
FLOW-BASED PROGRAMMING AS A SOLUTION FOR CLOUD
COMPUTING REQUIREMENTS

Marcel R. Barros1, Charles C. Miers1;2, Marcos Simplício1, Tereza C. M. B. Carvalho1,
Jan-Erik Mångs3, Bob Melander3 and Victor Souza3

1Laboratory of Computer Architecture and Networks, University of São Paulo (USP), São Paulo, Brazil
2Santa Catarina State University (UDESC), Florianópolis, Santa Catarina, Brazil

3Ericsson Research – Packet Technologies, Kista, Sweden

Keywords: Cloud computing, Flow-based programming, Functional programming.

Abstract: Cloud computing services provide a new way of deploying applications over the Internet, as well a prominent
approach for achieving enhanced scalability. Usually, exploration of cloud computing resources relies on
a regular programming paradigm (such as Oriented Object Programming), depending on adjustments to
deal with details inherent to the cloud provider and the issues related to scalability of regular programming
paradigm. This paper addresses how Flow-Based Programming (FBP), a software architecture model based on
Functional Programming, can be used as a solution to the challenges involving the achievement of distributed
systems requirements. Firstly, we present a review of the concepts of FBP. We analyze Live Distributed
Objects, Microsoft Orleans, and Yahoo! S4 under FBP perspective, providing a comparison among these
solutions based on FBP criteria. Finally, we present an analysis of how FBP could be used to provide a better
way to developers create scalable applications such as cloud computing.

1 INTRODUCTION

In the last decades, Object-Oriented Programming
(OOP) has been widely employed in the development
of several systems for diverse purposes. This pre-
dominance is probably justified by the fact that OOP
solves (or at least gives a more elegant option for
avoiding) numerous of issues identified with procedu-
ral programming, such as poor maintainability when
dealing with complex systems and hardly reusable
code. Indeed, core concepts of OOP, such as inher-
itance and encapsulation, are well known for helping
developers to build complex systems that are easier
to maintain and extend (Morrison, 1994). Despite
such advantages, many authors have identified inher-
ent flaws in the OOP paradigm (Armstrong, 1997;
Ostrowski et al., 2009a). The most notorious are re-
lated to parallel processing and distributed systems,
as well as situations in which a method’s call leads
to side-effects such as the modification of some ob-
jects’ internal states or other changes that are not vis-
ible in the methods’ return value. Most of these is-
sues arise because simple events that are natural to
OOP, such as variables changing during runtime and

objects triggering other objects’ methods, introduc-
ing considerable complexity when dealing with par-
allelism and distributed systems (Armstrong, 2007a).
For these reasons, OOP may lose some of its inter-
est in highly distributed environments such as Cloud
Computing (Armstrong, 2007b), in which applica-
tions can run across a large collection of physically
separated computers, allowing a lower expenditure on
hardware structure while providing on-demand scala-
bility and ensuring Quality of Service (QoS).

In a deeper analysis, any system approach that
aims to be efficient in distributed environments needs
to take into account two aspects: state dependen-
cies and synchrony. The design of method invocation
must be such that distributed events being triggered
in different locations do not turn the system incon-
sistent, something difficult to achieve when there are
numerous dependencies between objects. If the sys-
tem remains synchronous, controlling such dependen-
cies may be feasible, but as pointed out in (Morrison,
1994), unnecessary synchronism can be harmful to
scalability. This issue is particularly serious when the
time spent waiting for the response of request takes
longer than the processing time itself: in such scenar-

432 R. Barros M., C. Miers C., Simplício M., C. M. B. Carvalho T., Mångs J., Melander B. and Souza V..
FLOW-BASED PROGRAMMING AS A SOLUTION FOR CLOUD COMPUTING REQUIREMENTS.
DOI: 10.5220/0003759004320440
In Proceedings of the 1st International Conference on Operations Research and Enterprise Systems (ICORES-2012), pages 432-440
ISBN: 978-989-8425-97-3
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



ios, synchrony clearly decreases the system’s perfor-
mance and flexibility.

The aforementioned issues can be efficiently ad-
dressed by means of the Flow Based Programming
(FBP) (Morrison, 1994) software architecture model,
a black-box processes assembling model that has the
use of asynchrony and development of better ways to
build scalable and maintainable systems as its cen-
tral goals. One key aspect of this model is that, by
employing Functional Programming characteristics,
it precludes the existence of states or data structures
modifiable in runtime, in such a manner that every
function’s output depends only on its input. There-
fore, scalability is not limited by synchrony issues
related to data state. These appealing features lead
to the adoption of Functional Programming on sys-
tems demanding high levels of performance and par-
allelism, such as Amazon EC2 and Facebook.

