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Abstract: The Resource Constrained Project Scheduling Problem (RCPSP) is NP-hard thus justifying the use meta-
heuristics for its solution. This paper presents an evolutionary algorithm developed for the RCPSP problem. 
This evolutionary algorithm uses an alphabet based on random keys that makes easier its implementation 
while solving combinatorial optimization problems. Random keys allow the use of conventional genetic 
operators, what makes easier the adaptation of the evolutionary algorithm to new problems. To improve the 
method's performance, this evolutionary algorithm uses an initial population that is generated considering 
the information available for the instance. This paper studies the impact of using that information in the 
initial population. The computational experiments presented compare two types of initial population - the 
conventional one (generated randomly) and this new approach that considers the information of the 
instance. 

1 INTRODUCTION 

The Resource Constrained Project Scheduling 
Problem (RSPSP) is a classic project scheduling 
problem, and belongs to the set of Combinatorial 
Optimization (CO) problems that are very hard to 
solve and therefore require heuristic procedures. The 
use of exact methods to solve this type of CO 
problems is limited to small size instances. The 
RCPSP problem is a generalization of the 
production-specific Job-Shop Scheduling Problem 
(JSSP). According to (Zhang et al., 2007), the 
Branch and Bound methods for JSSP do not solve 
instances larger than 250 operations within a 
reasonable time. As stated in (Liu et al., 2008), in 
practical manufacturing environments, the scale of 
job shop scheduling problems could be much larger 
- in some big textile factories, the number of jobs 
can be as much as 1,000. 

Heuristic methods became very popular and have 
gained success in solving scheduling problems. For 
the last twenty years, a huge quantity of papers have 
been published presenting several metaheuristic 
methods. From Simulated Annealing to Particle 
Swarm Optimization (Lian et al., 2006), there are 
several variants of the same class of method. A very 
popular method among researchers is the 
Evolutionary Algorithms (EA). 

Vaessens et al. (1996) presented the Genetic 
Algorithms as the less effective metaheuristic to 
solve the JSSP. A possibility to increase the 
efficiency and the effectiveness on an algorithm is to 
include in the algorithm specific knowledge of the 
problem. Several works include some specific local 
search for the JSSP that is based in the critical path 
of a disjunctive graph. This work presents a strategy 
to improve the effectiveness and efficiency of an 
Evolutionary Algorithm to solve the RCPSP. Once 
verified the difficulty to solve the RCPSP changes 
from instance to instance, a procedure can be 
implemented to get knowledge from the instance and 
transfer it to the EA's initial population. The 
developed EA is based in a previous one, developed 
by us, to the JSSP (Oliveira et al., 2010) according 
to the similarities between both problems. Above all 
of this, the strategy to enhance the effectiveness was 
tested in the JSSP by Oliveira et al. (2010) and in a 
very particular case it improves the makespan in 
about 8%. 

The paper is organized as follows: an 
introductory section defines the RCPSP problem and 
its representation with the use of an AoN graph; a 
central section describes the methodology and a 
numerical example that supports the explanation of 
the constructive algorithm; finally, some conclusions 
and a discussion on future work are presented. 
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2 RCPSP 

A project can be represented as a network of n 
activities in a graph, where exist links between pairs 
of activities, representing processing precedence 
between them. The order to process the set of 
activities must respect the precedence set. There are 
two ways to represent a project: the activity-on-arc 
(AoA) and the activity-on-node (AoN). 

In the AoA mode, the set of nodes represents the 
"events" (start/end processing) and the set of arcs 
represents the "activities." In the AoN scheme, the 
set of nodes represents the "activities" and the set of 
arcs represents the precedence between the 
"activities." In general, each activity requires the 
simultaneous use of several resources 
(Demeulemeester et al., 2003). In this paper, the 
AoN scheme has been adopted since it allows a 
direct correspondence with the disjunctive graph that 
is usually used to represent the JSSP. Figure 1 shows 
a project network with 10 activities, represented in a 
AoN scheme (Ranjbar and Kianfar, 2009). 

 
Figure 1: AoN project network. 

