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Abstract: Present iris recognition techniques allow very high recognition performances in controlled settings and with 
cooperating users; this makes iris a real competitor to other biometric traits like fingerprints, with the further 
advantage of requiring a contactless acquisition. Moreover, most of the existing approaches are designed for 
Near Infrared or Hyperspectral images, which are less affected by changes in illumination conditions. 
Current research is focusing on designing new techniques aiming to ensure high accuracy even on images 
acquired in visible light and in adverse conditions. This paper deals with an approach to iris matching based 
on the combination of local features: Linear Binary Patterns (LBP) and discriminable textons (BLOBs). 
Both these technique have been readapted in order to deal with images captured in variable visible light 
conditions, and affected by noise due to distance/resolution or to scarce user collaboration (blurring, off-axis 
iris, occlusion by eyelashes and eyelids). The obtained results are quite convincing and strongly motivate 
the addition of more local features. 

1 INTRODUCTION 

In controlled settings and with cooperative users, iris 
provides comparable or even higher accuracy than 
other biometric traits like fingerprints. Therefore, 
present research trend is towards focusing on the 
possibility of relaxing some of the strong constraints 
for subject cooperation and the quality of the 
acquired image. An iris based recognition system 
working in every-day applications has to deal with 
several kinds of distortions, such as blurring, off-
axis, occlusions and reflections. As a matter of fact, 
in a semi-controlled setting, due either to lower 
user's cooperation, or to limited performances of the 
capture device, the system must work over noisy iris 
images, which are often partially compromised.  

Literature offers a wide spread of iris based 
techniques for automatic personal identification 
(Bowyer, 2008). The first, significant work about 
iris recognition was presented in 1993 by J. 
Daugman (Daugman, 1993), whose approach relied 
on an integro-differential filter to locate the useful 
region, and on 2D Gabor filters to extract relevant 
features. Wildes’ (Wildes, 1997) proposal was quite 
different: an edge detection filter during 
segmentation, and then Hough transform to detect 
circular regions. The feature extraction process 

constructs a Laplacian pyramid by iteratively 
applying a Gaussian lowpass filter and decimation 
operator to the iris image. The similarity between 
new samples and stored templates is computed using 
the normalized correlation. Both these systems 
(Daugman and Wildes) require a strict image quality 
control to guarantee a high identification accuracy, 
as they are heavily influenced by illumination and 
position changes.  

In (Sung, 2002) the authors discuss potential 
issues to be overcome in order to make an iris 
identification algorithm working in uncontrolled 
settings. They specifically address the off-angle and 
defocused images problems by proposing ad hoc 
correction algorithms, while the illumination 
problem is considered insurmountable, unless input 
images are acquired with special lighting 
equipments. In (Du, 2005), Du et al. investigated 
about the use of three different kinds of partial iris 
recognition (left-to-right, outside-to-inside, inside-
to-outside). In their experiments, the authors 
concluded that only the inner part of the iris is really 
discriminating. In (Dorairaj, 2005), Dorairaj et al. 
described a strategy to correct off-angle images 
before extracting the biometric features. They start 
with the estimation of the gaze direction and then 
apply a projective transformation bringing the 
captured iris image to frontal view. Recently, other  
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Figure 1: The architecture of N-IRIS. 

researchers including (Proença, 2007) and (Bowyer, 
2008) have contributed new methods to decrease the 
effects of lighting conditions and low quality 
captured images. Despite this, most of them expect a 
cooperative behaviour from the user. This implicit 
assumption represents a strong limitation for all 
those settings not guaranteeing this requirement. In 
present research non-cooperative iris recognition is 
still a great challenge. 

Many approaches try to solve these problems by 
working locally, by analyzing separate iris sub-
regions independently. Along this line, a Noisy Iris 
Recognition Integrated Scheme (N-IRIS) is 
proposed in this paper (Figure 1).  

