhyay and Bhattacharyya, 2007). Other 
important aim is that relative to the design of control 
strategies in order to eradicate the persistence of the 
infection in the host population (De la Sen and 
Alonso-Quesada, 2010); (De la Sen et al., 2011); 
(Makinde, 2007); (Safi and Gumel, 2011). In this 
context, an explicit vaccination function of many 
different kinds may be considered, namely: constant, 
continuous-time, impulsive, mixed 
constant/impulsive, mixed continuous-
time/impulsive, discrete-time and so on. 

In this paper, a SEIR epidemic model is 
considered. The dynamics of susceptible (S) and 
immune (R) populations are directly affected by a 
vaccination function V(t) , which also has indirectly 

influence in the time evolution of infected or 
exposed (E) and infectious (I) populations. In fact, 
such a vaccination function has to be suitably 
designed in order to eradicate the infection from the 
population. This model has been already studied in 
(De la Sen and Alonso-Quesada, 2010) from the 
viewpoint of equilibrium points in the controlled and 
free-vaccination cases. A vaccination auxiliary 
control law being proportional to the susceptible 
population was proposed in order to achieve the 
whole population be asymptotically immune. Such 
an approach assumed that the SEIR model was of 
the aforementioned true-mass action type, its 
parameters were known and the illness transmission 
was not critical. Moreover, some important issues of 
positivity, stability and tracking of the SEIR model 
were discussed. The present paper proposes an 
alternative method to obtain the vaccination control 
law to asymptotically eradicate the epidemic 
disease. Namely, the vaccination function is 
synthesized by means of an input-output exact 
feedback linearization technique. Such a 
linearization control strategy constitutes the main 
contribution of the paper. Moreover, mathematical 
proofs about the epidemics eradication based on 
such a controlled SEIR while maintaining the non-
negativity of all the partial populations for all time 
are issued. The exact feedback linearization can be 
implemented by using a proper nonlinear coordinate 
transformation and a static-state feedback control. 
The use of such a linearization strategy is motivated 
by three main facts, namely: (i) it is a power tool for 
controlling nonlinear systems which is based on 
well-established technical principles (Isidori, 1995), 
(ii) the given SEIR model is highly nonlinear and 
(iii) such a control strategy has not been yet applied 
in epidemic models. 

2 SEIR EPIDEMIC MODEL 

Let S(t) , E(t) , I(t)  and R(t)  be, respectively, the 

susceptible, infected (or exposed), infectious and 
removed-by-immunity populations at time t . 
Consider a time-invariant true-mass action type 
SEIR epidemic model given by: 
 

 S(t)I(t)
S(t) S(t) R(t) N 1 V(t)

N
         (1)

S(t)I(t)
E(t) ( )E(t)

N
        (2)

I(t) ( )I(t) E(t)        (3)

R(t) ( )R(t) I(t) NV(t)          (4)

subject to initial conditions S(0) 0 , E(0) 0 , 

I(0) 0  and R(0) 0  under a vaccination function 

0 0V :    , with  0 0,       . In the above 

SEIR model, N 0  is the total population at any 
time instant 0t  , 0   is the rate of deaths and 

births from causes unrelated to the infection, 0   
is the rate of losing immunity, 0   is the 

transmission constant (with the total number of 
infections per unity of time at time t  being 

S(t)I(t) N ) and, 1 0   and 1 0   are, 

respectively, the average durations of the latent and 
infective periods. The total population dynamics can 
be obtained by summing-up (1)-(4) yielding: 
 

N(t) S(t) E(t) I(t) R(t) 0         (5)
 

so that the total population N(t) N(0) N   is 

constant 0t   . Then, this model is suitable for 

epidemic diseases with very small mortality 
incidence caused by infection and for populations 
with equal birth and death rates so that the total 
population may be considered constant for all time. 

3 VACCINATION STRATEGY 

An ideal control objective is that the removed-by-
immunity population asymptotically tracks the whole 
population. In this way, the joint infected plus 
infectious population asymptotically tends to zero as 
t  , so the infection is eradicated from the 
population. A vaccination control law based on a 
static-state feedback linearization strategy is 
developed for achieving such a control objective. 
This technique requires a nonlinear coordinate 
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transformation, based on the Lie derivatives Theory 
(Isidori, 1995), in the system representation. 