For a given r renewable resources R1,..,Rr, a 
constant amount of bk units of resource Rk is 
available at any time. Activity j must be processed 
for dj time units, where preemption is not allowed. 
During this period of time, a constant amount of rjk 
units of resource Rk is occupied. The objective is to 
determine the starting times of Sj for the activities 
j = 1,..,n in a way that: 
i) at each time t, the total resource demanded is 

less than or equal to the resource availability 
for each resource type; 

ii) the given precedence constraints are fulfilled; 
iii) the makespan max 1maxn

j jC C== , where 

j j jC S d= + , is minimized. 

Figure  1  shows also 2 dummy activities, node 0 

and node 11 which represent the starting time of the 
project (node 0) and the project conclusion time 
(node 11). Their duration is null. Each node shows 
the duration of the activity and the amount of 
renewable resources. In this project instance it is 
considered only one renewable resource. The set of 
arcs represent the precedence set of the project. 
Activity 6 can only be started after activities 1 and 2 
are completed. 

The RCPSP is a highly complex optimization 
problem due to its combinatorial nature. This 
problem belongs to the NP-hard class (Brucker et 
al., 1998), and so an efficient algorithm for obtaining 
exact solutions is unknown. 

The research on the RCPSP has been extensive 
along the years and it involves exact algorithms and 
heuristic methodology. Generally, the exact methods 
are based on branch and bound algorithm, where the 
branch strategies are related to the choice of 
activities in the disjunctive graph that represents the 
project. Also, in this field of research, the continuous 
development of new and better lower bounds for the 
optimal solution is pointed out, what is a 
fundamental auxiliary information for the heuristic 
methods. 

The state-of-the-art RCPSP performed by 
Hartmann and Kolisch (2000) and updated later 
(Kolisch and Hartmann, 2006) shows a bigger 
number of publications on heuristics than on exact 
methods. In this study, the authors explain that, in 
the specialized bibliography, there are several 
heuristic methodologies to deal with RCPSP. These 
methods can be classified as “single pass” (over 
activities set) or “multiple pass”, based in priority 
dispatch rules to construct the solution, local 
iterative improvement and meta-heuristics. 

In the metaheuristics set, several approaches 
have arisen, such as: evolution strategies, taboo 
search, ant colony system, variable neighbourhood 
search and simulated annealing. Some of those 
metaheuristics include hybridization with local 
search procedures and with single pass or multiple 
pass. An example of hybridization is given by 
Ranjbar and Kianfar (2009). They presented a 
hybrid metaheuristic algorithm for solving the 
RCPSP, which contains a scatter search skeleton and 
uses a special solution combination method for 
making children. 

The process to construct a solution is a 
fundamental component in the heuristic 
methodology. With RCPSP in particular, this 
component is called Schedule Generation Scheme 
(SGS). For the RCPSP, two SGS models exist: the 
serial model and the parallel model. It is possible to 
find  in  the  literature  heuristic  procedures  that use 
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either one scheme or the other, but it is also possible 
to find some methodologies that use both, or even a 
combination of the two models. 

Analyzing the computational results presented in 
the literature performed with test instances with 30, 
60 and 120 activities, it is possible to point out that 
the better approximation methodology is the 
population-based heuristic with representation of list 
of activities and serial SGS. The parallel SGS seems 
to be better when dealing with large instances. 

It seems that further research for approach 
methods will concentrate on the development of 
algorithms which integrate the Forward–Backward 
Improvement strategy (FBI), since four of the best 
six heuristics already use this local search strategy. 
The FBI strategy has two phases: the first phase 
gives a feasible schedule using a priority dispatch 
rule to sequence the activities in a bidirectional way; 
the second phase tries to improve the resources 
assignment performing successive bidirectional 
passes without increasing the project duration 
obtained in the first phase. 

The performance of a heuristic can be improved 
by integrating specific knowledge of the problem. 
With the RCPSP, the integration of a constructive 
algorithm in an Evolutionary Algorithm (EA) 
constructs only active schedules. This strategy is 
implemented similarly to that performed for the 
particular case of the Job Shop Scheduling Problem. 

