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Abstract: This paper proposes a methodology for planning bus driver rosters with days off patterns in public transit 
companies. The problem is modeled as a mixed integer linear programming problem which is solved with 
special devised branch-and-bound techniques by a standard MILP solver. The new methodology was tested 
on instances of two companies operating in Portugal. Two types of days off rules giving rise to rosters with 
specific days off patterns are compared. The computational experiment shows promising results which 
suggest that the proposed framework can be used as a tool to evaluate and discuss different days off patterns 
within public transit companies. 

1 INTRODUCTION 

In urban public transit companies, bus driver 
rostering is the problem of assigning drivers to 
vehicle schedules, while satisfying labor law, 
contracts and internal regulations. A vehicle 
schedule is the sequence of timetabled trips to be 
performed by a vehicle during a day. Scheduling for 
both the vehicles and the drivers must be defined for 
a given time horizon. The solution quality of these 
problems has a great impact on transit companies’ 
operating costs. For example, according to the 
“Annual report & accounts 2009” of CARRIS SA, 
the main public transit company in Lisbon, 
expenditure on staff is 62.5% of operating costs 
which, in turn, is 71% of current costs. Hence, this is 
an area where savings are urgent. 

Due to the computational complexity of these 
problems, they are usually solved separately, on a 
sequential basis. First, a vehicle scheduling problem 
is solved for each day of the time horizon building 
the daily schedules for the vehicles that cover the 
demand for urban transport. Then, also for each day, 
crew duties are defined to cover vehicle schedules, 
satisfying daily labor constraints – the crew 
scheduling problem. Afterwards, using this 
information, a rostering problem is solved to assign 
the anonymous daily crew duties to specific 
company drivers, thus defining their sequences of 
work days and days off for the whole time horizon. 

Different mathematical formulations and solution 
approaches have been proposed for the rostering 
problem in several transport contexts. An extensive 
survey may be found in (Ernst, Jiang, 
Krishnamoorthy, Nott and Sier 2004). Multilayer 
network models have been proposed in (Carraresi 
and Gallo, 2004) and (Moz, Respício and Pato, 
2009) for bus driver rostering, (Aringhieri and 
Cordone, 2004) for refuse collection staff and 
(Cappanera and Gallo, 2004) for air crews. Set 
covering/partitioning models have been considered 
by Catanas and Paixão (1995) for bus driver 
rostering and Freling, Lentink and Wagelmans 
(2004) for railway and air crews. Recently, Hartog, 
Huisman,  Abbink, and Kroon (2009) presented an 
assignment model with additional constraints and 
developed a decision support system for crew 
rostering at NS (Netherlands railways) and Nurmi, 
Kyngäs, and Post (2011) proposed a population-
based local search algorithm to schedule drivers in a 
Finnish bus transit company.  

This paper proposes a mathematical formulation 
and a computational framework to solve rostering 
problems with days off patterns in public transit 
companies. The paper is organized as follows: in the 
next section we give some definitions and notation; 
in section 3, we present a mathematical formulation 
for the problem along with a brief description of the 
solution approach; computational results concerning 
two different roster patterns are reported and 

415Mesquita M., Moz M., Paias A. and Pato M..
PLANNING BUS DRIVER ROSTERS.
DOI: 10.5220/0003757504150420
In Proceedings of the 1st International Conference on Operations Research and Enterprise Systems (ICORES-2012), pages 415-420
ISBN: 978-989-8425-97-3
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

discussed in section 4; finally, in section 5, some 
conclusions are drawn. 

2 DEFINITIONS AND NOTATION 

The bus driver rostering problem, DRP, consists of 
assigning a set of M drivers to daily crew duties that 
operate the vehicles during a given planning horizon 
H. In this paper, we consider a planning horizon of 7 
weeks, 49 days. A crew duty is a daily working 
period that respects labor law, union contracts and 
internal rules of the company such as 
maximum/minimum spread (time elapsed between 
the beginning and end of a crew duty), maximum 
working time without a break, break duration.  