This paper addresses the manner how FBP can
be used for overcoming many of the most common
challenges faced by distributed systems. More specif-
ically, we show that FBP is a powerful tool for de-
veloping applications adapted to the context of Cloud
Computing, since both have many goals in common.
This study should allow developers to understand how
the FBP model can help them to take advantage of
cloud characteristics such as high availability and
scalability.

Section 2 discusses the FBP model and the moti-
vations behind its design. These concepts are neces-
sary to provide the base knowledge of FBP in order
to identify its relations with cloud computing. Sec-
tion 3 relates three distributed systems implementa-
tions using FBP concepts, highlighting how the adop-
tion of these concepts enabled solution for those sys-
tems. Section 4 generalizes the application of FBP
concepts in cloud computing environment. Finally,
we present the related works, considerations and fu-
ture work.

2 FLOW-BASED
PROGRAMMING DEFINITION
AND MOTIVATION

FBP is a software architecture model based on
black-box processes linked by dynamic connections.
Structured objects, called Information Packages or
IPs (Morrison, 1994), flow between processes (mod-
ules), configuring an asynchronous communication
designed by ‘send’ and ‘receive’ commands. Those
black-boxes can be designed to accept different IPs.
Actually, even the structure of the received IP can

be used as a criteria for performing some processing,
resembling to Erlang’s pattern matching (Armstrong,
2007b). Another key concept of FBP, and also found
in functional languages such as Erlang, is the con-
cern for side-effects avoidance, a major issue in dis-
tributed systems (Morrison, 2005). This model shares
some similarities with the works usually referred to as
“dataflow architectures”, but some important differ-
ences exist especially because the latter is mathemat-
ically oriented, dealing with numeric values traveling
through a network, while FBP works with messages
carrying structured objects (Morrison, 1994).

It is important to highlight that FBP is not a pro-
gramming paradigm, such as OOP and Functional
Programming. FBP is a collection of many Func-
tional Programing practices applied to generic soft-
ware systems. A system organized with FBP princi-
ples does not need to be developed in a programming
language that supports FBP, i.e., FBP model can en-
capsulate existing modules in a system. The FBP be-
havior is restrict to the external side of the encapsu-
lation, so if a system uses a FBP to encapsulate large
modules, it will be further from ideal FBP behavior.
Therefore, developing systems with a programming
language that supports FBP will provide the finnest
granularity, i.e. a full FBP scenario.

Figure 1 exemplifies the above concepts, show-
ing how structured objects containing the data to be
processed flow between modules A, B and C. These
streams of data do not possess any information about
the internal functioning of the modules, differing
from method invocation in OOP where control pa-
rameters can be sent. This absence of control data
flowing between modules endows FBP with the loose
coupling property, ensuring a reduced dependency be-
tween modules (Steinseifer, 2009).

Figure 1: General outline of FBP.

The FBP model originated from the perception
that synchronous communication, used by most pro-
gram designers as the only way to obtain predictable
behavior from the code, usually imposes unnecessary
constraints upon the application, thus compromising
its performance (Morrison, 1994). In fact, the only
aspect required for producing predictable code is that

FLOW-BASED PROGRAMMING AS A SOLUTION FOR CLOUD COMPUTING REQUIREMENTS

433



dependent operations must occur in the right order.
When we build an application by connecting indepen-
dent process, we can ensure the previous condition
simply by making the correct connections between
the chosen modules.

In this environment free of side-effects and un-
necessary synchronism, program designers can build
their code by assembling reusable modules and avoid
most sources of complexity appearing in existing
techniques for building distributed applications. In
other words, programmers do not have to insert com-
plex codes and synchronism to deal with recurrent un-
expected behaviors, but can rather focus on what the
current module should do. FBP can thus help pro-
grammers to build modules with different sizes, giv-
ing them freedom to choose the desired granularity of
these modules.

3 RELATED IMPLEMENTATIONS

Even though FBP’s main asset is to improve scala-
bility and parallelism, its concepts can be used to de-
velop wide range of systems. In the following, we
describe three systems focused on such requirements
– Live Distributed Objects (LDO) (Ostrowski, 2008),
Microsoft Orleans (Bykov et al., 2010), and Yahoo
S4 (Neumeyer et al., 2010) – and then we discuss how
they use FBP principles in their conception. These
solutions were chosen due their visibility, but other
systems based on FBP exist.