It adopts and combines two local feature 
extraction techniques, Linear Binary Patterns (LBP) 
and extraction of discriminable textons (BLOBs), 
which differently and independently characterize 
relevant regions of iris. 

In order to be effectively applied to iris 
recognition, the proposed local operators must 
provide a low computational cost. Iris recognition 
systems often acquire high resolution images or have 
to work in real time. The LBP descriptor meets this 
requirement, although providing a discriminating 
local texture descriptor, since it seems to be the best-
able for quite regular patterns. However, the 
uniqueness of the iris texture is also characterized by 
the irregular distribution of local feature blocks such 
as furrows, crypts and freckles or spots. Such 
features can be considered as blobs: a group of 

image pixels which form a structure which can be 
darker or lighter than the surrounding region. The 
extraction of the blobs from an iris image is obtained 
through different LoG (Laplacian of Gaussian) filter 
banks. This technique will be referred as BLOB. 

Both LBP and BLOB have been adapted to the 
case at hand. Further, their combination has also 
been investigated. The fusion between the two 
approaches is performed at score level by exploiting 
a weighted mean of matching scores. Experimental 
results show that such combination of the LBP and 
BLOB, though not particularly complex, overcomes 
both single strategies in terms of accuracy. This 
suggests that different kinds of iris features may call 
for different suited codings for a better matching. 
Possible future studies will focus on the combination 
of more kinds of features, as well as the design of 
more sophisticated schemes for the integration of 
different information. 

2 IMAGE SEGMENTATION 

Typically an iris identification system starts with the 
location and segmentation of the iris sample. The 
precision of the separation between the useful region 
for identification and those that can be considered as 
noise elements (reflections, eyelids, eyelashes) 
heavily influence subsequent steps. The higher such 
precision, the more informative the obtained iris 
code,   and   therefore    the    better    the     expected 
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recognition result.  
The collarette separates the two main parts of the 

iris that are the pupillary and ciliary regions. The 
former is the innermost one and determines the 
pupil's contour, while the latter is the outermost one 
and surrounds the pupillary region. Sclera, eyelids 
and eyelashes represents further important elements, 
which are taken into account during segmentation as 
well as coding. As a matter of fact, eyelids and 
eyelashes may often hinder a correct segmentation, 
and may lead to a poor coding if they are included in 
the pupil code. On the other hand, useful structures 
for recognition are crypts, circular and radial 
furrows, freckles and spots with various extent. 

Though strictly correlated, according to the 
preceding considerations, segmentation and 
matching represent two well distinguishable steps. 
International challenges like NICE also performed 
such kind of distinction, since NICE I explicitly and 
uniquely addressed the problem of noisy iris 
segmentation, while NICE II focused on the problem 
o matching noisy iris images. However, methods 
participating to the NICE II competition have been 
provided with segmentation mask produced by the 
best performing segmentation algorithm (Tan, 2010) 
in previous NICE I (Figure 2 shows some 
examples). N-IRIS exploits such segmentation mask 
to refine and transform the iris region into a 
rectangular region, from which features are then 
extracted. 

N-IRIS starts by approximating iris and pupil 
boundary by circumferences (centre and radius) as 
accurately as possible, so as to allow the mapping 
from the image Cartesian space to the iris region 
polar space. Possible distortion introduced in this 
phase invalidate all the following steps. In a naïve 
solution both circumferences are approximated by 
solving an ellipse fitting problem. However, Figure 
2 (b) shows some cases in which such approach fails 
to retrieve the desired circumferences. This happens 
because the ellipse fitting algorithm is too sensible 
to discontinuities introduced in the iris and pupil 
contours by occlusions due to reflections or eyelids. 
In practice, curves resulting from contour 
approximation tend to get completely deformed just 
to precisely adhere to the available boundary 
portion. A further problem arises in all those cases 
which are similar to the irises in the third row of 
Figure 2: the black region contour represents a 
single object without discontinuities. This makes it 
difficult to distinguish pupil frontier points from iris 
contour ones. 
A more articulated solution is then needed to cope 
with problems caused by images like that in the third 