3 EVOLUTIONARY ALGORITHM 

This work adopts a method based on Evolutionary 
Algorithms. EA can be viewed as a metaheuristic 
search techniques that imitates the principle of 
evolution in nature i.e., EAs use a set of competing 
potential solutions of the problem which evolve 
according to rules of selection and transformation. 

It is possible to briefly describe the functioning 
of an EA in the following way. An EA proceeds in 
iterations called generations. In each generation, a 
set of solutions called population is generated. 
Usually, the first population is generated randomly. 
A new population is generated from a current 
population using selection and transformation 
operators. The members of a population are called 
individuals. The fitness-function assigns a value 
called fitness to each individual. Given an individual 
and its fitness, a selection operator decides if an 
individual from the current population is used as an 
input of a transformation operator. A transformation 
operator creates a new element of a new population 
from an arbitrary number of elements of the current 

population. It is expected that during the search 
process, increasingly better solutions are found. To 
achieve this goal, it is necessary that the 
transformation operators focus attention on high 
fitness. Very common transformation operators are 
reproduction (copying an individual to the new 
population unaltered), mutation (an individual is 
changed in a random fashion) and crossover (where 
parts of two individuals are combined). 

The simplicity of an EA to model more complex 
problems and its easy integration with other 
optimization methods were factors that were 
considered for its choice. One advantage of this EA 
is the portability to other problems. The algorithm 
proposed was conceived to solve the RCPSP, but the 
method can be adapted to solve other variants or 
extensions of the RCPSP, such as the RCMPSP. In 
fact, the EA was already adapted to solve other type 
of problems in the Project Planning field (Silva et 
al., 2010). When implementing an appropriate 
algorithm to construct solutions based on 
chromosome, the EA can also solve other scheduling 
algorithms like job shop (Oliveira et al., 2010). 
Furthermore, random keys chromosome (Bean, 
1994) also enables to apply the algorithm in other 
type of problems once conventional genetic 
operators, which are problem independent, could be 
used. 

As Gonçalves et al. (2005) state, the important 
feature of random keys is that all offspring formed 
by crossover are feasible solutions, when it is used 
as a constructive procedure based on the available 
operations to schedule and the priority is given by 
the random key allele. Through the dynamics of the 
genetic algorithm, the system learns the relationship 
between random key vectors and solutions with 
good objective function values.  

A chromosome represents a solution to the 
problem and is encoded as a vector of random keys 
(random numbers). In this work, according to Cheng 
et al. (1996), the problem representation is indeed a 
mix from priority rule-based representation and 
random keys representation. An excellent 
classification of heuristics algorithms for the RCPSP 
was provided by Kolisch and Hartmann (1999). 
They discussed several methods and alternatives to 
generate different type of solutions for the RCPSP 
and, in particularly, they provided detailed 
algorithms to generate active schedules. In the 
meantime, in this EA the solutions are decoded / 
constructed by an algorithm, that is based on Giffler 
and Thompson’s algorithm (Giffler and Thompson, 
1960) for the JSSP. While the Giffler and 
Thompson’s algorithm can generate all the active 
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plans for the JSSP, the adapted constructive 
algorithm only generates a plan according to the 
chromosome. Similar to the JSSP, the solutions of 
RCPSP can be classified on three sets: Semi-active, 
Active, and Non-delay schedules (Sprecher et al., 
1995). 

As advantages of this strategy, we have pointed 
the minor dimension of solution space, which 
includes the optimum solution and the fact that it 
does not produce impossible or disinteresting 
solutions from the optimization point of view. On 
the other hand, since the dimensions between the 
representation space and the solution space are very 
different, this option can represent a problem 
because different chromosomes can represent the 
same solution. 

Using the adapted Giffler and Thompson’s 
algorithm to construct a solution based on the 
priority values of each activity, a Serial Schedule 
Generation Scheme is adopted. It has been shown by 
Kolisch (1996) that a serial scheme yields better 
results when a large number of schedules is 
computed for one project instance. Attending 
Hartmann (1998), the parallel scheme might exclude 
all optimal solutions from the search space, while 
the search space of the serial scheme always 
contains an optimal schedule. 