The sequence of crew duties and days off, one 
per day, assigned to a particular driver during the 
planning horizon is called a line of work. The set of 
lines of work, covering all crew duties, assigned to 
the drivers of the company is the roster. A roster 
must satisfy a set of constraints related with labor 
union contracts as well as internal rules of the 
company. These constraints concern the minimum 
number of days off per week, specific days off per 
week, minimum number of Sundays off in the 
planning horizon, minimum number of consecutive 
days off, maximum number of consecutive 
workdays and minimum number of rest hours 
between consecutive crew duties.  

Different policies may be followed in a 
company, or in different companies, to build the 
roster. Some groups of drivers are scheduled in a 
cyclic basis so that all drivers in a group are 
assigned to the same type of work and rest periods. 
In order to be able to perform all crew duties within 
cyclic rostering, drivers in the same group usually 
share the same characteristics, namely seniority, 
same bus and route knowledge. In this paper we deal 
with a group of drivers whose contracts allow more 
flexibility on the rosters. These drivers work 
according to a pre-defined days off pattern where 
they get the same type of rest periods but not 
necessarily the same type of crew duties.  

Each days off pattern is a priori defined and 
includes one, or more than one, days off schedules. 
Each days off schedule is a template for a line of 
work that fixes the days off and the working days to 
be filled with crew duties. Each days off schedule 
satisfies, a priori, a subset of the above mentioned 
constraints: the minimum number of days off per 
week is 1; the minimum number of Sundays off in 
the planning horizon is 2; the minimum number of 
consecutive days off is 2; the maximum number of 

consecutive workdays is 6. The remaining 
constraints will be explicitly considered in the 
mathematical model presented in the next section. 

The 0-1 matrix in Table 1 gives an example of a 
days off pattern where each day off is denoted by 0 
and each workday by 1. This pattern covers a 
planning horizon of 7 weeks and includes 7 days off 
schedules. Schematically, each days off schedule 
starts in row 1 of any column, a Monday, and 
consists of 7 consecutive columns being the last day 
(Sunday) of column i followed by the first day 
(Monday) of column i+1. Note that, column 1 
follows column 7. For example, a driver assigned to 
the days off schedule that starts with column 6 
works and rests  according to columns 6, 7, 1, 2, 3, 4 
and 5 during weeks 1, 2, 3, 4, 5, 6 and 7, 
respectively.  

Table 1: Example of days off pattern. 

 1 2 3 4 5 6 7 
Mon 0 1 1 1 1 1 0 
Tue 0 0 1 1 1 1 1 
Wed 1 0 0 1 1 1 1 
Thu 1 1 0 0 1 1 1 
Fri 1 1 1 0 0 1 1 
Sat 1 1 1 1 0 0 1 
Sun 1 1 1 1 0 0 1 

The days off pattern described in Table 1 is 
followed by a group of drivers from a public transit 
company in the city of Lisbon. According to it, all 
drivers have 4 consecutive rest periods of 2 days off 
and 2 consecutive rest periods of 3 days off which 
include Saturday and Sunday. Moreover, during the 
planning horizon all drivers rest two Mondays, two 
Tuesdays,.., and two Sundays. Consequently, all 
drivers share the same type of rest periods and days 
off, and a roster built with these schedules has a 
cyclic nature in what concerns the days off. 

In the next sections we present a methodology to 
solve the rostering bus driver problem with pre-
defined days off pattern. As an additional tool, the 
underlying computational framework may be used to 
compare rosters built under different days off 
patterns regarding the rostering problem objectives: 
minimizing the number of drivers assigned to work 
and evenly distribute the workload among the 
drivers during the planning horizon. 

