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2LIPADE, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris, France
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Abstract: The latent block model is an efficient alternative to the mixture model for modelling a dataset when the number
of rows or columns of the data matrix studied is large. For analyzing and reducing the spaces of a matrix, the
methods proposed in the litterature are most of the time with their foundation in a non-parametric or a mixture
model approach. We present an embedding of the projection of co-occurrence tables in the Poisson latent
block mixture model. Our approach leads to an efficient way to cluster and reduce this kind of data matrices.

1 INTRODUCTION

Contingency tables, or co-occurrence matrices, are
found in diverse domains. In these matrices each cell
is a cross-product of two categorical variablesI (n cat-
egories) andJ (d categories.) The cells contain the
number of occurrences for the corresponding cross-
categories. Contingency tables appear in information
retrieval (Deerwester et al., 1990) and document clus-
tering (Hofmann, 1999), whereI may correspond to
a corpus of documents,J to a set of words, and so
the frequency denotes the number of occurrences of
a word in a document. Other examples from data
mining, preference analysis, etc., show that analyzing
contingency tables is in fact a very common and fun-
damental aspect of data analysis. Contingency tables
are usually analyzed using one of the many categori-
cal data analysis methods available in the literature.

When the data matrix is large, a clustering can
give a quicker and easier access to the data con-
tent than a method for reducing the dimensionality
of the features. Combining clustering and reduction
for mapping clusters rather than rows or columns is
therefore an interesting requirement for data analysis.
One way to fulfill this purpose is by showing the clus-
ters on a map after clustering the data by an ad’hoc
algorithm and reducing the feature space, both sep-
arately. Alternatively, the Kohonen’s self-organizing
map (SOM) (Kohonen, 1997) is such that the clus-
tering and the mapping of the clusters take place si-
multaneously while providing one final unique map.
The SOM algorithm is not derived exactly through the

optimization of an objective function, and several pa-
rameters have to to be set empirically.

A probabilistic model for SOM is appealing for
several reasons, the principal one is that a parametric
model is flexible and scalable when defined properly.
We are interested in proposing an efficient paramet-
ric model for a bidimensional mapping of the clusters
of I for a contingency table. Generative Topographic
Mapping (GTM) (Bishop et al., 1998) is a parametric
SOM with a number of advantages compared to the
standard SOM. It re-formulates SOM by embedding
the constraints of vicinity for the clusters in a Gaus-
sian mixture model (GMM) (McLachlan and Peel,
2000). Classical mixture models, and in particular
GMM, are generally not efficient for large datasets,
and this is also true of GTM. One possible alternative
to a clustering of rows or columns is a co-clustering
approach that clusters the two dimensions of a ma-
trix simultaneously and efficiently, with a competitive
small number of parameters.

Here we turn to the latent block model (see (Go-
vaert and Nadif, 2003)) with constraints in order to
simultaneously cluster and visualize the clusters. In
contrast to previous works like for instance (Kabán
and Girolami, 2001), (Hofmann, 2000) or (Kában,
2005), the proposed method is parsimonious since the
number of parameters remains constant when the size
of the data matrix increases.

The paper is organized as follows. In Section 2 we
review co-clustering for co-occurrence tables, and de-
scribe a Poisson latent block model (PLBM) (Govaert
and Nadif, 2010). We add constraints in the model
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and propose an algorithm for the estimation of the pa-
rameters. In section 3 we present an evaluation of our
new method named BlockGTM. Finally, the conclu-
sion summarizes the advantages of our contribution.

2 BLOCK EM MAPPING

In latent block model (LBM) then×d random vari-
ables generating the observedxi j cells of the data ma-
trix are assumed to be independent, oncez andw are
fixed where the set of all possible assignmentsw of J
(resp.z of I ) is denotedW (resp.Z ). The data matrix
x is therefore a set of cells:

(x11,x12, . . . ,xi j , . . . ,xnd),

rather than the sample ofd-dimensional vectors in the
more classical mixture setting. The two sets of pos-
sible assignmentsw andz cluster the cells of the ma-
trix x into a number of contiguous, non-overlapping
blocks. A block kℓ is defined as the set of cells
{xi j ;zi = k,wj = ℓ}. The binary classification matrix
z = (zik)n×g is such that∑g

k=1zik = 1 andzik = 1 in-
dicates the component of the rowi, and similarly for
the columns withw = (wjℓ)d×m.