The constructive algorithm has n stages and in 
each stage an activity is scheduled. To assist the 
algorithm’s presentation, consider the following 
notation existing in stage t: 

tP  - the partial schedule of the ( )1t −  scheduled 
activities; 

tS  - the set of activities schedulable at stage t , i.e. 
all the activities that must precede those in tS  
are in tP ; 

tQ  - the set of activities queued at stage t , i.e. all 
the activities that are not in tS  nor in tP ; 

kσ  - the earliest time that activity ka  in tS  could be 
started; 

kφ  - the earliest time that activity ka  in tS  could be 
finished, that is k k kpφ σ= + ; 

M ∗  - the set of resources used by ka  in tS  which 
has { }min

k ka S kφ φ∗
∈= ; 

tS ∗  - the conflict set formed by ka  in tS  which use 
at least one resource of M ∗  and jσ φ∗< ; 

ja∗  - the selected activity to be scheduled at stage t . 

Table 1 presents the constructive algorithm that 
is used to build a solution. 

In Step 3, instead of using a priority dispatching 
rule, the information given by the chromosome is 
used. If the maximum allele value is equal for two or 
more operations, one is chosen randomly. 

Table 1: A constructive algorithm. 

 

3.1 First Generation 

In the RCPSP it is possible to calculate for each 
activity the remaining time for completion of the 
project. In the project network this time is referred to 
as “tail”. This value represents the longest path from 
the activity to node n+1. It is easy to admit that the 
activities with large tail must be sequenced first 
because they could define the makespan. Indeed, 
there exists the dispatching rule that is used in 
practice JSSP which sequences operations in first 
place that belongs to the job with Most Work 
Remaining (MWR). 

Consider the following example presented in 
Figure 1, with ten activities. In this instance there is 
only one constrained renewable resource with 4 
available units. Table 2 presents this instance. The 
activities are numbered sequentially and represented 
by index j. The duration of each activity is given in 
the row “duration”. 

Table 2: The instance data. 
Activity 1 2 3 4 5 6 7 8 9 10

duration 4 3 5 2 6 1 2 4 3 2
resources 1 3 2 3 2 3 3 2 1 2

tail 9 8 9 7 8 5 5 4 3 2  

Step 1 Let 1t =  with 1P  being null. 1S  will be the 
set of all activities with no predecessors. 

Step 2 Find { }min
k ta S kφ φ∗
∈=  and identify M ∗ . 

Form tS∗ . 
Step 3 Select activity ja∗  in tS∗ , with the greatest 

allele value. 
Step 4 Move to next stage by 

 (1) adding ja∗  to tP , so creating 1tP+ ; 
 (2) removing ja∗  from the list of 

predecessors of activities in 
tQ deleting ja∗  from tS  and creating 

1tS +  by adding to tS  the activities 
that ja∗  as the only predecessor; 

 (3) deleting ja∗  from tS  and creating 

1tS +  by adding to tS  the activities 
with no predecessors; 

 (4) incrementing t  by 1. 
Step 5 If there are any activities left 

unscheduled ( )t N< , go to Step 2. 
Otherwise, stop. 
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The tail row shows the remaining time to 
complete the project including the processing of the 
activity. For instance, the tail of activity 3 is 9 and is 
equal to the duration of activities 3, 8 and, 11, and 
that is respectively 5, 4, and 0 (Figure 1). It 
correspond to the longest path from node 3 to node 
11. 

Applying the MWR rule to this instance the 
schedule is given in Figure 2. For this small 
example, the optimal solution is presented in Figure 
3. 

 
Figure 2: Gantt chart of MWR solution. 

 
Figure 3: Gantt chart of optimal solution. 

In the chosen random key representation, a 
chromosome is a vector of N genes that are real 
numbers between 0 and 1. The representation has 
one gene for each activity. Table 3 presents two 
chromosomes for a RCPSP of ten activities. The 
second chromosome (chrms2) was generated 
randomly, while the first chromosome (chrms1) 
represents the information that is obtained dividing 
in the example above the tail value per maximum 
tail value plus one (9+1 in the example). Applying 
the constructive algorithm and considering the 
chromosome chrms1, the solution of Figure 2 is 
obtained. Attending to this property we implement a 
procedure to generate the first population that 
includes some knowledge about the instance in the 
form of the tail of each activity. 