row of figure 2. The segmentation algorithm 
implemented in N-IRIS locates the pupil contour 
first, and proceeds by separating the pupil from the 
iris region. The mask is scanned row by row from 
top to bottom. Each row is scanned from the first to 
the last column, by marking the first and the last 
black pixels. These pixels represent the iris frontier. 
Frontier points are inputted to the Taubin’s 
algorithm that approximates planar curves through 
implicit equations (more details on this method are 
discussed in (Taubin, 1991)) and outputs the centre 
and radius of the circumference representing the iris. 

A new circle centred in the iris centre, but with a 
radius length of 1/5 of the iris radius is considered 
(pupil will most likely fall inside this zone) and all 
image pixels which fall outside such circle are 
deleted. The centre and the radius of the 
circumference approximating the pupil are 
determined by repeating the procedure of circle 
fitting on this new image, after inverting it. 

Since the iris often undergoes several kinds of 
distortions due to the illumination conditions, to the 
acquisition distance or to partial occlusions, before 
proceeding to actual feature extraction, one needs to 
transform the iris region in a suitable form, also 
considering future matching operations. Capture 
distance represents a potential issue, as the iris 
diameter may not be constant and the iris shape 
influences matching results. Therefore, this 
dimension must be normalized, yet avoiding to lose 
details or to introduce "ghost" information and also 
taking into account possible translations and 
rotations. Furthermore, illumination conditions 
cause dilation/contraction and small displacements 
of the pupil that is seldom exactly located at the 
center of the iris. Therefore N-IRIS transforms the 
iris so that the iris representation is constant in 
dimensions and that relevant features are 
approximately located in the same points. To this 
aim the Rubber Sheet Model by Daugman 
(Daugman, 1993, Daugman, 2004) is exploited. This 
model maps the iris in radial coordinates while 
fixing the final dimensions of the obtained 
(rectangular) image. Due to anticipated scarce 
resolution of iris images at hand, N-IRIS adopts a 
radial resolution (number of pixels along a radial 
line) of 40 pixels, and an angular resolution (number 
of radial lines around the iris region) of 360 pixels. 
The same normalization is separately performed on 
the segmentation mask associated to each image 
(Figure 3). The mask is such that M(x,y)=1 if I(x,y) 
is a pixel of noise, and M(x,y)=0 otherwise, so that 
only information in relevant iris regions is coded.  
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Figure 2: Column (a) shows, from top to bottom, iris 
masks of increasing difficulty; column (b) shows mask 
processing by ellipse fitting; column (c) shows mask 
processing by N-IRIS. 

3 FEATURE EXTRACTION 

The feature extraction process aims to generate a 
discriminating code for the iris annulus after that 
noisy elements (e.g. eyelashes, which occupy 
different positions and extent in different captures of 
the same subject) have been discarded by the 
segmentation algorithm. The quite rich structure of 
the iris texture suggests to adopt different local 
operators to capture different kinds of salient 
information, while a subsequent fusion algorithm 
merges their matching results at the score level. The 
present work only exploits binary patterns to record 
textural regularities present in the iris, and blob 
identification for coding lighter or darker spots 
inside the iris region (Figure 3). However, future 
developments will investigate the addition of 
appropriate versions of further local operators.  

In particular, the first attempts were aimed at 
investigating the usefulness of local texture analysis 
based on Local Binary Pattern (LBP) (Ojala, 2002, 
Mäenpää, 2000). In particular, the solution in (Sun, 
2006) has been evaluated, before devising a 
proprietary version, based on experimental evidence 
on the best strategy to be adopted. In order to further 
enhance the obtained results, this ad hoc 
implementation of the LBP was combined with a 
blob identification strategy (Chenhong, 2008), 
namely BLOB. The BLOB algorithm has been 
further enhanced to extract discriminable textons, 

representing image regions which are lighter or 
darker than the surrounding zone. Then, N-IRIS 
merges the matching criteria stemming from the two 
techniques, to exploit the respective strengths. 