The dynamics equations (1)-(3) of the SEIR 
model can be equivalently written as the following 
nonlinear control affine system: 
 

   
 

x(t) f x(t) g x(t) u(t)
y(t) h x(t)

  
 


 (6)

 

where 0y(t) I(t)   , 0u(t) V(t)    and 

 T 3
0x(t) I(t) E(t) S(t)    are, respectively, 

considered as the output signal, the input signal and 
the state vector of the system 0t    and 

R(t) N S(t) E(t) I(t)     has been used, with: 
 

 
   

     

3

1

1

T 3

0 0

( )I(t) E(t)

f x(t) ( )E(t) I(t)S(t)

I(t) E(t) ( ) N S(t) I(t)S(t)

g x(t) 0 0 N    ;    h x(t) I(t)         
 

   
    

     

    

 
 
  



 

 (7)

 

where 1 N    and  0 ,  0     . The first 

step to apply a coordinate transformation based on 
the Lie derivation is to determine the relative degree 
of the system. For such a purpose, the following 
definitions are taken into account: (i) 

      
k 1
fk

f

L h x(t)
L h x(t) f x(t)

x




  is the kth-order 

Lie derivative of  h x(t)  along  f x(t)  with 

   0
fL h x(t) h x(t)  and (ii) the relative degree r  

of the system is the number of times that the output 
must be differentiated to obtain the input explicitly, 
i.e., the number r  so that  k

g fL L h x(t) 0  for 

k r 1   and  r 1
g fL L h x(t) 0  . 

From (7),    g g fL h x(t) L L h x(t) 0   while 

 2
g fL L h x(t) I(t)  , so the relative degree of 

the system is 3 in   T 3
0D x I E S   I 0    , 

i.e., 3
0x    except in the singular surface I 0  

of the state space where the relative degree is not 
well-defined. Since the relative degree of the system 
is exactly equal to the dimension of the state space 
for any x D , the nonlinear coordinate change 
 

 
     

     

0

f

f

2

f

2

1

I (t) L h x(t) I(t)

E (t) L h x(t) 1 0 0 f x(t) ( )I(t) E(t)

S (t) L h x(t) ( ) 0 f x(t)

       ( ) I(t) (2 )E(t) I(t)S(t)

 

        

      

            

 (8)

allows to represent the model in the called normal 
form in a neighbourhood of any x D . Namely: 

 

   
 

x(t) f x(t) g x(t) u(t)
y(t) h x(t)

  
 


 (9)

where 
T

x(t) I (t) E(t) S(t)     and: 

    
     
   

 

T

T

2

1

1

f x (t) E(t) S(t) x (t)

g x (t) 0 0 I (t)    ;   h x (t) I (t)

x (t) ( ) ( )( ) I (t)

           ( )(2 )E(t) (3 )S(t)

            ( ) ( )( ) I (t)

            (2 ) I (t)E(t)

 

  
            

                

              
         

1

2

I (t)S(t)

E(t)S(t) E (t)
             + (2 )

I (t) I (t)



     

 
(10)

The following result being relative to the input-
output linearization of the system is established. 

Theorem 1: The state feedback control law 

       

 

3 2

f 0 1 f 2 f

2

g f

u(t)

L h x(t) h x(t) L h x(t) L h x(t)
  

L L h x(t)



        (11)

where i , for  i 0,  1,  2 , are the controller tuning 

parameters, induces the linear closed-loop dynamics 

2 1 0y(t) y(t) y(t) y(t) 0          (12)
 

around any point x D . 