3.1 Live Distributed Objects (LDO)

Live Distributed Objects (LDO) is a platform that
aims to allow the development of distributed sys-
tems that can propagate decisions in a transparent
manner (Ostrowski, 2008; Ostrowski et al., 2007).
LDO relies on the concept of Live Objects, which
are object replicas distributed among network com-
ponents that may reside in different physical loca-
tions. These replicas coordinate themselves via mul-
ticast messages, thus maintaining a well defined and
consistent state. The multicast layer that gives sup-
port to this communication is the Quicksilver Scal-
able Multicast (QSM) (Ostrowski et al., 2008), which
is said to be highly optimized and to deliver improved
scalability.

LDO implements an hierarchical structure of dis-
tributed protocols, using a set of mathematical oper-
ations for performing consistent transformations on
data and to define atomic descriptions of protocols’
states. It also employs algorithms that are respon-
sible for locking methods and the election of leader

nodes in this hierarchy. The resulting architecture is
based on two main elements: the Membership Service
(MS), which is basically a local coordination service;
and the Delegation Authority (DA), a local service
that works together with the MS and is responsible
for keeping the leaders’ information, thus defining a
nested hierarchy.

The main motivation for using MS instead of cen-
tralized coordination is that the latter leads to a bot-
tleneck, preventing the creation of scalable systems;
meanwhile, MS can maintain local state information
and repair the local data structures, informing local
members and structure leaders nearby about its con-
dition. Each Live Object, can only communicate with
other architecture levels through the leader’s infor-
mation contained in its DA. The recursive architec-
ture of LDO is exemplified in Figure 2, in which
the arrows indicate communication between two con-
nected structures (each level of the hierarchy has a
pair DA/MS).

Figure 2: LDO hierarchical stack of structures. Adapted
from (Ostrowski et al., 2009a).

Finally, it is interesting to notice that LDO’s
authors claim that the compiler should be the one
responsible for dealing with physical aspects such
as error handling, timeouts, network topology and
construction of scalable structures (Ostrowski et al.,
2009b). This concept highlights the notion that the
development of network applications have many pe-
culiarities, especially because, when dealing with dis-
tributed system, program designers still have to care
about network details that long ago became transpar-
ent in other types of implementations.

3.2 Microsoft Orleans

Microsoft Orleans’s a software framework for build-
ing client and cloud applications (Bykov et al., 2010).
It aims to simplify programming distributed applica-
tions restricting concurrency.

Orleans is built around a unit of computation
called grain, defined as an encapsulated sequential
process with a private state that communicate ex-
clusively by sending messages. The parallelism of
the system is achieved via the production of multiple
replicas (activations) of a grain. In this manner, de-
spite being internally sequential, multiple messages

ICORES 2012 - 1st International Conference on Operations Research and Enterprise Systems

434



addressed to a specific grain can be processed simul-
taneously by two different activations. Activations
can reside in different physical locations, enabling lo-
cality awareness in a manner that is completely trans-
parent to the programmer.

Orleans message exchange is asynchronous and
based on the promise concept. Basically, when an ac-
tivation receives a message, it returns a promise that it
will fulfill that request, and schedule the processing.
When the processing is concluded, or a failure occurs,
the promise is filled with a state, which can assume ei-
ther “fulfilled” or “broken” value. Based on how the
promise was filled, the requester can make decisions
just like in traditional try and catch blocks.

This system based on promises is a solution for
achieving asynchronous communication without los-
ing control of the processing advancement, while al-
lowing the information about failures during proce-
dures to be gathered and creating the possibility of
handling exceptions in a highly distributed environ-
ment.

Another aspect that reflects Orleans’ concern with
error handling is the adoption of a LightWeight Opti-
mistic Distributed Transactions (LWODT) system. In
LWODT, transactions are procedures that gather all
activations included in a processing and ensure that
the computation occurs with non-strict ACID (Atom-
icity, Consistency, Isolation and Durability) proper-
ties (Bykov et al., 2010), i.e., instead of using com-
plex heuristic procedures to guarantee a consistent
processing, Orleans detects when a processing be-
come inconsistent and rolls back. The resulting sys-
tem is optimistic because it takes advantage of the
fact that most processes complete successfully. Thus,
since a strict heuristic system would be unnecessary
and inefficient in this context, Orleans can explore
trade-offs between consistency and scalability. Fig-
ure 3 shows an overview of Orleans’ message ex-
change and LWODT system.

Figure 3: Overview of Orleans’ message exchange (Bykov
et al., 2010).

Figure 3 exemplifies an external request that
reaches an activation – represented by a circle – a

of grain 1, denoted as 1a. This external request in-
volves processing data in grains 1, 2 and 3. In order
to perform this processing in atomically, grain 1 per-
form two actions. Initially, it enlists itself in a empty
transaction. Secondly, it sends an asynchronous mes-
sage that contains a request for the activation of grains
2 and 3 and also the transaction reference. Using
this reference, grains 2 and 3 enlist themselves to
the transaction that becomes complete, containing all
grains required to processing completion. If Orleans
runtime detects no inconsistencies between the new
states of grains, it sends a pack of data to be persisted
using a AzureSQL storage system.