The following decomposition is obtained (Gov-
aert and Nadif, 2003) by independence ofz andw,
by summing over all the assignments:

fLBM(x;θ) = ∑
(z,w)∈Z×W

∏
i,k

pzik
k ∏

j ,ℓ

q
w jℓ
ℓ

× ∏
i, j ,k,ℓ

ϕ(xi j ;αkℓ)
zikw jℓ ,

whereϕ(.;αkℓ) is a density function defined on the set
of realsR and{αkℓ} are unknown parameters. The
vectors of the probabilitiespk andqℓ that a row and a
column belong to thek-th component and to theℓ-th
component are respectively denotedp = (p1, . . . , pg)
andq=(q1, . . . ,qm). The set of parameters is denoted
θ and is compound ofp andq plus α which aggre-
gates all theαkℓ. Hereafter, to simplify the notation,
the sums and the products relating to rows, columns
or clusters will be subscripted respectively by the let-
tersi, j or k, ℓ without indicating the limits of varia-
tion, which are implicit. Next, PLBM is described for
contincency tables and the constraints are added.

2.1 Poisson Latent Block Model

For co-occurrence tables, PLBM assumes that the
observed valuesxi j in a block kℓ are drawn from

a Poisson distributionP(λi j
kℓ) with parameterλi j

kℓ =
µiν jαkℓ where the effectsµ = (µ1, . . . ,µn) and ν =

(ν1, . . . ,νd) are assumed equal to the margin totals
{µi = ∑ j xi j ;1≤ i ≤ n} and{ν j = ∑i xi j ;1≤ j ≤ d}.
Thenϕ for the blockkℓ is defined as follows:

ϕ(xi j ;µi ,ν j ,αkℓ) =
exp(−µiν jαkℓ)(µiν jαkℓ)

xi j

xi j !
.

Given thatxi j ∈ N+, the unknown parameterαkℓ of
the blockkℓ is in [0;1], sincexi j < µiν j . The set of
parametersθ of the model can be estimated by maxi-
mizing the log-likelihood:

L(x;θ) = log fLBM(x;θ).

2.2 Constrained Parameters

To induce a quantization with a large number of clus-
ters, the probabilitiespk andqℓ are fixed and equipro-
portional such that{pk = 1/g;1≤ k ≤ g} and{qℓ =
1/m;1≤ ℓ≤m}. The parameters of the Poisson LBM
are parameterized with the fixed vectors{ξk} defined
hereafter for the mapping ofI , and the unknown vec-
tors{wℓ ∈ R

h,1≤ ℓ≤ m,h∈ N
∗
+} becauseαkℓ is de-

pendent on the indexk andℓ. The parameters{wℓ}
are estimated by maximum likelihood. For defining
the vectors{ξk}, it is considered the bidimensional
coordinates:

S = {sk = (sk1,sk2);k= 1, ...,g},

from the nodes of a regular mesh discretizing the
square where the data are projected[−1;1]× [−1;1].
S is similar to the set of nodes of SOM. As in GTM,
each coordinatesk is nonlinearly transformed byh ba-
sis functionsφ such as:

ξk = Φ(sk) = (φ1(sk),φ2(sk), . . . ,φh(sk))
T ,

where each basis functionφ is a kernel-like function:

φ(sk) ∝ exp[−||sk−µφ||
2/2ν2

φ],

with a mean centerµφ ∈ R
2 and a standard deviation

νφ. It is then considered the inner products:

{wT
ℓ ξk;1≤ k≤ g,1≤ ℓ≤ m}.

To map the inner product (wT
ℓ ξk ∈ R) onto its cor-

responding parameter (αkℓ ∈ [0;1]) it is used a sig-
moidal functionσ(.) as in (Girolami, 2001) such that
for 1≤ k≤ g,1≤ ℓ≤ m, we have:

αkℓ = σ(wT
ℓ ξk) =

exp(wT
ℓ ξk)

1+exp(wT
ℓ ξk)

.

The relative ordering of the coordinates{sk =
(sk1,sk2);k = 1, ...,g} remains, at least locally, after
the transformation. The reducedg×m matrix α in
PLBM is replaced by anh×mmatrix:

Ω = [w1|w2| · · · |wm].
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The model remains parsimonious becauseh is small,
less than half of one hundred in practice.