Proof: The state equation for the closed-loop system 

   3

f 0 1 2

I (t) E (t)

E (t) S (t)

S (t) x (t) L h x(t) I (t) E (t) S (t)



       

   
   
      






 (13)

 

is obtained by introducing the control law (11) in (9) 
and taking into account the fact that 

 2
g fL L h x(t) I(t) I (t) 0      x D   

and the coordinate transformation (8). Moreover, it 
follows by direct calculations that: 

 

   
 

 

3 3

f

2

2

1 1

2 2

1 1

L h x(t) ( ) ( ) I(t)

    ( ) (2 )( ) E(t)

    I(t) I(t) E(t) E(t)S(t)

   (4 2 )I(t)S(t) I (t)S(t)

        

             

      

          

 (14)

One may express  3
fL h x(t)  in the state space 

defined by x(t)  via the application of the reverse 

coordinate transformation to that in (8). Then, it 
follows directly that    3

fL h x(t) x(t)  . Thus, the 

state equation of the closed-loop system in the state 
space defined by x(t)  can be written as: 
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x(t) Ax(t)  with 

0 1 2

0 1 0
A 0 0 1

 
 
    

 (15)

Furthermore, the output equation of the closed-loop 
system is y(t) Cx(t)  with  C 1 0 0  since 

y(t) I(t) I (t)  . From (15) and the closed-loop 

output equation, it follows that: 
( ) Aty (t) CA e x(0)    for   0,  1,  2,  3  (16)

with   denoting the order of the differentiation of 
y(t) . Finally, the dynamics of the closed-loop 

system (12) is directly obtained from (16). 

Remarks 1: (i) The controller parameters i , for 

 i 0,  1,  2 , will be adjusted such that the roots of 

the closed-loop system characteristic polynomial 
 3 1 2 3P(s) Det sI A (s r )(s r )(s r )      , with 3 3

3I   

denoting the identity matrix, be located at prescribed 
positions. i.e., i i j( r )     for  i 0,  1,  2  and 

 j 1,  2, 3 , with j( r )  denoting the desired roots 

of P(s) . If one of the control objectives is to 

guarantee the exponential stability of the closed-loop 
system then  jRe r 0  for all  j 1,  2, 3 . Then, 

the values 0 1 2 3r r r 0   , 1 1 2 1 3 2 3r r r r r r 0      

and 2 1 2 3r r r 0      for the controller parameters 

have to be chosen in order to achieve such a stability 
result. It implies that the strictly positivity of the 
controller parameters is a necessary condition for the 
exponential stability of the closed-loop system. 
(ii) The control (11) may be rewritten as: 
 

 

3 2

0 1 2

2

2

1 2

2

( ) ( ) ( ) ( )
u(t)

(3 2 )
 I(t) E(t) S(t)

N N

( ) (2 )( ) (2 ) E(t)
 

I(t)

E(t)S(t)
 I(t)S(t)

N I(t) N

                   




      
  
 
                    




 
 
 

 
(17)

by using (8) and (14). 

(iii) The control law (11) is well-defined for all 
3
0x   except in the surface I 0 . However, the 

infection may be considered eradicated from the 
population once the infectious population strictly 
exceeds zero while it is smaller than one individual, 
so the vaccination strategy may be switched off 
when 0 I(t) 1    . This fact implies that the 

singularity in the control law is not reached. i.e., 
such a control law is well-defined by the nature of 
the system. In this sense, the control law 

 

f

p

f

u(t)      for   0 t t
u (t)

  0         for   t t

 








 (18)

 

may be used instead of (11) in a practical situation. 
The signal u(t)  in (18) is given by the linearizing 

control law (11) while ft  denotes the eventual time 

instant after which the infection propagation may be 
assumed ended. Formally, such a time instant is 

 

 f 0 ft Min t  I(t )   for some 0 1        (19)
 

Then, the control action is maintained active while 
the infection persists in the population and it is 
switched off once the epidemics is eradicated. 

3.1 Control Parameters Choice 

The application of the control law (11), obtained 
from the exact input-output linearization strategy, 
makes the closed-loop dynamics of the infectious 
population be given by (12). Such a dynamics 
depends on the control parameters i , for 

 i 0,  1,  2 . Such parameters have to be 

appropriately chosen in order to guarantee the 
following suitable properties: (i) the stability of the 
controlled SEIR model, (ii) the eradication of the 
infection, i.e., the asymptotic convergence of I(t)  

and E(t)  to zero as time tends to infinity and (iii) 

the positivity property of the controlled SEIR model 
under a vaccination based on such a control strategy. 
The following theorems related to the choice of the 
controller tuning parameter in order to meet such 
properties are proven. 