3.3 Yahoo! S4

The Simple Scalable Streaming System (S4) is a Dis-
tributed Stream Computing Platform developed by
Yahoo!. It was conceived for solving problems rel-
ative to search applications that use data mining and
machine learning algorithms such as Yahoo!, Bing
and Google. Additionally, in order to render the most
relevant ads in search pages, S4 was designed to be
capable of processing thousands of queries per sec-
ond (Neumeyer et al., 2010).

The computation units in the S4 platform are
called Processing Elements (PEs), which are basi-
cally black-box processes with strictly private states.
PEs are defined by the types of events it consumes,
by when these elements should be consumed and by
what kind of processing will be performed.

S4 considers that stream processing systems can
be simplified by the absence of central or specialized
nodes. For this reason, it adopts a symmetric ap-
proach, avoiding issues related to bottlenecks on cen-
tral decision units. This approach allows the creation
of large systems with high maintainability, which be-
have as pluggable and auto-configurable platforms.

Figure 4: Yahoo! S4 architecture view.

Figure 4 shows the S4 architecture. This architec-
ture is basically composed by Processing Nodes over
a Communication Layer, thus hiding communication
details from developers. Processing nodes receive the

FLOW-BASED PROGRAMMING AS A SOLUTION FOR CLOUD COMPUTING REQUIREMENTS

435



uncontrolled data flow that passes through a chain of
PEs. After that, one of the following must occur: ei-
ther a message is sent requesting the activation of an-
other processing node or results are published by the
Emitter. Transport, failure treatment and load balance
issues are all managed by the lower layer, abstracting
these details from the programming model. Hence,
programmers need to deal basically with the configu-
ration of the PE chains’ behavior.

It is important to highlight that S4 was designed
for the context of processing user queries. In this
context, the processing system has no control over
the flow of data, leading to an architecture that de-
grades gracefully when discarding excessive data is
necessary. In addition to this, S4 works with a
lossy failover, according to which nodes are sent to
a standby server after they fail, losing their memory
state during this handoff. The regeneration process af-
ter failures can only be performed by the input stream,
i.e. by data coming from in ports. This is not accept-
able in some applications (Neumeyer et al., 2010), for
which other mechanisms would be needed.

3.4 Comparisons and Comments

Despite their differences, the aforementioned solu-
tions have many characteristics deeply related to FBP.
An interesting issue that can be noticed almost im-
mediately is that FBP treats the concept of state dif-
ferently than Orleans and LDO do. Live Objects
and Grains have well defined states, which are per-
sisted after processing, while FBP modules work
much more like functions, depending only on input
data to define their behavior. This model endows
FBP with the loose coupling property, which leads
to a low dependency between linked modules. This
different treatment, however, does not imply the ab-
sence of loose coupling property on the aforemen-
tioned works, since this concern is present in the def-
inition of isolated computation units. Indeed, these
units have private states that can only be indirectly ac-
cessed via asynchronous messages, which works sim-
ilarly to FBP’s black-box processes.

The definition of the computation units with pri-
vate state shall be the first step of every distributed
system design. Knowing the behavior of units and
their communication capabilities allow developers to
address their concerns about what type of control will
be needed to maintain desired characteristics such as
error handling, scalability and replication.

Regarding the modeling of the control system,
LDO and S4 defend the adoption of a fully dis-
tributed control unit, eliminating the need of special-
ized nodes. Orleans works this issue in detail, not-

ing that despite being a highly distributed environ-
ment, it needs a central unit to keep information for
its distributed transactions; this central unit uses dis-
tributed and shared hash tables allowing grains’ acti-
vations to coordinate themselves. In fact, as pointed
in FBP, distribution is a natural consequence of elimi-
nating unnecessary points of synchronism. To achieve
a synchronous system, it is necessary to keep a lot of
information about related computation units’ states,
leading to a central control unit that possess all this
information. Thus, after designing isolated computa-
tion units, the goal must be the creation of a highly
asynchronous system, which will eventually lead to
distributed coordination.

The way that computation units are linked and
organized is discussed in (Ostrowski et al., 2009b)
and (Bykov et al., 2010). Both works adopt a hier-
archical and nested architecture. Orleans’ concept of
grain domains can even be used to address security
issues, considering that it is possible to restrict mes-
sages traffic based on relationships between grains.
Grains are only capable of communicating with other
grains that are on the same domain or with explicitly
declared external grains. This grain reference con-
cept is directly related to the port references adopted
in FBP.