Below we present an algorithm for the estima-
tion of the parametersθ = Ω, the matrix for the con-
straints. The optimization problem is slightly differ-
ent from the unconstrained case, as we shall explain
in the next section.

2.3 Parameter Estimates

For the proposed model with the introduced con-
straints, we aim to address the problem of parameters
estimation by a maximum likelihood (ML) approach
such that:

θ̂ = argmaxθL(x;θ).

For finding a suitable value ofθ for the constrained
PLBM, the Block EM (BEM) (Govaert and Nadif,
2005) results in the following criterion (denotedQ̃ for
short) which is maximized iteratively:

Q̃BlockGTM(θ,θ(t))

= ∑
i, j ,k,ℓ

c(t)ik d(t)
jℓ logϕ(xi j ;αkℓ)

= ∑
i, j ,k,ℓ

c(t)ik d(t)
jℓ

{

xi j logαkℓ−µiν jαkℓ
}

+ cte

=∑
k,ℓ

y(t)kℓ logαkℓ−µ(t)k ν(t)ℓ αkℓ)+ cte. (1)

Herecte is a constant independent of the parameters,
the index(t) permits to denote a current estimation
of a parameter or a function of the parameters. It is

also denotedy(t)kℓ = ∑i, j c
(t)
ik d(t)

jℓ xi j , µ(t)k = ∑i c
(t)
ik µi , and

ν(t)ℓ = ∑ j d
(t)
jℓ ν j , while givenθ(t), the quantitiesc(t)ik

(resp. d(t)
jℓ ) are the posterior probabilities that a row

(resp. a column) belongs to the blockkℓ. Here, the
posterior probabilities are estimated by using the de-
pendent equations:

c(t)ik ∝ exp

(

∑
jℓ

d(t)
jℓ logϕ(xi j ;α(t)

kℓ )

)

, (2)

d(t)
jℓ ∝ exp

(

∑
ik

c(t)ik logϕ(xi j ;α(t)
kℓ )

)

. (3)

At the ML, they are denoted{ĉik} and{d̂ jℓ}. The pa-
rameters are estimated in an iterative way. The BEM
algorithm proceeds by an alternated maximization of
Q̃. At each iteration the posterior probabilities{cik}
and{d jℓ} are evaluated for all rows and all columns,
and just after the maximization of the functioñQ is
obtained with respect to the parameters. As a re-
mark, this induces a maximization with a variational

approximation at each iteration. Another approxima-
tion of the resulting criterioñQ is also required at the
maximization step as explained in the following para-
graphs.

2.4 Algorithm

The algorithm for maximizingQ̃ proceeds iteratively
by increasing an approximation of the log-likelihood
at each step. At the Maximization step we estimate
the next current value forθ(t+1) by:

θ(t+1) = argmaxθ Q̃(θ|θ(t)).

Let us haveε a small positive real. The algorithm for
finding the maximum likelihood solution is given in

Figure 1 (see Appendix for̃Q(t)
ℓ andH̃(t)

ℓ ).

Learning algorithm for BlockGTM:

- Initialization:
Initialize {c(0)ik }, {d(0)

jℓ } andΩ(0).
- E-Step:

Compute{c(t)ik } by (2), and{d(t)
jℓ } by (3) in a

loop.
- M-Step:

Compute the new parameters forℓ= 1, . . . ,m

w(t+1)
ℓ = w(t)

ℓ +
[

H̃(t)
ℓ

]−1
∇Q̃(t)

ℓ , (4)

with ∇Q̃(t)
ℓ by (5) andH̃(t)

ℓ by (6).
- End:

If |Ω(t+1) −Ω(t)| < ε then stop else return E-
Step.

Figure 1: Iterations forBlockGTM.

Next, we evaluate the performance of BlockGTM for
several real datasets.

3 NUMERICAL EXPERIMENTS

In order to test the proposed method, we construct the
bidimensional projections of the obtained clusters by
the proposed method for four textual datasets.