 

Theorem 2: Assume that the initial condition 

 T 3
0x(0) I(0) E(0) S(0)    is bounded and all 

roots j( r )  for  j 1,  2,  3  of the characteristic 

polynomial P(s)  associated with the closed-loop 

dynamics (12) are of strictly negative real part via an 
appropriate choice of the free-design controller 
parameters i 0  , for  i 0,  1,  2 . Then, the 

control law (11) guarantees the exponential stability 
of the transformed controlled SEIR model (6)-(10) 
while achieving the eradication of the infection from 
the host population as t  . Moreover, the SEIR 
model (1)-(4) has the following properties: E(t) , 

I(t) , S(t)I(t)  and  S(t) R(t) N E(t) I(t)     are 
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bounded for all time, E(t) 0 , I(t) 0 , 

S(t) R(t) N   and S(t)I(t) 0  exponentially as 

t  , and  I(t) o 1 S(t) . 

Proof: The dynamics of the controlled SEIR model 
(12) can be equivalently rewritten with the state 
equation (15) and the output equation y(t) Cx(t) , 

where  C 1 0 0 , by taking into account that 

y(t) I (t) , y(t) E(t)  and y(t) S(t) . The initial 

condition 
T

x(0) I (0) E(0) S(0)     in such a 

realization is bounded since it is related to x(0)  via 

the coordinate transformation (8) and x(0)  is 

assumed to be bounded. The controlled SEIR model 
is exponentially stable since the eigenvalues of the 
matrix A  are the roots jr 0   for  j 1,  2,  3  of 

P(s)  which are assumed to be in the open left-half 

plane. Then, the state vector x(t)  exponentially 

converges to zero as t   while being bounded 
for all time. Moreover, I(t)  and E(t)  are also 

bounded and converge exponentially to zero as 
t   from the boundedness and exponential 
convergence to zero of x(t)  as t   according to 

the first and second equations of the coordinate 
transformation (8). Then, the infection is eradicated 
from the host population. Furthermore, the 
boundedness of S(t) R(t)  follows from that of 

E(t)  and I(t) , and the fact that the total population 

is constant for all time. Also, the exponentially 
convergence of S(t) R(t)  to the total population as 

t   is derived from the exponential convergence 
to zero of I(t)  and E(t)  as t  , and the fact that 

S(t) E(t) I(t) R(t) N     0t   . Finally, from 

the third equation of (8), it follows that S(t)I(t)  is 

bounded and it converges exponentially to zero as 
t   from the boundedness and convergence to 
zero of I(t) , E(t)  and x(t)  as t  . The facts 

that I(t) 0  and S(t)I(t) 0  as t   imply 

directly that  I(t) o 1 S(t) . 
 

Remark 2: Theorem 2 implies the existence of a 
finite time instant ft  after which the epidemics is 

eradicated when the vaccination control law (18) is 
used instead of (11). Concretely, such an existence 
derives from the fact that I(t) 0  as t   via the 

application of the control law (11). 

Theorem 3: Assume an initial condition for the 
SEIR model satisfying R(0) 0 , 3

0x(0)  , i.e., 

I(0) 0 , E(0) 0  and S(0) 0 , and the constraint 

S(0) E(0) I(0) R(0) N    . Assume also that 

some strictly positive real numbers jr  for 

 j 1,  2,  3  are chosen such that:  

(a)  10 r Min ,        , 2r      and 

 3r Max ,       , so that 3 2 1r r r 0    

(b) 1r  and 3r  satisfy the inequalities: 
 

1 3
2

1 3 1 3

3 1 3

r r 2
r r ( )(r r )+( )(2 ) ( )
(r r )(r )

       
              

      
 

 

Then: 

(i) the application of the control law (11) to the 
SEIR model guarantees that the epidemics is 
asymptotically eradicated from the population while 
I(t) 0 , E(t) 0  and S(t) 0  0t   , and 

(ii) the application of the control law (18) guarantees 
the epidemics eradication after a finite time ft , the 

positivity of the controlled SEIR epidemic model 

 ft 0,  t   and that u(t) V(t) 1    ft 0,  t   so 

that u(t) 0  0t   , provided that the controller 

tuning parameters i ,  i 0,  1,  2 , are chosen so 

that j( r ) ,  j 1,  2,  3 , be the roots of the 

characteristic polynomial P(s)  associated with the 

closed loop dynamics (12). 