The three solutions presented, even if indirectly,
aim to enable an easier and more intuitive experience
when working with distributed systems. This goal is
closely related to that of creating systems with high
maintainability, as noticed by the careful treatment
given to error handling on these works. Such concerns
are a natural consequence of the increasing need for
highly available systems, capable of providing Inter-
net services in the same way as electricity services.

As aforementioned, the usage of FBP concepts
does not allow only to achieve better distributed char-
acteristics but also replication, error handling, and
scalability. These characteristics are basic require-
ments for cloud computing systems. As a system
closely related to Microsoft Windows Azure (Li,
2009), Orleans is already directly addressed to cloud
computing environment (MSDN, 2011). S4 and
LDO can also be related to cloud computing, since
most of the issues addressed by their developers
perfectly match important cloud computing require-
ments. Achieving a solid fault-tolerant system in a
distributed environment is challenging due to the ab-
sence of a central control entity that can analyze a
complete view of system’s state and take the appropri-
ate decision. Specifically, Orleans transaction system
offers a very interesting solution to this issue, which is
detailed in (Bykov et al., 2010). Table 1 summarizes
the relations between the discussed solutions.

ICORES 2012 - 1st International Conference on Operations Research and Enterprise Systems

436



Table 1: Characteristics of implementations using FBP.

Solution Main goal Programming model Processing unit Architecture Communication Error

model organization handling

LDO scalability assembly of Live Object Hierarchical and nested QSM local reboot

(Ostrowski, 2008) existing objects DA/MS pairs by MS

Microsoft scalability grains grain Hierarchical and nested asynchronous LWODT

Orleans & mobility specification activation grains domains messages

(Bykov et al., 2010)

Yahoo! S4 scalability PEs Processing Processing nodes uncontrolled flow lossy

(Neumeyer et al., 2010) specification Elements over communication layer through PEs failover

4 THE ROLE OF FBP IN A
CLOUD COMPUTING

Cloud computing refers not only to the applications
delivered as services over the Internet, but also to the
platform/hardware and system software in the data
centers that provide those services (Armbrust et al.,
2009). The infrastructure that lies under this term
brings advantages to end-users and developers, as
well as to the cloud providers that maintains this in-
frastructure.

The main promise of Cloud Computing is to pro-
vide end-users with applications having an unforeseen
availability. As a result, the access to Internet services
for cloud users should achieve the status of an essen-
tial service, most like the access to electricity and san-
itation. Meanwhile, developers with innovative ideas
would no longer need to invest a large capital outlay
for acquiring and operating the hardware required by
their services.

Cloud providers could take advantage of the
growth in the use of web services for providing low-
cost infrastructure for developers, thus generating
larger profits from their installations. However, many
challenges are linked to this structure, including how
applications must be developed and how the runtime
must work to obtain the expected result. Basically, the
main cloud requirements for deploying cloud applica-
tions are (Rimal et al., 2009; Gonzalez et al., 2011):

1. Availability: services should be available all time;

2. Locality and replication: availability and perfor-
mance should not depend on users’ locations;

3. Maintainability: developers must be allowed to
perform major updates and fixes with low effort;

4. Scalability: Quality of Service (QoS) needs to be
assured even under high demand;

5. Security: security-related issues such as data pro-
tection against unauthorized access need to be
dealt with;

6. Data loss avoidance: data should be processed
and persisted in a safe manner, preventing data
losses.
It comes with no surprise that all these require-

ments have been considered in the works discussed
on Section 3. What is notable, however, is that ac-
complishing these requirements can be seen as conse-
quence of using FBP concepts.

Isolation is the main responsible for providing
availability in FBP. FBP modules can be easily re-
booted in case of failure, since the programming
model is designed to avoid side-effects between mod-
ules, as discussed in depth in (Armstrong, 2007b); in
addition, these characteristics greatly simplify debug-
ging processes, an important aspect in highly avail-
able systems. Indeed, the model adopted by Mi-
crosoft’s Orleans for consistency- and error-handling
shows that the isolation of grains activations allowed
the use of distributed transactions, a traditional con-
cept that became difficult to implement using tech-
nologies such as OOP due to the complex interdepen-
dencies between objects.

FBP’s isolated modules also support the develop-
ment of simple replication techniques, as the consis-
tency between multiple instances of a module pre-
cludes the need for complex control mechanisms (Os-
trowski et al., 2009b; Bykov et al., 2010). The exis-
tence of consistent distributed instances of modules,
together with location-aware mechanisms for content
replication, allows the provision of content with the
same QoS level for millions of users spread across the
globe. The management of multiple module instances
in a highly distributed environment is achieved by
means of well defined ports, which not only allows
the different instances to be referenced (Morrison,
1994), but can also be used for improving the sys-
tem’s location awareness. For example, a system hav-
ing ports with well defined locations can keep infor-
mation about the amount of data traveling between
these points and, thus, it becomes natural to build al-
gorithms to relocate or replicate high demanded mod-
ules for improving performance and ensuring QoS.

