
DETECTION AND RECOGNITION OF SUBPIXEL TARGETS 
WITH HYPOTHESES DEPENDENT BACKGROUND POWER 

Victor Golikov and Olga Lebedeva 
Ingineering Faculty, Autonomous University of Carmen, 56 st., No. 4, Ciudad del Carmen, Camp., Mexico 

Keywords: Statistical Detection and Recognition, Subpixel Targets. 

Abstract: We consider the problem of detecting and recognizing the subpixel targets in sea background when the 
background power may be different under the null hypothesis – where it is assumed to be known – and the 
alternative multiple hypotheses. This situation occurs when the presence of the target triggers a decrease in 
the background power (subpixel targets). We extend the formulation of the Matched Subspace Detector 
(MSD) to the case where the background power is only known under the null hypothesis using the 
generalized likelihood ratio test (GLRT) for the multiple hypotheses case. The obtained multiple hypotheses 
test is based on the Modified MSD test (MMSD). We discuss the difference between the two detection and 
recognition systems: based on the MSD and MMSD tests. Numerical simulations attest to the validity of the 
performance analysis.         

1 INTRODUCTION 

Among the various frameworks in which pattern 
recognition has been traditionally formulated, the 
statistical approach has been most intensively 
studied and used in practice (Webb, 2002). Target 
detection and recognition in the remotely sensed 
image sequences can be conducted spatially, 
temporally or spectrally. The need for subpixel 
temporally (or spectrally) detection-recognition in 
remotely sensed image sequences arises from the 
fact that the targets sampling distances are generally 
larger than the sizes of targets of interest. In this 
case, the target is embedded in a single pixel 
sequence and cannot be detected or recognized 
spatially. As a result, traditional spatial-temporal 
analysis-based image sequence processing 
techniques are not applicable. Matched subspace 
detection-recognition is used to recognize the 
mulptiple hypotheses of different targets presence or 
absence of targets that are expected to lie in 
particular subspaces of the measurements. Standard 
approach in this case bases on calculating for each 
possible target of the GLR and determination of the 
target with maximum value of the GLR (Izenman, 
2008). The common drawback of this approach is 
the assumption that the background power under 
hypothesis H0 remains the same one as under 
hypotheses Hk. In digital optical systems, it is 

typically that the background has the same 
covariance structure under hypotheses H0 and Hk, but 
different variances (Manolakis and Shaw, 2002), 
which is directly related to the fill factor, that is, the 
percentage of the pixel area occupied by the 
background. Because the background power is 
changed if any of the targets is present, the 
detection-recognition system is not optimum and, 
therefore, it is necessary to modify the MSD 
(Golikov, Lebedeva 2011). As a result, we assume 
that the proposed detection-recognition system can 
achieve a significant performance advantage against 
conventional one. 

In this paper, we focus on the detection-
recognition of small targets in the case of unknown 
power of Gaussian background under hypothesis Hi. 
We assume that different targets have the different 
subspace dimensions. In section 2, we formulate the 
subpixel detection-recognition problem using the 
linear mixing model and the concepts of targets and 
background subspaces. We derive the GLRT for the 
problem at hand and the distributions under the 
hypotheses. In Section 3, we investigated the 
detection-recognition performance losses in the case 
of background power variations between multiple 
hypotheses in a Gaussian environment for proposed 
and canonical detection-recognition systems in the 
presence of a mismatch between the designed and 
actual background power. Here, the numerical 
simulations  are included to verify the validity of the 
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theoretical analysis. Brief conclusions end the paper. 

2 GENERALIZED LIKELIHOOD 
RATIO TEST 

The problem addressed here is the detection-
recognition of a K possible targets response sk for a 
measurement x~N[ࡴߤ௞θk, R2

kσ ] in Gaussian 

background with covariance structure ,R2
kσ

k=1,2,…,K. The problem is to decide between the 
null hypothesis (H0) and the alternative hypotheses  

(Hk): H0: x=c0,         Hk: x=µsk+ck . (1) 

When the background covariance matrix R, scaling ߪ଴ଶ, target subspace matrix Hk, and the location 
parameter θk are known, the appropriate detection-
recognition statistics is presented in the MSD form 
(Scharf, 1991): 