3 MATHEMATICAL MODEL 

Each daily crew duty has to be assigned to a driver 
that works according to one of the schedules 
included in the days off pattern in use. Let S be the 
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set of days off schedules and let hL  be the set of 
crew duties to be performed on day Hh ∈ . 
According to the crew duty starting time, hL  is 
partitioned into h

EL , set of early crew duties starting 

before 3:30 p.m. and h
AL , set of late crew duties 

starting after 3:30 p.m. According to the crew duty 
spread hL  is partitioned into h

TL , set of short duties 
with a maximum spread of 5 hours (without lunch); 

h
NL , set of normal duties with spread [ ]9,5∈  hours 

and h
OL , set of long duties with spread ] ]75.10,9∈  

hours (with overtime).  
The DRP can be formulated as an 

assignment/covering problem with additional 
constraints, as stated in (Mesquita, Moz, Paias and 
Pato, 2011) for the integrated vehicle-crew-roster 
problem.  

The mathematical model includes three types of 
decision variables. Let 1=mhyl , if driver m performs 

crew duty l on day h, or 0 otherwise. Let 1=m
sx , if 

driver m is assigned to schedule s, or 0 otherwise. A 
cost mr , related with driver m salary, is associated 
with variables m

sx . The objective function is devised 
to minimize the number of drivers assigned to work 
as well as to evenly distribute the workload among 
the drivers. That is, the undesirable types of daily 
crew duties - short and long - must be equitably 
partitioned among the lines of work assigned to 
drivers. To balance the workload we define a third 
type of decision variables Tη  and Oη , which 
represent, respectively, the maximum number of 
short and long crew duties assigned to a driver 
during H. Penalties Tλ  and Oλ  are associated with 

Tη  and Oη , respectively. 
The DRP can be stated as the following MILP: 
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Constraints (2) guarantee that each crew duty is 
assigned to one and only one driver. Constraints (3) 
ensure that a driver is assigned to one schedule of set 
S or is available for other services in the company. 
Inequalities (4), where parameter 1=h

sa  if h is a 

workday on schedule s or 0=h
sa if h is a day off  on 

schedule s, link variables mhyl  and m
sx . These 

inequalities establish that a driver assigned to a duty ℓ  on day h works according to a schedule s where h 
is a workday. Constraints (5) prevent undesirable 
sequences of crew duties in which, on consecutive 
days, a driver performs an early duty followed by a 
late duty. Constraints (6) ensure the implementation 
of labor laws with regard to minimum rest periods 
between consecutive working days. That is, (6) 
forbids the assignment of a driver to an early duty in 
the day after he performed a late duty. Both (5) and 
(6) impose a day off period between different crew 
duty types. Inequalities (7) define the variables Tη  
and Oη  which determine the maximum number of 
short/long duties assigned to a driver.  

Branch-and-bound techniques are used to obtain 
optimal/near optimal solutions for DRP. Due to the 
combinatorial nature of the problem only small real 
instances can be solved directly with a software 
package. To reduce the size of the instances under 
resolution different branching strategies combined 
with variable fixing have been tested and compared.  

The mathematical model (1) to (10) includes two 
sets of integer decision variables. Variables x define 
the assignment of drivers to the days off schedules 
thus establishing, for each driver, the sequence of 
rest periods. Variables y define the assignment of 
drivers to the crew duties thus determining the 
sequence of crew duties that each driver has to 
perform along the planning horizon. These two sets 
of integer variables suggest different branching 
strategies according to the subset of variables 
branching dichotomy is based on. The first 
branching rule (R1) looks to the linear programming 
relaxation solution and fixes to 1 decision variables 

MmSsxm
s ∈∈∀> ,,75.0  and decision variables

MmHhLy hmh ∈∈∈∀> ,,,999.0 ll . The second 
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rule (R2) performs branching over the subset of 
variables  MmHhLy hmh ∈∈∈∀ ,,, ll , fixing to 1 

variables 85.0>mhyl  at the end of the root node. 
The third rule (R3) performs branching over the two 
subsets of variables MmHhLy hmh ∈∈∈∀ ,,, ll  

and Mmx
Ss

m
s ∈∀∑

∈
, , fixing to 1 variables

95.0>mhyl  at the end of the root node. 
Computational results are shown in the next 

section. 