FLOW-BASED PROGRAMMING AS A SOLUTION FOR CLOUD COMPUTING REQUIREMENTS

437



Regarding maintainability, the adoption of a dis-
tributed control model for the system can become a
problem, since a possible modification in the system
must be propagated through modules with no central
communication point. On the other hand, FBP view
of black-box modules linked by dynamic connections
simplifies the maintenance task. A new version of any
module can be developed and the only intervention to
the system is updating the ports’ addresses so they
refer to the new version. For example, in Microsoft’s
Orleans model, this would be equivalent to modifying
an activation ID written on the distributed hash table.

Scalability is one major concern in the context of
cloud computing, and receives especial attention on
all implementations discussed in section 3. Here, we
discuss this requirement under two aspects. The first
refers to the avoidance of unnecessary synchronism,
along with the adoption of distributed control. The
second is related to the system’s granularity, which
also impacts on system’s performance.

Spreading an application across the globe using
the cloud structure faces some essential challenges.
Streams of data may take tens of milliseconds to be
delivered, which is likely to introduce significant im-
pacts on the performance of delay-sensitive applica-
tions (Ostrowski et al., 2007) and, similarly, impair
processes based on a series of synchronous requests
and responses. In this scenario, asynchrony assumes
thus a major role, attenuating these effects by maxi-
mizing the system’s throughput while minimizing the
accumulation of transport delays. Coupled with asyn-
chrony, the adoption of distributed control can reduce
the traffic of control data, since structures are con-
trolled locally (Morrison, 2003). At the same time,
local coordination can simplifies eventual needs for
synchronous control signals, avoiding the creation of
new sources of delay. Therefore, the widely adopted
“request & response” model for developing web ap-
plications, despite its simplicity, has inherent limita-
tions.

Granularity refers to the size of the system’s mod-
ules, i.e., the amount of data that defines a module
state. For example, a system that processes large
graphs, composed by thousands of nodes, can be de-
signed in a variety of granularities: developers may
adopt a fine granularity model, making each module
store the state of one node, or a coarse granularity
model in which hundreds of nodes are encapsulated
in the same node (Bykov et al., 2010). However,
the former approach could become a major concern
when developing a distributed application. Still in the
large graph example, if some process needs to access
tens of the system’s nodes, the fine granularity ap-
proach would lead to high overhead due to the need

of assembling data from several different modules; in
comparison, a coarse-grained distribution with ade-
quate division among nodes would not face this prob-
lem.However, an application with another kind of
data may lead to a different scenario. For example,
we can imagine a social network in which a module
is associated to a single visitor profile to a large group
of them. In this case, the fine granularity approach is
likely to fit better, since a coarse-grained distribution
would result in internal searches when trying to lo-
cate the data from some specific profile, and also lead
to unnecessary replication of profiles if there is a high
demand for a single user’s data.

Hence, we can analyze granularity from two dif-
ferent perspectives. First, granularity can be seen
as a trade-off between maintainability and perfor-
mance (Morrison, 1994). This vision is based on the
fact that, if a sequential process is divided, it will add
API calls for passing data through the slices, delay-
ing the whole process. On the other hand, smaller
modules increase maintainability, allowing a more
focused work on specific parts of the process, and
can improve modules’ reuse. Second, considering
a parallel processing context, granularity can be de-
scribed as a trade-off between the level of paral-
lelism and state locality needed for efficient computa-
tions (Bykov et al., 2010). This statement can be bet-
ter understood considering that, when a fine-grained
distribution is adopted, a higher level of parallelism is
achieved due to the possibility of using more special-
ized processes; in the case of Microsoft’s Orleans, for
example, this concept is related to the ability to create
new activations that supply the need for some specific
piece of information.

Unlike the other requirements, security is not con-
sidered in depth by the implementations discussed in
section 3. This also applies to the security-related as-
pect of data loss avoidance, albeit Microsoft’s Orleans
developers claims that, with the addition of a dis-
tributed storage system, this solution is adequate for
highly secure and efficient persistence of data. Even
though the relationship between FBP concepts and se-
curity in cloud computing remains a subject for fur-
ther study, concepts such as isolation and the capabil-
ity to create subsystems allows the establishment of
boundaries to flows of data, thus facilitating the ap-
plication of security principles (Mather et al., 2009;
Kaufman, 2009; CSA, 2011).