3.1 Bi-dimensional Mapping

The set of bidimensional coordinatesS for theg clus-
ters are used to find the final projection ˆsi of each
categoryi in the latent space. When a rowi has a
higher posterior probability ˆcik for a clusterk then it
belongs to this cluster and the label for thei-th row
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is estimated by ˆzi = k. This same row can then be
represented at the bidimensional coordinates ˆsMAP

i =
sẑi = (sẑi 1,sẑi2)

T . By performing this procedure for
each rowi, the model builds a reduced view of the
n categories ofI . Moreover, when two nodes have
their coordinatessk andsk′ near in the latent space,
their corresponding clusters should have similar pa-
rametersαkℓ andαk′ℓ, so their corresponding contents
should be also similar. A fuzzy projection can be ob-
tained by computing an average position of each row
i from its posterior probabilities ˆcik. This is written
ŝi = ∑g

k=1 ĉik (sk1,sk2)
T . If the vector of probabilities

(ĉi1, ĉi2, · · · , ĉig) is binary, then the rowi is in the clus-
ter ẑi , and ŝi = ŝMAP

i . This is generally the case for
GTM for a large part of the dataset. In the experimen-
tal part, it is constructed only a tabular view after bi-
narizing these vectors of probabilities, except a small
illustrative example.

3.2 Datasets

The characteristics of the four real datasets are de-
scribed below.

- N4. This dataset is composed of 400 documents
selected from a textual corpus of 20000 usenet
posts from 20 original newsgroups. From each
group among the 4 retained, 100 posts are selected
and 100 terms are filtered by mutual information
(Kabán and Girolami, 2001).

- Binary1. This dataset in (Slonim et al., 2000)
consists of 500 posts separated into two clus-
ters for the newsgroupstalk.politics.mideastand
talk.politics.misc. A preprocessing was carried
out by the authors to reduce the number of words
by ignoring all file headers, stop words and nu-
meric characters. Moreover, using the mutual in-
formation, the top 2000 words were selected.

- Multi51. This dataset in (Slonim et al., 2000),
consists of 500 posts separated into five clus-
ters comp.graphics, sci.space, rec.motorcycles,
res.sports.baseballandtalk.politics.mideast. The
same pre-processing than forBinary1 was per-
formed.

- C3. This dataset in (Dhillon et al., 2003), also
known asClassic3, is often used as a benchmark
for co-clustering. This dataset is a contingency
table of size 3891 x 4303 and it is compound of
three classes denotedMedline, Cisi andCranfield
as in the larger complete data sample not consid-
ered here.

These four datasets studied in our experiments are
of increasing size.

3.3 Results

Table 1 summarizes the characteristics of the datasets
and the parameters for BlockGTM. The four con-
structed maps are squares of sizeg = 9× 9 for the
clustering in rows, while the number of clustersm in
columns and the dimensionh were chosen after a few
tries. Each map is represented as following. For each
k-th cluster, a barplot corresponding to the true labels
of the data in the cluster is constructed at positionsk
after fitting the model. The results are shown in Fig-
ure 2 for Multi51 and C3. So, for a given dataset
the map shows a matrix of 9×9 barplots such as if
two nodes are close on the latent space they should
have similar barplots. This is a tabular view of the
data (categoriesI ) which confirms also that the near-
est clusters have their texts with similar topics as ex-
pected.

Table 1: Summary wheren×d is the size of the contingency
table,m is the number of clusters in columns,h is the num-
ber of basis functions, andEr1 (resp.Er2) is the accuracy in
percent from BlockGTM (resp. PLBM).

Data n d m h Er1 Er2

N4 400 100 10 12 96.5 93.4
Binary1 400 100 10 19 91.2 92.4
Multi51 500 2000 20 19 90.6 89.0
C3 3891 4303 20 28 99.1 99.3

In this section we are interested on measuring how
well the co-clustering can reveal the inherent struc-
ture of a given textual dataset. We consider the ac-
curacy which is usually derived from the confusion
matrix or the cluster purity. Specifically, we mea-
sure the quality of the clustering for the obtained clus-
ters comparatively to the real categories of the docu-
ments. The columnsEr1 andEr2 of Table 1 give, in
percent, the accuracy obtained respectively for Block-
GTM and PLBM initialized with the final parameters
of BlockGTM.

- For N4, the categories ofI are projected by the
Correspondence Analysis (CA) method (Benze-
cri, 1980). The coordinates from CA are used
to compute the positions of the mean centers in
a 3-dimensional space thanks to the quantities ˆcik.
Figure 3 shows the result. It is interesting to note
that the original mesh compound of the nodesS
in the latent space is easily recognized in this 3-
dimensional space. Here each class is quantized
by a subset of clusters from the map, and the sub-
set usually includes only data with their corre-
sponding projections close in the space of projec-
tion as expected.