Tkn(x) = (1/ܰσ଴ଶ)max௞  (2) ࢞ଵିࡾு(௞ࣂ௞ࡴ)ଵି[௞ࣂ௞ࡴଵିࡾு(௞ࣂ௞ࡴ)]௞ࣂ௞ࡴଵିࡾு࢞

We accept the hypothesis Hk when the statistics (2) 
achieves the maximum. The parameter θk locates the 
target response μsk=ࡴߤ௞θk in the target subspace 
spanned by the pk<N columns of a known matrix ࡴ௞, H=ܥே×௣ೖ, which is the linear space of (N×pk) 
complex matrices. Let define the whitened targets 
mode matrix ࢶ௞=R-1/2ࡴ௞ and the whitened 
measurements y=R-1/2x. We want to derive the 
detection-recognition test in the case of unknown 
parameters ߪ௞ଶ using the generalized likelihood ratio 
of the conditional probability density functions 
(PDF). The maximized ratio of PDFs is obtained by 
replacing the unknown parameters by their 
estimators according to maximum likelihood (ML) 
criterion in such form:        

L=	୫ୟ୶ೖ,഑ೖమ ௣൫ࣂ;࢟ೖ,ఙభమ ுೖൗ ൯௣൫࢟;ఙబమ ுబ⁄ ൯  

= max௞,ఙೖమ [ ଵିߪேିߨ ଶேexp	(−(1/ߪଵଶ)(࢟ − ࢟)௞)ுࣂ௞ࢶ ଴ିߪேିߨ[((࢑ࣂ௞ࢶ− ଶேexp	[−൬ ଴ଶ൰ߪ1 [࢟ு࢟ , (3) 

where the numerator are maximized by parameter 
σk

2. The ML estimates (Jolliffe, 2002) of the ߪ௞ଶ is 
obtained by solving such equations: డ௅డఙೖమ=0. (4) 

We designate the target subspaces matrix with a 
maximum number pmax of columns as Hmax and ࢶ௠௔௫. It is well known (Scharf, 1991) that the 

estimate of the background variance is obtained as: ߪො௞ଶ = 
೻೘ೌೣ఼ࡼಹ࢟ ேି௣೘ೌೣ࢟ , 

(5) 

where ࡼః೘ೌೣୄ = I-ࡼః೘ೌೣ and PΦ=	࢑ࢶ(ࢶ௞ு	ࢶ௞)-1ࢶ௞ு. 
Next, the maximum of (3) with respect to σk

2 is 
found for ߪො௞ଶ, resulting in 

ܮ = max௞ ൜௘࢟ಹࡼ೻೘ೌೣ఼ ࢟ ௘௫௣ൣି(ே)షభఙబషమ࢟ಹ࢟൧ఙబమ(ேି௣೘ೌೣ) ൠିே . (6) 

Computing the logarithm of the N-th root of (6), we 
obtain the decision statistics:  

Tun(y)= max௞ ൤࢟ಹ࢟ேఙబమ − ݈݊ ೻೘ೌೣ఼ࡼಹ࢟ ఙబమ(ேି௣೘ೌೣ)࢟ − 1൨	 
=max௞ ൤஺࢟ಹࡼ೻ೖ࢟ேఙబమ + ೻ೖ఼ࡼಹ࢟ ேఙబమ࢟ − ݈݊ ೻೘ೌೣ఼ࡼಹ࢟ ఙబమ(ேି௣೘ೌೣ)࢟ − 1൨ , (7) 

where A is the factor of the recognition sensitivity.  

3 PERFORMANCE ANALYSIS 

In this section, we derive the asymptotic distribution 
of the test statistic Tun with a view to evaluate it 
performance in terms of probability of detection, the 
probability of the recognition error and probability 
of false alarm. Moreover, we analyze numerically 
the difference of the performance between 
conventional statistics Tkn(x) and the proposed 
statistics Tun(x). It is well known that the distribution 
of the statistics Tkn(x) is following:  
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By analogy, we observe that the first term in (7) 
is equal to Tkn(x), the second term has ଵଶே ߯ଶ(ேି௣ೖ)ଶ  
central distribution with 2(N-pk) real degrees of 

freedom under H0 and ఙೖమଶఙబమே ߯ଶ(ேି௣ೖ)ଶ  central 
distribution under Hk. In order to come up with 
manageable expressions, we investigate an 
asymptotic approach, assuming that the parameter N 
is large. In this case, it is well known that the chi-
square distribution χn