Proof: (i) On one hand, the epidemics asymptotic 
eradication is proved by following the same 
reasoning that in Theorem 2. On the other hand, the 
dynamics (12) of the controlled SEIR model can be 
written in the state space defined by 

T
x(t) I (t) E(t) S(t)     as in (15). From such a 

realization and taking into account the first equation 
in (8) and that j( r )  for  j 1,  2,  3  are the 

eigenvalues of A , it follows that: 
 

31 2 r tr t r t
1 2 3I(t) I (t) y(t) c e c e c e       (20)

 

0t    for some constants jc  for  j 1,  2,  3  

being dependent on the initial conditions y(0) , y(0)  

and y(0) . In turn, such initial conditions are related 

to the initial conditions of the SEIR model in its 
original realization, i.e., in the state space defined by 

 Tx(t) I(t) E(t) S(t)  via (8). The constants jc  
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for  j 1,  2,  3  can be obtained by solving the 

following set of linear equations: 
 

1 2 3

1 1 2 2 3 3

2 2 2

1 1 2 2 3 3

2

1

I (0) y(0) c c c I(0)

E(0) y(0) (c r c r c r ) ( )I(0) E(0)

S(0) y(0) c r c r c r

       ( ) I(0) (2 )E(0) I(0)S(0)

    
           

   

            




 (21)

 

where (8) and (20) have been used. Such equations 
can be compactly written as pR K M   where: 

 

1

p 1 2 3 2

2 2 2

1 2 3 3

2

1

1 1 1 c

R r r r   ,    K c          and   

r r r c

I(0)

M ( )I(0) E(0)

( ) I(0) (2 )E(0) I(0)S(0)

 

     

           

   
   
   
      
 
 
 
  

 (22)

Then, once the desired roots of the characteristic 
equation of the closed-loop dynamics have been 
prefixed the constants jc  for  j 1,  2,  3  of the 

time-evolution of I(t)  are obtained from 1
pK R M  

since pR  is a non-singular matrix, i.e., an invertible 

matrix. In this sense, note that 

p 2 1 3 1 3 2Det(R ) (r r )(r r )(r r ) 0      since pR  is a 

Vandermonde matrix (Fulton and Harris, 1991) and 
the roots j( r )  for  j 1,  2,  3  have been chosen 

different among them. Namely: 
 

   

   

   

2 3 2 3 1

2 1 3 1

1

1 3 1 3 1

2

2 1 3 2

3

1 2 1 2 1

3 1 3 2

F r , r I(0) G r , r E(0) I(0)S(0)

(r r )(r r )
c

F r , r I(0) G r , r E(0) I(0)S(0)
c  

(r r )(r r )
c

F r , r I(0) G r , r E(0) I(0)S(0)

(r r )(r r )

   

 

   
 

 

   

 

 
 
  
  
  
     
 
 

 (23)

 

where 2F:     and 2G:     are defined as: 
 

2F(v, w) vw ( )(v w) ( )
G(v, w) v w (2 )

        
      




 (24)

 

Note that 3 1

1

1 3 1

(r )E(0) I(0)S(0)
c 0

( r )(r r )

     
 

    
 since 

I(0) 0 , E(0) 0 , S(0) 0 ,  2 3F r , r 0 , 

 2 3 3G r , r r 0     , 1r 0      and 

3 1r r 0   by taking into account the constraints in 

(a). On one hand, I(t) 0  0t    is proved 

directly from (20) as follows. One ‘a priori’ knows 
that 1c 0 . However, the sign of both 2c  and 3c  

may not be ‘a priori’ determined from the initial 
conditions and constraints in (a). The following four 
cases may be possible: (i) 2c 0  and 3c 0 , (ii) 