Table 3: Chromosomes for a RCPSP10. 

Activity 1 2 3 4 5 6 7 8 9 10
chrms1 0.90 0.80 0.90 0.70 0.80 0.50 0.50 0.40 0.30 0.20

chrms2 0,30 0.30 0.70 0.80 0.30 0.40 0.20 0.70 0.10 0.20  

To generate L individuals in a population the 
following expression at (1) is used to generate the 
allele value for each gene j: 

( );

max( )
j j

j

j

randbetween tail tail i GAP
allele

tail i GAP

+ ×
=

+ ×
 (1) 

3.2 Considerations About GAP 

The GAP value allows obtaining at the end of 
population a quite random chromosome. The higher 
the GAP, the more random is the population. Lower 
GAP gives a population close to the MWR dispatch 
rule. 

For a population of 50 individuals, the graphic 
presented in Figure 4 presents some statistics of the 
allele values for each gene (10 activities / genes). 
The average value, maximum value, minimum value 
and also the tail value of each operation is presented. 
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Figure 4: Statistics of allele’s values. 

Figures 5 and 6 show the GAP effect in the 
statistics of the allele values for the 10 activities. 
Figure 5 shows the statistics when a small GAP is 
used. The values are very close to the tail of each 
operation. 
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Figure 5: Statistics of allele’s values with small GAP. 

Figure 6 shows the statistics for a high GAP. The 
range of variation for the alleles is very similar for 
all genes, so the population is “more random”. 
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Figure 6: Statistics of allele’s values with high GAP. 

Figure 7 presents the alleles’ values of four genes 
when using a GAP=2. These genes belong to the 
activities having different tails values which are 
respectively 9, 7, 5, and 2. It is possible to verify that 
for the first chromosomes the alleles’ values 
translate the priority give by the tail of each 
operation. It is also possible to verify that the last 
individuals have quite random alleles. It is possible 
to see that in some individuals the activity 10 
(Gene10) and activity 6 (Gene6) have a priority 
greater than the activity 1 (Gene1). This situation 
allows a first sequence of these activities before 
activity 1, which is the activity with the greatest tail. 
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Figure 7: The allele generation. 

Figures 8 and 9 show the effect of GAP on the 
allele generation for the same genes. Figure 8 shows 
the alleles values when used as small GAP. The 
values are very close to the tail of each operation. 

Figure 9 shows the statistics for a high GAP. The 
range of variation for the alleles is very similar for 
all genes, so these allow “any” sequence to schedule 
these four activities. 
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Figure 8: The allele generation with small GAP. 
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Figure 9: The allele generation with high GAP. 

3.3 The Algorithm Structure 

The genetic algorithm has a very simple structure 
and can be represented in Table 4. It begins with 
population generation and her evaluation. Attending 
to the fitness of the chromosomes the individuals are 
selected to be parents. The crossover is applied and 
it generates a new temporary population that also is 
evaluated. Comparing the fitness of the new 
elements and of their progenitors the former 
population is updated. 

Table 4: Genetic algorithm. 

 
The Uniform Crossover (UX) is used this work. 

This genetic operator uses a new sequence of 
random numbers and swaps both progenitors' alleles 
if the random key is greater than a prefixed value. 
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Table 5 illustrates the UX's application on two 
parents (prnt1, prnt2), and swaps alleles if the 
random key is greater or equal than 0.75. 

Table 5: The UX crossover. 

i 1 2 3 4 5 6 7 8 9 10
prnt1 0.89 0.48 0.24 0.03 0.41 0.11 0.24 0.12 0.33 0.30

prnt2 0.83 0.41 0.40 0.04 0.29 0.35 0.38 0.01 0.42 0.32

randkey 0.64 0.72 0.75 0.83 0.26 0.56 0.28 0.31 0.09 0.11

dscndt1 0.89 0.48 0.40 0.04 0.41 0.11 0.24 0.12 0.33 0.30

dscndt2 0.83 0.41 0.24 0.03 0.29 0.35 0.38 0.01 0.42 0.32  
The genes 3 and 4 are changed and it originates 

two descendants (dscndt1, dscndt2). Descendant 1 is 
similar to parent 1, because it has about 75% of 
genes of this parent. 