 
Figure 3: Feature extraction and coding based on 
normalized iris image and segmentation mask. 

3.1 Linear Binary Pattern 

The Local Binary Pattern (LBP) is a local operator 
introduced by Ojala (Ojala, 2002) to analyze image 
texture. In its basic version, the operator evaluates 
the 3×3 square region surrounding a pixel (eight 
neighbours). Each neighbour has a corresponding 
position in a 8 bits string, so that if the central pixel 
has a lower value than one of its neighbours, a 1 is 
recorded in the string for such neighbour, and a 0 
otherwise (Figure 4). A variation is presented by 
(Ojala, 2002), where the basic operator is extended 
to process pixel neighbourhoods of variable 
dimension, and to be invariant to rotations. The 
circular neighbourhood of a pixel is exploited, and 
sample points are identified by interpolation. The 
resulting operator is called LBPP,R where P is the 
number of sample points, and R is the radius of the 
neighbourhood. 

Sun et al. re-adapted LBP for iris recognition 
(Sun, 2006). Their approach divides the normalized 
iris image into blocks (Figure 5 (a)) and computes an 
histogram for each of them. N-IRIS further improves 
Sun’s method with a less computationally expensive 
solution. N-IRIS splits the normalized iris image 
into horizontal (or vertical) bands bj (Figure 5 (b) 
and (c)) and computes the histogram Hj of LBP 
values for each of them. The overall iris code C is 
built up by concatenating all histograms Hj and the 
noise mask M: C=(H1, H2, …, Hbands, M). 

N-IRIS assumes that the mask M is provided by 
the  segmentation  algorithm. The  mask  M  is  used  
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Figure 4: Computation of LBP (a) and LBPP,R (b). 

during matching to take into account the amount of 
noise which is present within the compared bands. 
The higher the number of noise pixels in the 
matched bands, the less reliable the similarity 
measure between the histograms. 

Given two codings C1=(H1, H2, …, Hbands, M) 
and C2=(K1, K2, …, Kbands, N), and any histogram 
similarity measure δ (e.g. correlation, intersection or 
Bhattacharyya), matching is performed by 
computing the mean of the following values: 

},,2,1{,1),( bandsb
totpixel
noiseKH b
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where 
bnoise  represents the mean number of 

noise pixels in the b-th band of masks M and N. 
Bands specialize blocks: a generic block is m 
(rows)×n (columns) pixels, an horizontal band is a 
1×n block and a vertical band is a m×1 block. Once 
blocks are ordered row-first, formula (1) always 
holds. 

Section 4 reports the most significant 
experiments with LBP on the UBIRIS.v2, which 
were aimed to testing both different types (block, 
vertical, horizontal) and numbers of bands. Results 
suggested that five horizontal bands represent the 
best choice, which mostly depends on the 
normalization parameters. It is also interesting to 
notice that the most accurate solution in terms of 
type of bands is also the most bound to anatomical 
features, since horizontal bands in the polar image 
correspond to circular bands in the original image, 
and therefore are expected to be quite significant in 
coding iris features. 

 
Figure 5: Division in (a) blocks, (b) horizontal bands, or 
(c) vertical bands. 