2c 0  and 3c 0 , (iii) 2c 0  and 3c 0 , and (iv) 

2c 0  and 3c 0 . For the cases (i) and (ii), i.e., if 

2c 0 , it follows from (20) that: 
 

 
   

31 2

3 3 31 2

r tr t r t

1 2 1 2

r t r t r tr t r t

1 2

I(t) c e c e I(0) c c e

 c e e c e e I(0)e 0

 

   

    

     
 (25)

 

0t    where the facts that 1 2 3I(0) c c c 0     

and, 31 r tr te e 0    and 32 r tr te e 0    0t    since 

1 2 3r r r   have been taken into account. For the case 

(iii), i.e., if 2c 0  and 3c 0 , it follows that: 

 
   

31 2

31 2 1

r tr t r t

2 3 2 3

r tr t r t r t

3 2 3

I(t) I(0) c c e c e c e

    I(0) c e c e e c e 0

 

  

    

     
 (26)

 

0t    by taking into account that 

1 2 3I(0) c c c   , 2 1r t r te e 0    0t    since 

1 2r r  and the fact that: 
 

 
3

3 1 3 1 1

3 1 3

I(0) c

(r r )(r ) S(0) I(0) ( r )E(0)
 0

(r r )(r )

 

            


    

 (27)

 

where (23), (24),  1 2 1G r , r r 0     , 

 1 2F r , r 0  and the constraints in (a) and (b) have 

been used. In particular, the coefficient multiplying 
to I(0)  in (27) is non-negative if 1r  and 3r  satisfy 

the third inequality of the constraints (b) by taking 
into account 1S(0) S(0) N      and 

S(0) N . This later inequality is directly implied by 

I(0) 0 , E(0) 0 , S(0) 0 , R(0) 0  and 

N I(0) E(0) S(0) R(0)    . Finally, for the case 

(iv), i.e., if 2c 0  and 3c 0 , it follows that: 
 

 
   

31 2

31 2 1 1

r tr t r t

2 3 2 3

r tr t r t r t r t

2 3

I(t) I(0) c c e c e c e

 I(0)e c e e c e e 0

 

   

    

     
 (28)

 

0t   , where 2 1r t r te e 0    and 3 1r t r te e 0   , 

since 1 2 3r r r  , and 1 2 3I(0) c c c 0     have 

been taken into account. In summary, I(t) 0  

0t    if all partial populations are initially non-

negative and the roots j( r ) , for  j 1,  2,  3 , of the 

closed-loop characteristic polynomial satisfy the 
constraints in (a) and (b). On the other hand, one 
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obtains from the reverse coordinate transformation 
to (8) and (20) that: 

 

 

 

j

j

3
r t

j j

j 1

1

3

r t2

j j j

j 1

1

1 1
E(t) E (t) ( ) I (t) c ( r )e

S (t) ( )( ) I (t) (2 )E (t)
S(t)

I (t)

c r (2 )r ( )( ) e

     
I(t)









         
 

            




            








 
(29)

 

from the facts that E(t) I (t)   and S(t) I (t)  . If 

one fixes the parameter 2r      then: 
 

 
 
 

31

1

3

r tr t

1 1 3 3

r t2

1 1 1

r t2

1 3 3 3

1
E(t) c ( r )e c ( r )e

c r (2 )r ( )( ) e1
S(t)

I(t) c r (2 )r ( )( ) e







         


            

              

 
 
 

 (30)

 

where the function H :     defined as: 
 

2H(v) v (2 )v ( )( )             (31)
 

is zero for 2v r      has been used. From the 

first equation in (30), it follows that 

3 3 1 1c ( r ) E(0) c ( r )            and then: 
 

 3 31 r t r tr t

1 1c ( r ) e e E(0)e
E(t) 0

       
 


 (32)

 

0t    by applying such a relation between 1c  

and 3c  in (30) and by taking into account that 

1 1c ( r ) 0     , E(0) 0  and 31 r tr te e 0    

0t    since 1 3r r . In this way, the non-

negativity of E(t)  has been proven. From the 

second equation in (30), it follows that 

3 3 1 1 1c H(r ) I(0)S(0) c H(r )    and then: 
 