4 COMPUTATIONAL RESULTS 

We have compared two days off patterns denoted by 
PI and PII. Pattern PI was described in section 2, 
Table 1. Pattern PII, described in Table 2, includes 
two different sets of days off schedules. One is the 
set of days off schedules defined by PI. The other set 
includes a single schedule, denoted by s8, containing 
7 rest periods, which always occur on Saturday and 
Sunday. That is, during the 7 weeks of the planning 
horizon, a driver assigned to s8 will have his rest 
periods always on Saturday and Sunday. PII arises to 
counterbalance the lower demand, in what concerns 
the number of crew duties to cover during weekends. 
Within pattern PII, the group of drivers is partitioned 
into two sub-groups: one sub-group will work 
according to the days off schedules, s1,…,s7, defined 
by PI and the other sub-group according to s8. 
Pattern PII is not a cyclic pattern since drivers 
assigned to different subgroups no longer have the 
same type of rest periods. 

Table 2: Days off pattern PII. 

 1 2 3 4 5 6 7 s8 
Mon 0 1 1 1 1 1 0 1 
Tue 0 0 1 1 1 1 1 1 
Wed 1 0 0 1 1 1 1 1 
Thu 1 1 0 0 1 1 1 1 
Fri 1 1 1 0 0 1 1 1 
Sat 1 1 1 1 0 0 1 0 
Sun 1 1 1 1 0 0 1 0 

The algorithms were coded in C++ and the 
programs ran on a PC Pentium IV 3.2 GHz. Branch-
and-bound schemes were tackled with CPLEX 11.0. 

We have considered 8 instances: 5 instances, 
denoted by L1,…,L5, derived from a bus company 
operating in the city of Lisbon and 3 instances, 
denoted by P1, P2, P3, derived from a bus company 
operating in the city of OPorto. Characteristics of the 
test instances are described in Table 3. Columns 2 
and 3 show the number of short/normal/long daily 

crew duties to be covered, respectively, from 
Monday to Friday and on weekend days. Column 4 
refers to the total number of (short/normal/long) 
crew duties to be assigned during the planning 
horizon. 

Table 3: Data set description. 

 Daily crew duties Total crew duties 
 Mon-Fri Sat-Sun Mon-Sun 
 T / N / O T / N / O T / N / O 

L1 1 / 8 / 8 4 / 3 / 2 91 / 322 / 308 
L2 4 / 14 / 20 7 / 6 / 6 238 / 574 / 784 
L3 0 / 9 / 30 1 / 4 / 11 14 / 371 / 1204 
L4 0 / 8 / 26 0 / 6 / 9 0 / 364 / 1036 
L5 5 / 13 / 36 11 / 8 / 8 329 / 567 / 1372 
P1 3 / 9 / 16 6 / 6 / 4 189 / 399 / 616 
P2 3 / 28 / 12 10 / 8 / 8 245 / 1092 / 532 
P3 0 / 9 / 30 7 / 4 / 12 98 / 371 / 1218 

Parameters Tλ  and Oλ  in (1) were set to 
5.0=Tλ

 
and 1=Oλ , as long crew duties are more 

undesirable than short crew duties since contain 
overtime.  

A time limit of 10800 seconds has been imposed 
as stopping criterion for solving MILP problems. 

Computational experiments on the different 
branching strategies have shown that rule (R3) 
yielded the best branch-and-bound results 
concerning either CPU time and solution quality. On 
the one hand, (R1) proved to be ineffective for 
solving medium/large size instances due to 
excessive CPU times. On the other hand, both (R2) 
and (R3) led to feasible solutions within the time 
limit but (R3) gave a better solution in 11 out of 16 
instances. As for the branch-and-bound CPU time, 
Table 4 shows, for each instance, the corresponding 
time, in seconds, for both (R2)/(R3) and PI/PII, 
excluding root node CPU. The last two rows present, 
respectively, the average time and the number of 
times branch-and-bound stopped due to the time 
limit. 