2(0) converges to a Gaussian 
distribution with mean n and variance 2n (Scharf, 
1991). Then, using the fact that the third term 

Q(y)=	݈݊ ೻೘ೌೣ఼ࡼಹ࢟  ,ఙబమ has   the chi-square distribution(ேି௣೘ೌೣ)࢟
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one can write the following asymptotical expression: 

Q(࢟)~ቐܰ ቀ1, ଵேି௣೘ೌೣቁ 										under	ܪ଴ܰ ቀܾ௞, ௕ೖమேି௣೘ೌೣቁ 										under	ܪ௞, (10) 

where bk=	ఙೖమఙబమ . Using a Taylor series expansion of 

lnQ(࢟) around 1, it is easy to obtain that  

Q(y)–1–ln[Q(y)] ≈ (1/2)[Q(y) -1]2 . (11) 

We used the latter approximation and found that  

Q(y)–1-ln[Q(y)] 

~ ۔ۖەۖ
ۓ 12(ܰ − (௠௔௫݌ ߯ଵଶ(0)								 															under	ܪ଴	 ܾ௞ଶ2(ܰ − (௠௔௫݌ ߯ଵଶ ቆ(ܰ − ௠௔௫)[ܾ௞݌ − 1)]ଶܾ௞ଶ ቇ 	under	ܪ௞. (12) 

Since the first term and Q(y) are independent, the 
asymptotic distribution of Tun(x) is given by as 
follows: 

୳ܶ୬(࢞) 
~ ۔ۖەۖ
ۓ 12(ܰ − (௠௔௫݌ ߯ଵଶ(0) + ൬ 12ܰ൰߯ଶ௣ଶ (0)																								 	଴ܪ ܾ௞ଶ2(ܰ − (௠௔௫݌ ߯ଵଶ ቆ(ܰ − ௠௔௫)(ܾ௞݌ − 1)ଶܾ௞ଶ ቇ + ܾ௞2ܰ ߯ଶ௣ೖଶ .(௞ߣ2)  ௞ܪ

The distributions derived above enable one to obtain 
the receivers operating characteristics (ROC). In 
order to come up with exploitable expressions, we 
examine a further approximation: 

୳ܶ୬(࢞) = ൞ 12ܰ ߯ଶ௣ೖାଵଶ (0) 														under	ܪ଴ܾ௞2ܰ ߯ଶ௣ೖାଵଶ ଴ߣ) +  ௞, (13)ܪ	under							௞)ߣ

where ߣ଴ = (ேି௣೘ೌೣ)(௕ೖିଵ)మ௕ೖమ .	 This expression holds 

for large N, pk<<N and bk=1-pk/N. One can calculate 
the ROC using the following expression: 

B(η, n, λ)=׬ ܶఞ೙మ(௡,ఒ)(ݔ)݀ݔஶఎ  . (14) 

Also, one can obtain the threshold ߟ = ,ܨ)ଵିܤ ݊,  ,using its inverse function. Then (ߣ
the probability of false alarm F and probability of 
detection D can be written in such form:  

,0)12 ,(2)( += kun pNηBTF , (15) 
).,12 ,(2)( 0

1
kkkun pbBTD λλη ++= −

 (16) 

If we fix the false alarm rate F it is obvious that the 
increase of the factor of the detector sensitivity A 
augments the threshold ߟ. In order to comprehend 
how and why the proposed statistics Tun may 
outperform the Tkn, let provide a qualitative analysis 

of the differences between these systems. The Tkn 
depends only on the data projection on the targets 
subspaces; the proposed statistics Tun depends on the 
projection on the background subspace. Notice that 
the only information used by Tun to modify Tkn is the 
power in the background subspace. One can then 
expect the different behavior of the Tun, each time 
the estimated background power is different from 
the expected one. The projection onto the targets 
subspaces will decrease and the projection onto the 
background subspace will increase. The developed 
system could recover a part of the energy having 
moved from one subspace to the other and try to 
maintain the test performance. Note that the ܳ(࢟) = ఙෝೖమఙబమ and then Δ(࢟) = ଵଶ ቀఙෝೖమିఙబమఙబమ ቁଶ	is approximately 
zero for b=1, and is a monotonically increasing 
function when the parameter b decreases. This 
corrective term	Δ(࢟) estimates the background 
variance for Hk and calculates the difference with the 
presumed one (σ0