 3 31 r t r tr t

1 1 1

1

c H(r ) e e I(0)S(0)e
S(t) 0

I(t)

    
 


 (33)

 

0t    by applying such a relation between 1c  

and 3c  in (30) and by taking into account that 

1 1c H(r ) 0  since  1r Min ,       , I(0) 0 , 

S(0) 0 , I(t) 0  and 31 r tr te e 0    0t    

since 1 3r r . In this way, the non-negativity of S(t)  

has been proven. Note that the function H(v)  

defined in (31) is an upper-open parabola zero-
valued for 1v      and 2v      so 1H(r ) 0  

from the assumption that  1r Min ,       . 

(ii) On one hand, if the control law (18) is used 
instead of that in (11) then the time evolution of the 
infectious population is also given by (20) while the 
control action is active. Thus, I(t) 0  as t   in 

(20) implies directly the existence of a finite time 
instant ft  at which the control (18) switches off. 

Obviously, the non-negativity of I(t) , E(t)  and 

S(t)   ft 0,  t   is proved by following the same 

reasoning used in the part (i) of the current theorem. 
The non-negativity of R(t)   ft 0,  t   is proven 

by using continuity arguments. In this sense, if R(t)  

reaches negative values for some  ft 0,  t  starting 

from an initial condition R(0) 0  then R(t)  passes 

through zero, i.e., there exists at least a time instant 

 0 ft 0,  t  such that 0R(t ) 0 . Then, it follows 

from (4) that: 
 

0 0 0

2 3

0 1 2

0

0 0

2 0 0 0

0

2

01 2

0

R(t ) I(t ) NV(t )

( ) ( ) ( )
 I(t ) N

E(t )S(t )
( 3 2 )S(t ) I(t )S(t )

I(t ) N

E(t )( ) (2 )( ) (2 )
 N

I(t )

   

                
  




            

                    






 
(34)

 

by introducing the control law (18), taking into 
account that V(t) u(t)  and where the fact that 

0 0 0I(t ) E(t ) S(t ) N   , since 0R(t ) 0 , has been 

used. Moreover, the non-negativity of I(t) , E(t)  

and S(t)   ft 0,  t   as it has been previously 

proven, implies that 0I(t ) N , 0E(t ) N  and 

0S(t ) N . Also, 0I(t ) 0    since 0 ft t  and 

from the definition of ft  in (19). Then, one obtains: 
 

2 3

0 1 2

0 0

0 0

2 0

0

2

01 2

0

( ) ( ) ( )
R(t ) I(t ) N

E(t )S(t )
 ( 3 2 )S(t )

I(t )

E(t )( ) (2 )( ) (2 )
 N

I(t )

                
  



             

                    






 
(35)

 

from (34). The controller tuning parameter i  for 

 i 0,  1,  2  are related to the roots j( r ) , for 

 j 1,  2,  3 , of the closed-loop characteristic 

polynomial P(s) , see Remark 1 (i), by: 
 

0 1 2 3 1 1 2 1 3 2 3 2 1 2 3r r r  ; r r r r +r r  ; r r r          (36)
 

The assignment of jr  for  j 1,  2,  3  such that the 
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constraints (a) and (b) are fulfilled implies that: 
 

2
2

1 2
2 3

0 1 2

3 2 0

( ) (2 )( ) (2 ) 0

( ) ( ) ( ) 0

          
                     
                   

 (37)

 

Then, 0R(t ) 0  by taking into account (37) in (35). 

The facts that R(t) 0   0t 0,  t  , 0R(t ) 0  and 

0R(t ) 0  imply that R(t) 0   ft 0,  t   via 

complete induction. 
On the other hand, from (17) and (18), it follows: 
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 ft 0,  t   by taking into account that 

S(t) E(t) I(t) R(t) N    . Moreover: 
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where the facts that 0 I(t) N    , E(t) 0 , 

S(t) 0  and R(t) 0   ft 0,  t   have been used. 