Results reported in Table 4 strengthen the choice 
of (R3) to compare the quality of PI and PII 
solutions. 

Table 4: Comparing (R2) and (R3) – CPU time. 

 PI PII 
 (R2) (R3) (R2) (R3) 

L1 30.4 46.9 10800 10800 
L2 15.3 70.8 10800 528.6 
L3 0.5 15.0 10800 571.6 
L4 0.1 3.1 10800 82.5 
L5 107.4 786.9 10800 10800 
P1 343.1 254.0 10800 1095.3 
P2 8225.9 10800 10800 10800 
P3 2352.2 355.1 10800 575.0 
av 1384.4 1541.5 10800 4406.6 
#tl 0 1 8 3 
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Table 5 presents computational results for PI and 
PII. Column 3 shows the number of drivers assigned 
to the best roster attained, while in brackets the 
number of drivers assigned to s8 is reported. Column 
4 presents the maximum number of short/long crew 
duties assigned to a driver during the planning 
horizon. The last column displays total CPU times, 
in seconds, spent by the enhanced branch-and-bound 
algorithm (LP relaxation CPU + MILP CPU).  

Table 5: Computational results for PI vs PII. 

  # driv #T /  #O CPU (sec) 
L1 

L
PI 25 4 / 14 106 
PII 24 (8) 4 / 15 10805 

L2 
L

PI 54 6 / 16 85 
PII 47 (18) 9 / 20 575 

L3 
L

PI 55 1 / 22 22 
PII 47 (22) 1 / 26 599 

L4 
L

PI 49 0 / 22 18 
PII 40 (17) 0 / 35 93 

L5 
L

PI 77 5 / 18 828 
PII 68 (26) 8 / 23 10924 

P1 
L

PI 40 14 / 17 288 
PII 36 (12) 7 / 18 1112 

P2 
L

PI 61 5 / 9 10838 
PII 57 (17) 13 / 13 10853 

P3 
L

PI 59 4 / 25 394 
PII 50 (15) 4 / 28 628 

From Table 5, we can see that with PII one can 
save on the number of drivers assigned to work. In 
fact, it is important to know the minimum workforce 
needed to operate the fleet of vehicles in order to 
have a pool of drivers available to replace those 
absent or to be assigned to other services in the 
company. Column 4 gives an idea of the roster 
quality concerning the worst scenario of short/long 
duties assigned to a driver in the planning horizon. 
Columns 3 and 4 show that the reduction on the 
number of drivers with PII comes with an increase in 
the maximum number of long crew duties assigned 
to a driver. This was expectable since the number of 
long crew duties is the same in PI and PII but in PII 
is divided by fewer drivers. 

Although there is no guarantee of obtaining an 
optimal solution to DRP, one can see that the 
number of long crew duties is fairly distributed 
among de drivers. For example, concerning instance 
P1, a total of 616 long duties (table 3) must be 
assigned to 40 drivers under pattern PI and to 36 
drivers under PII (table 5) which yields on average 
15.4 and 17.1 for PI and PII, respectively. The 
solution provided by our methodology leads to a 
maximum of 17 and 18 long duties assigned to a 
driver, respectively, for PI and PII.  

The last column shows that CPU times spent to 
solve the tested instances are quite reasonable.  

5 CONCLUSIONS 

Expenditures on staff have a great impact on 
operating costs of public transit companies. One of 
the main objectives of the rostering problem is to 
minimize such costs. However, it is important that 
the rosters comply with driver preferences. Some 
preferences concerning rest periods can be drawn a 
priori through the days off pattern. This paper 
proposes a computational framework that, given a 
pre-defined days off pattern, builds the bus driver 
roster for a planning horizon. The methodology has 
been tested over two sets of real instances derived 
from bus companies and proved to be an effective 
tool for building and comparing rosters under 
different days off patterns.  
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