- For C3, the proposed method extracts the origi-
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(a) (b)

Figure 2: The result from the proposed method for the datasets (a)Multi51, and (b)C3.
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Figure 3: A result from BlockGTM forN4 in the 3-
dimensional space of the projection with the 3 first principle
factorial directions of CA.

nal clusters almost correctly. The accuracy of the
method is 1− 33/3891= 99.15%, while the co-
clustering based on (Dhillon et al., 2003) has an
accuracy of 97.74= 1−88/3891 so the obtained
error is smaller. The macro-clustering comes after
a finer clustering and is better able to separate the
different classes.

- For Binary1 and Multi51, Table 2 reports the
resulting accuracies for BlockGTM, PLBM,
IBdouble (Slonim et al., 2000), and IDC-15 (El-
yaniv and Souroujon, 2001). This helps for the
comparison between the different results. Despite
a slightly different error rate, the proposed method
is able to map the whole datasets and separate the
natural classes. The main difference with the al-
ternative approaches is not only the efficient co-
clustering, but also the capacity to provide a quick

Table 2: Accuracy for BlockGTM, PLBM, IBdouble, IDC.

BlockGTM PLBM IBdouble IDC-15
Binary1 91.2 92.4 70 85
Multi51 90.6 89.0 59 86

visual overview of the proximities between the
clusters.

4 CONCLUSIONS

We have proposed an embedding of the projection
of co-occurrence tables in the Poisson latent block
mixture model. The presented model is parsimo-
nious when compared to the existing alternatives in
the domain. The empirical results obtained show that
BlockGTM is able to present a quick summary of the
dataset contents. So the approach is interesting for
data analysis of large contingency tables.
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APPENDIX

We have to find a zero for thẽQ function such that for

all ℓ, we have∂Q̃(θ|θ(t))
∂wℓ

∣

∣

∣

∣w
(t+1)
ℓ

= 0. Considering the

usual Newton-Raphson algorithm for the proposed
model, the maximizing step w.r.wℓ is written as in
Formula (4).

Then, keeping only the sum onk for ℓ constant, the
score for the criterion maximized at thet-th iteration

with respect towℓ can be written:

∇Q̃(t)
ℓ

=
∂Q̃BlockGTM(θ,θ(t))

∂wℓ

=∑
k

{

y(t)kℓ
∂ logαkℓ

∂wℓ
−µ(t)k ν(t)ℓ

∂αkℓ

∂wℓ

}

=∑
k

{

y(t)kℓ (1−αkℓ)ξk−µ(t)k ν(t)ℓ αkℓ(1−αkℓ)ξk

}

=∑
k

(1−αkℓ)
{

y(t)kℓ −µ(t)k ν(t)ℓ αkℓ

}

ξk

=ΦT(Ig−Aℓ)
[

yℓ−ν(t)ℓ Aℓµ
]

(5)

where we denoteµ= (µ1,µ2, · · · ,µg)
T and the diago-

nal matrixAℓ = diag1≤k≤g(αkℓ) at step(t).

Similarly, the second-order derivative of the crite-
rion gives the Hessian matrix which is written:

∇2Q̃ℓ

=
∂Q̃BlockGTM(θ,θ(t))

∂wT
ℓ ∂wℓ

=−∑
k

(1−αkℓ)αkℓ

{

ykℓ+(1−2αkℓ)µ
(t)
k ν(t)ℓ

}

ξT
k ξk

=−ΦT Aℓ(Ig−Aℓ)
{

Yℓ+νℓ(Ig−2Aℓ)Mµ
}

Φ,

where we have at step(t), Yℓ = diag1≤k≤g(ykℓ) and
Mµ = diag1≤k≤g(µk) .

A lower bound of this matrix is proposed in order
to improve the maximization step. This symmetric
matrix H̃ℓ is strictly negative-definite for all parame-
ters{αkℓ,1≤ k≤ g} remaining in]0;1[, and satisfies
the inequality:

H̃ℓ = −ΦTAℓ(Ig−Aℓ)
{

Yℓ+νℓMµ
}

Φ (6)

≤ ∇2Q̃ℓ.

This new matrix is able to increase the criterion to be
maximized (see (Böhning and Lindsay, 1988)) in the
Newton-Raphson algorithm, while providing a more
stable learning behavior than the original Hessian ma-
trix, so this solution has been preferred in the experi-
ments.
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