3.2 BLOB 

What we call BLOB is a differential operator 
combining a Laplacian operator (a good contour 
detector, but very sensible to noise) with a Gaussian 
filter (to preliminarily smooth the image). It is very 
effective in identifying lighter or darker regions in 
the iris (Figure 6). N-IRIS improves the basic BLOB 
method in (Chenhong, 2008) with a better blob 
setting off, due to increased size of the Gaussian 
filter. In that work blobs are modelled by a Gaussian 
2-dimensional non-symmetric function, with length 
features 
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To    identify    blobs    of   different   sizes,    the 
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representation must be given both in space and in 
scale. For the semi-group property of Gaussian 
kernels g(⋅;tA)*g(⋅;tB) = g(⋅;tA+tB) the authors derive: 

);();( 2211 ttxgttxgL ++=  (3) 

If an image undergoes a space-scale smoothing, 
values of spatial derivatives generally decrease with 
scale. Then a normalized differential operator ∇2

norm 
must be used. The authors show that the normalized 
response of a blob detector at scale t is: 

)( 22 LtLnorm ∇=∇  (4) 

The solution by (Chenhong, 2008) to extract and 
code blob features is: fix the different scales, 
compute ∇2

normL for each scale and fuse the results 
by taking, for each pixel, the maximum value among 
all scales. Popular computational tricks allow to fuse 
Gaussian and Laplacian in a single LoG operator. 
Here the sizes of the convolution kernels at different 
scales were found using cross-validation, e.g. 
regression.  

N-IRIS computes a matrix with real coefficients, 
where positive values correspond to dark spots, 
while negative values represent light ones. A 
threshold operation is applied to binarize those 
values: negative values are set to 0, while positive 
ones are mapped on 1. Matching between two binary 
codes can be performed by Hamming distance, 
weighted by the segmentation masks, as discussed 
by (Daugman, 1993). In order to account for rotation 
variations, N-IRIS also considers shifts of 10 pixels 
and returns as the final distance, the one computed 
on the alignment returning the maximum match. A 
further improvement has been attempted by chaining 
the separate scale (binary) codings in a longer code, 
instead of fusing them. Matching was performed by 
comparing codes at the same scale and taking the 
mean of obtained values as distance. This modality 
will be referred as chain, as opposed to the original 
one (fusion). It seemed to rely on more 
discriminative information, but this did not produce 
the expected improvements. 

3.3 Combining LBP and BLOB 

LBP and BLOB methods have been combined 
according to a parallel protocol. This results in a 
multi-classifier approach referred to as LBP-BLOB. 
The iris biometric key is made up by chaining LBP 
and BLOB codes. When two iris biometric keys 
have to be matched, LBP and BLOB work 
separately and fusion is performed at score level. 
Given  I   a   normalized   iris     image     and  M   its  

 
Figure 6: Some examples of blobs that are local features 
such as furrows, crypts and freckles or spots.  

normalized segmentation mask, N-IRIS computes 
cLBP and cBLOB , the LBP and BLOB coding of the 
couple (I, M) respectively (actually, coding is only 
performed on the I element). Thus, the final method 
for coding and matching is: 
• Coding of the pair (I, M) is c={cLBP, cBLOB} 
• Matching between codings c1 and c2 is given by: 
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,2,121
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cc
cccc

δλ
λδδ
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=
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where the value 0.5 for λ was found experimentally. 
The adopted fusion strategy was assessed by 
experiments on a large set of iris images. On this 
sufficiently substantial test bed, it was observed that 
LBP and BLOB show a quite uncorrelated behaviour 
in terms of ability to discriminate between genuine 
and impostor matches.  

Though this is not a formal proof of the actual 
lack of correlation between the two techniques, it is 
an expected result considered that they rely on 
different theoretical frameworks, aiming to capture 
different relevant characteristics (texture regularity 
and the presence of significant "hot spots"). In future 
research lines, a related study represents a core 
point. For the time being, the previous observations 
can explain, in the present setting, why the simple 
sum of the two scores improves the performances of 
the single classifiers, as confirmed by experimental 
results. 
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Figure 7: Results from LBP, BLOB and LBP-BLOB with different configurations on NICE II tuning database. 

4 EXPERIMENTAL RESULTS 

The experiments to assess N-IRIS performances 
were performed on the database of 1000 images and 
corresponding segmentation masks provided for 
tuning purposes by NICE II program committee to 
challenge participants, together with a dedicated 
JAVA platform. The results were measured in terms 
of the classical accuracy "figure of merit" Receiving 
Operating Curve (ROC).  