If the roots of the polynomial P(s)  satisfy the 

conditions in (a) and (b), it follows from (39) that: 
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 ft 0,  t   by taking into account the third 

equation in (37) and the non-negativity of S(t) , 

E(t)  and I(t)   ft 0,  t  . Finally, it follows that 

u(t) 0  0t    from (18) and (40). 

4 SIMULATION RESULTS 

An example based on an outbreak of influenza in a 
British boarding school in early 1978 (Keeling and 
Rohani, 2008) is used to illustrate the theoretical 
results presented. Such an epidemic can be described 
by the SEIR mathematical model (1)-(4) with 

1 70 years 25550 days   , 1.66 per day  , 

1 1 2.2 days      and 1 15 days  . A total 

population of N 1000 boys  is considered with the 

initial conditions S(0) 800 boys , E(0) 100 boys , 

I(0) 60 boys  and R(0) 40 boys . Two sets of 

simulation results are presented to compare the 
evolution of the SEIR mathematical model 
populations in two different situations, namely: 
when no vaccination control actions are applied and 
if a control action based on the feedback input-
output linearization approach is applied. 

4.1 Epidemic Evolution without 
Vaccination 

The time evolution of the respective populations is 
displayed in Figure 1. The model tends to its 
endemic equilibrium point as time tends to infinity. 
There are susceptible, infected and infectious 
populations at such an equilibrium point. As a 
consequence, a vaccination control action has to be 
applied in order to eradicate the epidemics. 
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Figure 1: Time evolution of the individual populations 
without vaccination. 

4.2 Epidemic Evolution with a 
Feedback Control Law 

The control law given by (18)-(19) is applied with 
0.001   and the free-design controller parameters 

i , for  i 0,  1,  2 , being chosen so that the roots of 

the characteristic polynomial P(s)  associated with 

the closed-loop dynamics (12) are 1r   , 

2r ( )       and 3r (2 )      . Such values for 

i  are obtained from (36). The time evolution of the 

respective populations is displayed in Figure 2 and 
the vaccination function in Figure 3. 
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Figure 2: Time evolution of the individual populations 
with the vaccination control action. 
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Figure 3: Time evolution of the vaccination function. 

The vaccination control action achieves the 
control objectives as it is seen in Figure 2. The 
infection is eradicated from the population since 
both infectious and infected populations converge 
rapidly to zero. Also, the susceptible population 
converges to zero while the removed-by-immunity 
population tracks asymptotically the whole 
population as time tends to infinity. Such a result is 
coherent with the result proved in Theorem 3. 
Moreover, the positivity of the system is maintained 
for all time as it can be seen from such figures. Such 
a property is satisfied although all constraints of the 
assumption (b) of Theorem 3 are not fulfilled by the 
system parameters and the chosen control 
parameters. However, such a result is coherent since 
such constraints are sufficient but not necessary to 
prove the positivity of the system. The switched off 
time instant for the vaccination is ft 30 days . 

The time evolution of the respective partial 
populations under the application of the developed 
control strategy is similar to that obtained under the 
use of other vaccination strategies proposed in other 
papers by our research group, for instance, in (De la 
Sen and Alonso-Quesada, 2010). The purpose of the 
paper is to present an alternative method to obtain a 

vaccination control law from linearization 
techniques in the SEIR epidemic model. 

5 CONCLUSIONS 

A vaccination control strategy based on feedback 
input-output linearization techniques has been 
proposed to fight against the propagation of 
epidemic diseases. A SEIR model with known 
parameters is used to describe the propagation of the 
disease. The stability and the positivity properties of 
the closed-loop system as well as the eradication of 
the epidemics have been proved. Such a strategy has 
a main drawback, namely, the control law needs the 
knowledge of the true values of the susceptible, 
infected and infectious populations at all time 
instants which may not be available in certain real 
situations. Future researches are going to deal with 
alternative approaches useful to overcome such a 
drawback. For instance, an observer may be added 
to estimate online all the partial populations. Also, 
the application of the current approach and similar 
non-linear techniques to other disease propagation 
models can be considered. 
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