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Abstract: This paper proposes a solution method to the problem of allocating an empty container fleet to a set of 
stocking yards in order to minimize empty container stock and repositioning costs under uncertainties in 
demand, supply, container damages and repairing times. We propose an approximate solution for the 
problem based on a hierarchical approach. We used random data from different probability functions to 
generate problem instances and evaluate robustness and performance. We find that the proposed model 
solves the single location inventory problem in a very short time while obtaining high robustness and each 
one can be solved independently. This approach allows liners to reduce the complexity of an aggregate 
stochastic problem by solving multiple independent stochastic inventory problems. Additionally to other 
similar works, the presented models consider random container damages and repairing times. 

1 INTRODUCTION 

In the new scenarios of increasingly globalized 
commerce, repositioning and container allocation 
problems are recurrent; however, commercial and 
operational contingency decisions dominate tactical 
policies and planning, leading to operational 
inefficiencies. 

Imbalances are frequently observed between 
empty containers’ demand and supply. 
Consequently, stock of empty containers may be not 
enough if replenishment is not made. Liners need to 
face the costs of these imbalances by allocating their 
container fleets to different yards, and repositioning 
empty containers in order to replenish yards with 
stock-outs while unnecessary inventory from other 
yards is evacuated. This problem has been 
denominated as the Dynamic Empty Container 
Allocation Problem.  

This paper proposes a solution method to this 
problem, and is organized as follows. In Section 2 
we describe the problem and state the randomness 
issues of the problem. In Section 3 we present and 
describe the previous works that have tackled this 
problem. In Section 4 we propose an approximate 
solution for the Dynamic Empty Container 

Allocation Problem based on a hierarchical approach 
applying linear and stochastic programming, 
presenting and describing in detail our proposed 
models and the hierarchical structure of the solution. 
In Section 5 we describe the performed experiments 
for testing robustness and performance, and the data 
structure used. Finally, Section 6 presents the 
conclusions and perspectives. 

2 PROBLEM STATEMENT 

2.1 General Problem Statements 

The dynamic empty container allocation problem 
addressed in this paper considers a liner—decision 
maker—that operates in a network of container 
storage yards located in both ports and inland points. 
The liner also offers shipping services on fixed and 
periodic routes and owns a finite container fleet. 
Each yard has an associated exogenous demand that 
is met with empty container inventory available at 
each location. 

Shipping routes are weekly cyclic. The fixed and 
periodic routes allow each yard to be reached from 
any other. 
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Replenishment of empty containers at each yard 
is done from imports, which must consider the time 
elapsed after a container is discharged at a port and 
returned empty by the client. The empty returned 
containers can also present damages, and they are 
not always immediately available to be assigned to 
demand. Alternatively for replenishment, empty 
containers can be repositioned from a storage point 
to another when necessary, or the liner can sublease 
a finite number of empty containers to meet 
inventory requirements.  

2.2 Present Uncertainties 

The described process has a high level of uncertainty 
over time. The major sources of randomness are 
given by the demand, supply, damages and repair 
times of empty containers.   On the other hand, the 
supply of containers in a yard is uncertain, when 
containerized cargo is transported from one port or 
yard to another, it loses time in waiting, from the 
moment the client receives the cargo in the ending 
port to the moment it is returned empty to storage 
yards and equipment is available. 

Additionally, there is the possibility of container 
damages, in which case it must be repaired. Finally, 
the repair of empty containers takes a random time, 
after which the equipment will be available in 
storage to be assigned to new demand. 

3 RELATED LITERATURE  

The literature related to this subject is relatively 
short, and not until after the work of Crainic, 
Gendreau and Dejax (1993) was the dynamic and 
stochastic problem first really tackled. They 
proposed both deterministic and stochastic dynamic 
models for both single-product and multi-product 
cases; for the deterministic model, a decomposition 
strategy was proposed in subsequent works 
(Abrache, Crainic and Gendreau, 1999). 

Shen and Khoong (1995) proposed a hierarchical 
decision support system for the multi-period 
planning of the distribution of empty containers. 
Cheung and Chen (1998) formulated the problem 
through a two-stage stochastic network. Leung and 
Wu (2004) presented a robust optimization model 
for the stochastic problem. Li et al. (2007) 
considered implementation of a (U,D) inventory 
interval policy for the replenishment. Crainic, Di 
Francesco and Zuddas (2007) presented a mixed-
integer programming model associated with a 
stochastic program. Chang et al. (2008) use a 

decomposition technique and branch and bound. 
Belmecheri et al. (2009) used integer programming. 
Yuanhui et al. (2009) used a hybrid integer code 
hybrid genetic algorithm. Feng and Chang (2010) 
used a revenue management model. Song and Zhang 
(2010) modeled container transportation as a 
continuous fluid flow. Wang et al. (2010) included 
decision maker risk preference in a robust 
optimization model. Yang (2011) considered an 
integer programming allocation model. Finally, Shi 
and Xu (2011) presented a Markov decision process 
model for empty container repositioning.    

4 MODEL DESCRIPTION 

Parameters include random container demands, 
transit times, expected return times for containers, 
storing and transportation costs, leasing costs and 
capacities, random supplies, damage probabilities, 
and probability for repair times. 

The proposed models is based on the following 
assumptions: a) The whole observed demand is met 
along the time horizon; b) Uncertainty is given by: 
demand, supply, damages, repair times; c) The 
random variables are independent and not self-
correlated along the time horizon; d) There is no 
capacity limit for replenishment containers; e) 
Storage capacity in yards is unlimited; f) A returning 
yard or time period for subleased containers is are 
not specified. Based on these assumptions and the 
topology shown above, two optimization programs 
will be presented.  