4 EXPERIMENTS 

The Genetic Algorithm was coded in C++ and the 
computer used was a PC Pentium IV 3GHz 
processor with 1024 Mbytes of RAM., with Linux 
operative system. 

The problem data set was taken from PSPLIB 
datasets (Kolisch and Sprecher, 1997). The dataset 
consists of four test sets J30, J60, J90 and J120 that 
contain problem instances of 30, 60, 90 and 120 
activities, respectively, and have been constructed 
by the instance generator ProGen. In this 
preliminary study we present results for 4 instances 
with 30 activities: J301_1, J301_2, J301_3 and 
J301_4. The optimal value for these instances are 
respectively 43, 47, 47 and 62. 

Table 6 resumes the computational experiments. 
For each instance were made five runs considering 
the tail information on the initial population, and 
also were made five runs with an initial population 
generated randomly. In each run the algorithm 
performs 5000 iterations. 

Table 6 shows the average value and the best 
value of five runs. Each column shows the values in 
different iterations of the algorithm. In the 
computation experiments it was only used a value 
for the GAP. 

Globally in all experiments the use of tails’ 
information of the instance produces in average 
1.8% better results. This advantage is more evident 
in the initial iterations, so for some instances it was 
obtained solutions about 5.5% better. In terms of 
best solution the use of tails' information is relevant 
on the initial iterations. In some instances the use of 
tails information produces a solution about 3.6% 
better than using a random initial population. 

Table 6: Computational experiments. 

Iteration Average Best Average Best
1 76.2 73 76.2 75

50 61.8 60 58.4 58
100 60.8 59 58.4 58
500 57.0 55 54.0 54

1000 56.0 54 54.0 54
2000 55.0 53 53.0 53
5000 53.4 53 53.0 53

J301_1_Random J301_1_tails

 

Iteration Average Best Average Best
1 89.2 84 90.4 90

50 84.2 84 82.6 81
100 84.0 84 82.6 81
500 80.8 80 78.4 78

1000 80.4 80 78.4 78
2000 78.8 77 78.4 78
5000 78.4 77 78.4 78

J301_2_Random J301_2_tails

 
Iteration Average Best Average Best

1 93.0 91 89.6 89
50 81.6 81 80.6 79

100 81.0 81 79.8 79
500 78.6 77 79.0 78

1000 76.6 75 76.0 76
2000 76.4 75 76.0 76
5000 75.4 75 76.0 76

J301_3_Random J301_3_tails

 
Iteration Average Best Average Best

1 152.6 146 149.6 147
50 148.0 146 144.4 143

100 145.4 142 144.4 143
500 140.2 138 136.0 136

1000 139.6 138 136.0 136
2000 139.0 138 136.0 136
5000 137.4 136 136.0 136

J301_4_tailsJ301_4_Random

 

5 CONCLUSIONS 

This paper presents a new method for generating the 
initial population for an evolutionary algorithm that 
solves the Resource Constrained Project Scheduling 
Problem (RCPSP). This proposed method, through 
known information for each instance, establishes 
different priorities to the activities based on the 
remaining processing time to finish the project, thus 
generating an initial population. The algorithm uses 
a representation based on random keys.  

Results are then compared with the conventional 
random generation and some promising conclusions 
arise. In fact the experimental computation shows 
better results when the information of the instance is 
used, especially on initial iterations.  

Definitely this could be a very simple way to 
increase effectiveness of the algorithm. Furthermore 
the use of instance information could also be 
parameterized, obtaining levels of convergence of 
the algorithm depending on available CPU time. 

Since the random keys representation has no 
Lemarkin property, it is our intention to apply the 
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same strategy on initial population generation in 
other types of representation for the RCPSP, namely 
the permutation code. 

Further work would also consist on applying this 
method to other problems. The Resource 
Constrained Multi-Project Scheduling Problem 
(RCMPSP), as a generalization of the RCPSP, 
would be the next candidate for evaluating the 
advantages of the approach presented above. 
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