All color images were converted in gray scale by 
assigning each pixel the weighted mean of the three 
primary channels of its RGB color. LBP was tested 
by dividing the images in horizontal or vertical 
bands and in blocks. LBP(n,m) will denote LBP 
execution on an image subdivided in n columns and 
m rows. BLOB was run in single scale 
configuration, with fusion of different scale results, 
and with chaining (see Section 3.2). Scale t varied in 
the set T={2,4,6,8,12,16,24}. In fusion and chain 
modes, pairs (t1, t2) and triplets (t1, t2, t3) of scales 
from T have been considered. BLOB(t1) will denote 
single scale execution of BLOB at scale t1, BLOB(t1, 
t2, mode) will denote the execution of BLOB in 
mode mode∈{chain, fusion} for the pair of scales 
(t1, t2) and BLOB(t1, t2, t2, mode) will denote the 
execution of BLOB in mode mode∈{chain, fusion} 
for the triplet of scales (t1, t2, t3). A configuration for 
LBP-BLOB combines single configurations for LBP 
and BLOB: LBP-BLOB(n, m, t1), LBP-BLOB(n, m, 
t1, t2, mode) and LBP-BLOB(n, m, t1, t2, t3, mode). 

Figure  7  shows  the ROC curves from  LBP and 

BLOB with different configurations, as well as 
different combinations of such configurations, on 
UBIRIS v2. The subdivision in five horizontal bands 
seems an optimal LBP configuration for this 
databases. BLOB in fusion mode (the original one) 
provides better results than BLOB in chain mode. 
Moreover, BLOB works better with a single scale on 
UBIRIS.v2. Though sounding strange, this is a 
consequence of the scarce clearness of most images 
in this database. For such images, using more scales 
provides poor benefit. BLOB seems to perform 
better than LBP, but this trend is reversed on low 
resolution images. This underlines a better ability by 
LBP to extract relevant features in these cases. It is 
worth noticing that normalization fails in some 
critical situations, were the useful iris region is 
especially scarce and, at the same time, iris and pupil 
boundaries are not well separated as in the last row 
of Figure 2. Matching problems encountered with 
LBP are related to excessive blurring, since the 
histogram undergoes a substantial alteration, while 
BLOB problems are related to irises with high off-
axis angles which significantly alter blobs shape. 

Figure 7 also shows that the LBP-BLOB 
performs better than the single methods. The 
performances of the combined method were also 
measured in terms of decidability value. Decidability 
is defined as a function of mean and variance of 
intra- and inter-class scores. The higher the index, 
the better the discrimination ability of the system. If 
DI and DE denote the set of similarities resulting 
from intra- and inter-class matches, μ(DI) and μ(DE) 
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the respective mean values, and σ(DI) and σ(DE) the 
standard deviations, the decidability index is:  
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On the given dataset, the method achieved a 
decidability value of 1.4825. N-IRIS was then tested 
by the NICE II evaluation commission on new 
images and masks, never provided before. The 
obtained result is very close to the decidability 
reported here. It has been submitted to NICE II 
international competition and has been awarded as 
one of the best 6 iris segmentation and recognition 
algorithms (Nice II, 2011). 

5 CONCLUSIONS 

This work presents an approach for matching irises 
captured in the visible light spectrum and in 
uncontrolled settings. Linear Binary Patterns (LBP) 
and BLOB have been adapted and combined in an 
original and specific way, to address the difficult 
operational conditions due to the strongly relaxed 
capture constraints. The obtained results are quite 
satisfactory both in terms of ROC and of 
decidability value, most of all against the present 
research scenario, as the independent tests 
performed by NICE II program committee have 
demonstrated. This is a strong motivation to further 
improve performances. A very promising research 
line is the use of more local features, able to set off 
different iris peculiarities, as for example the 
directionality of extracted patterns.  
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