4.1 Empty Container Aggregated 
Replenishment (Agre) Model 

The objective of the model will be to minimize the 
costs of aggregate replenishment for empty 
containers. 

The decisions that must be made along the 
planning horizon include the container stock to 
having available the in each yard, transportation of 
empty containers between yards,  and containers 
subleasing.  

Following this, a cost function can be defined 
conidering storage, transportation and 
subcontracting costs. Contingency supplies must be 
also defined to guarantee the problem feasibility. 

Constraints of the Agre model include the 
dynamic balance for the available stock of empty 
containers, arrivals during a given time period, 
subleasing capacities, contingency supplies, and 
safety stock. 
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The Agre model does not take into account the 
randomness of the parameters under uncertainty. 
The impact of this randomness must be captured by 
the safety stock that must be guaranteed at each sto-
rage point along the planning horizon. This 
minimum stock should be sufficient to deal with 
uncertainty. The model which estimates the 
minimum stock level is described in the next section. 

4.2 Minimum Stock (Mist) Model 

The empty container minimum stock (Mist) model 
should estimate a minimum inventory at each 
storage point, to meet the randomnes of the problem.  

Based on certain demand for initial stock at the 
first time period, we must make a decision on the 
inventory to stock. In each period, when making a 
decision, the history of previous decisions and 
realizations of random variables is known, ignoring 
the future demand and supply. 

The cost function of the Mist model considers 
only the stock costs, specifically, the mean cost 
along the planning horizon. Note that, since the 
solution of  depends on random parameters of 
demand and supply, then it also is random. 

Contrary to the aggregated replenishment model, 
the demand  and the supply  are random variables 
with known probability functions. Additionally, the 
damage rate and the devolution times are considered 
probabilistically.  

Solution of the Mist model provides the 
minimum container stock, which will be used as a 
parameter by the Agre model in order to capture the 
randomness of the system and face the uncertainty.  

4.3 Solution to the Mist Model based 
on the Sample Average 
Approximation  

In order to solve the Mist stochastic non-linear 
model described previously, the sample average 
approximation, or SAA, method is used. This 
method generates an approximation of the 
probability distribution of the random variables by 
Montecarlo simulation. On each period of the time 
horizon, realizations of the random variables are 
generated, about which decisions should be made.  

The motivation for using this method lies in the 
following reasons: a) Multiple randomness sources 
exist, with heterogeneous probability distributions; 
b) The planning horizon considers multi-periods; c) 
The probability distributions of the random variables 
can be expressed through discrete functions; e) 
Based on the previously established assumption of 

independence and no self-correlation for the random 
variables, random scenarios can be easily generated; 
f) Since the Mist model does not include binary or 
integer variables, the problem can be solved by a 
polynomial size linear program. 

5 IMPLEMENTATION AND 
RESULTS 

We code the models in GMPL to test the 
performance robustness of the model. It is important 
to note that the computational complexity of the 
solution is determined by the complexity of the Mist 
problem, given the large number of scenarios that 
have to be generated in order to simulate the 
randomness of the system. For an instance of one 
yard, one container type, a fourweek planning 
horizon, and a tree with 1,000 random scenarios, the 
matrix of the associated program has a size of 
62,000 columns and 5,000 constraints before pre-
processing.  

We construct four data sets with four different 
demand probability distributions, empirical, normal, 
lognormal and uniform, for fourty experiments 
corresponding to fourty probability trees. To test the 
robustness of the model, the variation of the optimal 
solution for expected cost and average minimum 
stock over the four periods was recorded, using the 
sample variability coefficient as the estimator. To 
measure the performance of the model, solution 
times and memory usage were recorded; note that it 
is expected that the running frequency of the 
application is not grater than one run per week.  

5.1 Conclusions and Perspectives 

Inspired by the work of Shen and Khoong (1995), 
the model presented in this paper proposes a 
hierarchical solution approach to the Dynamic 
Empty Container Allocation Problem that divides 
the problem into two models: Mist, the estimation of 
the minimum stock necessary to deal with 
uncertainty at every storage point over a planning 
horizon, and Agre, the estimation of the flow of 
container replenishment to ensure compliance with 
those minimum stocks levels and business demand 
budgets. These models are also inspired by several 
of the works mentioned before and operating 
conditions of the specific problem described. 
However, unlike the works mentioned, the proposed 
models also consider the possibilities of observing 
damage to containers and repairs’ random times.  
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The computational complexity of the application 
is given by the stochastic complexity of the Mist 
model. For this program, we introduced the sample 
average approximation method approach, which 
offers advantages regarding uncertainty capture by 
generating a large number of random scenarios 
given by realizations of the random variables 
considered. Through this method, the stochastic pro-
gram became a stochastic linear program and the 
expected cost function was expressed as the sample 
average cost observed over the generated scenarios.  

The computational performance and robustness 
of the models was tested, finding that the Mist 
model, which governs the complexity of the 
application, solved each of fourty runs and four data 
set instances in a negligible time, considering that 
the running frequency of the model should not be 
greater than one run per week. Also, the solution, of 
minimum stock values and optimal cost estimates, 
was found to show good robustness. Only the 
lognormal demand data set showed a high variation 
coefficient for the solution, due the dispersion of the 
lognormal distribution. 

Further work may eliminate some assumptions, 
such as the infinite capacity of empty container 
shipping; include uncertainty in the capacity; and 
include constraints on the container leasing process, 
limiting the devolution time and location of leased 
equipment to a time window and a specific 
geographic location. Finally, is possible to perform a 
statistical analysis to generate a measurement of effi-
ciency for the number of random scenarios that 
should be generated in the tree, and to estimate 
confidence intervals for the calculated solution. 
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