2). The mean of the statistics Tkn 
diminishes under the assumption that the parameter 
b decreases and then, when it is close to zero target 
amplitude µ, the detection probability can be much 
less than the presumed value of the false alarm 
probability. Therefore, performance of the Tkn 
suffers a remarkable degradation. The additional 
corrective term Δ(࢟) increases the value of statistics 
and, therefore, increases the probability of detection. 
When the targets have the same size and hence the 
same pixel fill factor b, the recognition performance 
of the Tkn and Tun is approximately equal, but in the 
case of the targets of the different size and therefore 
with the different pixel fill factor the corrective term Δ(࢟) is different and this term causes the decreases 
the recognition errors. At the numerical analysis 
stage, one should specify the background and target 
models properties. Let model the target mode matrix 
H is a Vandermonde matrix (Scharf, 1991). In the 
literature, it is often assumed (Scharf, 1991) that 
background has an exponential covariance matrix 
structure with one-lag correlation coefficient ρ. The 
parameter θ is unknown in practice but for our 
scenario it is possible to use the appropriate 
deterministic approximation [ ]T1,,1,1 L=θ . In order 
to limit the computational burden, the false alarm 
probability is chosen as F=10-3. Figs.1, 2 illustrate 
the relation between the detection probability D and 
signal-to-background ratio ( dB2

0
2 σμ ) under the 

chosen system constraint resulting from 106 Monte 
Carlo trials. Comparing figures 1 and 2 we notice, 
that the system in the case of the correlated 
background with a known covariance matrix in 
comparison with the uncorrelated one requires the 
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smaller SBR for achieving of good detection. 
Recognition errors for different targets depend on 
difference between their subspace dimensions. In 
this example the recognition error between the first 
target with p=5 and the second with p=20 is equal to 
6% and between the first and third targets 

 
Figure 1: Probability of detection versus SBRin for 
proposed system for target fill factor b =0.8. The lines 
depict the analytical results, whereas the markers show 
Monte Carlo simulation trial results. The false alarm rate 
F=10-3, number of measurements N=200, 3 targets with 
subspace dimensions: p=5, 20, 50, uncorrelated 
background ρ= 0; A=1.   

 
Figure 2: Probability of detection versus SBRin for 
proposed system for target fill factor b =0.8. The lines 
depict the analytical results, whereas the markers show 
Monte Carlo simulation trial results. The false alarm rate 
F=10-3, number of measurements N=200, 2 targets with 
subspace dimensions: p=5 and 20, correlated background 
ρ= 0.9; A=1. 

about 2% in presence of uncorrelated background; 
these errors is equal to 8% and 3% in presence of 
correlated background with ρ= 0.9. The figure 3 
shows the comparison in the detectability by the two 
systems. One can see that at the pixel fill factor b<1 
the known system has losses in SBR with respect to 
the proposed system. Quality of recognition by the 
proposed   system    slightly   is   better,  than  by the 

known system. 

 
Figure 3: Loss factor of detection versus fill factor of 
target b for proposed system (ND) and well known 
(MSD). 2 targets with dimensions: p =10 and 40. 
Simulation results for F=10-3, number of measurements 
N=200, uncorrelated background; A=1.  

4 CONCLUSIONS 

In this work, we intend to extend the detection-
recognition problem in the case of the subpixel 
targets and Gaussian environment. We derived the 
GLRT for the problem at hand and carried out a 
performance analysis of the proposed system. The 
synthesized system modifies the well known by 
adding the corrective term proportional to the square 
of the background power variation. This term 
compensates a priori background power uncertainty 
in the case of the target’s presence. It has been 
shown analytically and via statistical simulation that 
the performance of the proposed system 
considerably outperforms the known system 
performance.    
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