4.1 FBP and MapReduce

MapReduce is a programming model, as well as an
associated implementation for processing and gener-
ating large data sets. It is considered the standard

ICORES 2012 - 1st International Conference on Operations Research and Enterprise Systems

438



solution for processing large amounts of data dis-
tributed across thousands of machines and can thus
be seen as a native cloud computing solution. As FBP,
MapReduce was inspired on functional programming,
more specifically on map and reduce functions that
are present on Lisp and many other functional lan-
guages (Dean and Ghemawat, 2008).

As a consequence of its functional behaviour,
MapReduce achieves many of the characteristics
aforementioned for FBP, such as side-effects avoid-
ance and high scalability. Even though these two
models may look as suitable alternatives for devel-
opers when designing a distributed system, we be-
lieve that they can actually be used together as pow-
erful tools to achieve maintainable code. Basically,
MapReduce proposes the use of two independent sets
of workers. The first group consumes the data seg-
ments tagging and organizing them by similar terms
based on some comparison criteria, then the second
set of workers consumes those similar terms and pro-
duces an unified result containing information about
that specific group (e.g., the number of terms in this
group). This apparently simple approach fulfills some
cloud computing requirements such as fault tolerance
and scalability: in case of failure, a worker can be
reset and its task can be rescheduled and relocated
to others workers; furthermore, more workers can be
spawned rapidly to increase processing capabilities.

In essence, both FBP and MapReduce are similar
in terms of data treatment. Both models define private
states for improved data consistency, and consider
that asynchronous communication is a natural way to
achieve scalability. While the FBP model works on
modules’ isolation and on the need of asynchronous
communication, discussing in depth how this com-
munication can be organized, MapReduce proposes
a system for splitting, processing and reassembling
streams of data in a consistent and scalable manner,
using isolation and asynchronous communication as
simple tools. Thus, concepts adopted by the FBP
model – such as the definition of ports, asynchronous
data flow between modules and a distributed control
unit – work very well MapReduce main idea. In-
deed, both approaches describe scalable communica-
tion, distributed processing, practices for consistency
of data and locality awareness through ports defini-
tion.

In conclusion, FBP can be seen as a collection
of programming practices necessary for enabling the
use of efficient distributed processing models such as
MapReduce.

5 RELATED WORK

As aforementioned, there are works closely related to
FBP written under the term ’dataflow architectures’.
The difference between the two terms can be more
easily understood through the LDO example. LDO
is considered a dataflow architecture work, since its
main objective is to establish algorithms for data con-
sistency and atomicity; for this reason, the major part
of Ostrowski’s work is focused on the mathematical
treatment of data. In contrast, FBP focus on setting a
generic programming model, which can take advan-
tage of several data consistency algorithms.

In (Steinseifer, 2009), Steinseifer discusses FBP
in detail, clarifying the main concepts and provid-
ing performance information about JavaFBP imple-
mentation. Moreover, Larus (Gupta and Larus, 2010)
highlight some motivations for the adoption of Cloud
Computing, highlighting some of its main require-
ments and discussing prevailing challenges like con-
currency, parallelism, application partitioning, high
availability and distribution. Nonetheless, to the best
of our knowledge, the advantages of adopting FBP
model in the context cloud computing for overcoming
inherent limitations of other programming paradigms
have not been previously explored in the literature.

6 CONSIDERATIONS AND
FUTURE WORK

Albeit the research on Cloud Computing is still in
its infancy, many crucial and challenging require-
ments that must be accomplished by such solutions
have already been defined in the literature. In this
context, FBP presents itself as a powerful tool for
developing systems and services capable of meet-
ing these challenges, allowing simple solutions for
distributed systems’ classic problems and overcom-
ing several limitations of more conventional program-
ming paradigms. This comes from the fact that FPB
relies on a set of concepts that aim at improved scal-
ability and avoidance of side-effects, which are es-
sential in highly distributed systems. This conclu-
sion is supported by the study of platforms espe-
cially focused on cloud applications, such as LDO,
Microsoft’s Orleans and Yahoo!’s S4 solutions.

It is notable that FBP concepts can be imple-
mented in a variety of ways, being able even to
encapsutate others programming paradigms, orga-
nizing an heterogen scenarios in a solid model. We
argue that FBP as a solution to distributed systems
requirements, due to its generality and absence of in-
consistencies while dealing with parallel processing.

FLOW-BASED PROGRAMMING AS A SOLUTION FOR CLOUD COMPUTING REQUIREMENTS

439



We believe that a deeper study is needed in order
to address FBP security concerns in a cloud comput-
ing environment and how FBP can assist in solving
problems related to distributed coordination and asyn-
chrony. Distributed environments with asynchronous
message passing shows a completely different sce-
nario to developers, while some security vulnerabil-
ities will not be applicable anymore, several others
shall arise.

A deeper study of how granularity affects the FBP
under a distributed scenario is needed in order to sup-
port applications’ design. As exposed in Section 4,
granularity control interferes deeply on systems’ per-
formance. It is necessary to clarify where and when a
certain granularity level should be adopted, enabling
a more accurate distributed applications design.

ACKNOWLEDGEMENTS

This work was supported by the Research and De-
velopment Centre, Ericsson Telecomunicações S.A.,
Brazil.

REFERENCES

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R. H., Konwinski, A., Lee, G., Patterson, D. A.,
Rabkin, A., Stoica, I., and Zaharia, M. (2009). Above
the clouds: A berkeley view of cloud computing.
Technical report, EECS Department, University of
California, Berkeley.

Armstrong, J. (1997). The development of erlang. In Proc.
2nd ACM SIGPLAN ICFP, ICFP ’97, pages 196–203,
NY, USA. ACM.

Armstrong, J. (2007a). A history of erlang. In Proc. 3rd
ACM SIGPLAN HOPL, HOPL III, pages 6–1–6–26,
New York, NY, USA. ACM.

Armstrong, J. (2007b). Programming Erlang: Software for
a Concurrent World. Pragmatic Bookshelf, 1 edition.

Bykov, S., Geller, A., Kliot, G., Larus, J. R., Pandya, R.,
and Thelin, J. (2010). Orleans: A framework for cloud
computing.

CSA (2011). Security guidance for critical areas focus in
cloud computing.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified
data processing on large clusters. In OSDI ’04, pages
137–150.

Gonzalez, N., Miers, C., Redígolo, F., Simplício, M., Car-
valho, T., Naslund, M., and Pourzandi, M. (2011). A
taxonomy model for cloud computing services. In
Proceedings of CLOSER 2011, Noordwijkerhout, The
Netherlands. INSTICC.

Gupta, R. and Larus, J. (2010). Programming clouds.
In Compiler Construction, volume 6011 of Lecture

Notes in Computer Science, pages 1–9. Springer
Berlin / Heidelberg.

Kaufman, L. M. (2009). Data security in the world of cloud
computing. IEEE Security and Privacy, 7(4):61–64.

Li, H. (2009). Introducing Windows Azure. Apress, Berkely,
CA, USA.

Mather, T., Kumaraswamy, S., and Latif, S. (2009). Cloud
Security and Privacy: An Enterprise Perspective on
Risks and Compliance. O’Reilly Media, 1 edition.

Morrison, J. P. (1994). Flow-Based Programming: A New
Approach to Application Development. Van Nostrand
Reinhold, 1st edition.

Morrison, J. P. (2003). Asynchronous component-based
programming.

Morrison, J. P. (2005). Patterns in flow-based programming.
MSDN (2011). Orleans: A framework for scalable

Client+Cloud computing.
Neumeyer, L., Robbins, B., Nair, A., and Kesari, A.

(2010). S4: Distributed stream computing platform.
In Data Mining Workshops, International Conference
on, pages 170–177, CA, USA. IEEE Computer Soci-
ety.

Ostrowski, K., Birman, K., and Dolev, D. (2007). Live dis-
tributed objects: Enabling the active web. IEEE IC,
11:72–78.

Ostrowski, K., Birman, K., and Dolev, D. (2008). Quicksil-
ver scalable multicast (QSM). In Network Computing
and Applications, pages 9–18, CA, USA. IEEE CS.

Ostrowski, K., Birman, K., and Dolev, D. (2009a). Dis-
tributed data flow language for multi-party protocols.
In Proc. 5th Workshop on Programming Languages
and Operating Systems, PLOS ’09, page 7:1–7:5, New
York, NY, USA. ACM.

Ostrowski, K., Birman, K., Dolev, D., and Sakoda, C.
(2009b). Implementing reliable event streams in large
systems via distributed data flows and recursive dele-
gation. In Proc. 3rd ACM - DEBS, page 15:1–15:14,
New York, NY, USA. ACM.

Ostrowski, K. J. (2008). Live distributed objects. PhD the-
sis, Cornell University, Ithaca, NY, USA.

Rimal, B. P., Choi, E., and Lumb, I. (2009). A taxon-
omy and survey of cloud computing systems. In Net-
worked Computing and Advanced Information Man-
agement, International Conference on, pages 44–51,
Los Alamitos, CA, USA. IEEE Computer Society.

Steinseifer, S. (2009). Evaluation and Extension of an Im-
plementation of Flow-Based Programming. PhD the-
sis, Fachhochschule Gieÿen-Friedberg.

ICORES 2012 - 1st International Conference on Operations Research and Enterprise Systems

440


