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Abstract: In this paper, the Extended Kalman filtering (EKF) approach has been used to infer gene regulatory 
networks using time-series gene expression data. Gene expression values are considered stochastic 
processes and the gene regulatory network, a dynamical nonlinear stochastic model. Using these values and 
a modified Kalman filtering approach, the model’s parameters and consequently the interactions amongst 
genes are predicted. In this paper, each gene-gene interaction is modeled using a linear term, a nonlinear 
one, and a constant term. The linear and nonlinear term coefficients are included in the state vector together 
with the gene expressions’ true values. Through the extended Kalman filtering process, these coefficients 
are updated in such a way that the predicted gene expressions follow the ones observed. Finally, 
connections between each two genes are inferred based on these coefficients. 

1 INTRODUCTION 

Gene expression is a process in which gene products 
are synthesized using inherent information in genes. 
Regarding different expression levels of different 
genes in a cell, proteins present in the cell will vary 
both in amount and the kinds. Thus, the cell can be 
in different states, e.g. growth or death. Different 
genes’ products can affect the rate of expression of a 
specific gene in a direct or indirect way. Gene 
Regulatory Networks map these interactions in the 
form of a network. One of the important challenges 
is the development of efficient algorithms to infer 
these underlying connections using gene expression 
time series data without performing complicated 
time-consuming laboratory experiments. 

One of the methods for modelling gene 
expression data is dynamic modelling of gene 
regulatory networks. Some of these models are 
Boolean network models (Chen and Aihara, 1999); 
(D'haeseleer et al., 1999); (Holter et al., 2001), 
(Wang et al., 2008a), Bayesian model (Ghahramani, 
1998); (Liu et al., 2006); (Murphy and Mian, 1999), 
state space models ; (Rangel et al., 2004); (Wu et al., 
2004)) and stochastic model (Cook et al., 1998); 
(Tian and Burrage, 2003); (Wang et al., 2008b). 

Several factors should be considered in 
proposing methods for modelling gene regulatory 
networks. First of all, it is widely accepted that gene 
expression is a stochastic process, so the model 
defining the interactions should be able to handle the 
stochastic nature of the network. Nonlinearity of the 
interactions is another issue which should be taken 
into account. In addition, gene regulatory networks 
are usually a function of a large number of variables 
but the available time series data only consists of a 
small number of observations. Another issue is the 
inherent noise in gene expression data due to the 
nature of the process in which DNA microarray 
experiments are performed. A comprehensive model 
is the one which handles all these issues. Still, most 
available methods in the literature have not 
considered all. The use of extended Kalman filtering 
seems to be a proper solution. 

In this paper, gene expression values are 
considered as stochastic processes .each gene-gene 
interaction is modelled using a linear term, a 
nonlinear one, and a constant term. The linear and 
nonlinear term coefficients are included in the state 
vector together with the gene expressions’ values. 
Through the extended Kalman filtering process, 
these coefficients are updated in such a way that the 
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predicted gene expressions follow the ones 
observed. Finally, connections between each two 
genes are inferred based on these predicted 
coefficients. Four real-world gene expression data 
sets are used to demonstrate the effectiveness of the 
proposed algorithm.  

The paper is organized as follows: section 2 
describes the parameter estimation using EKF. Our 
proposed method is discussed in section 3. The 
experimental evaluation and discussions are given in 
section 4, followed by conclusion and future works 
in the final section. 

2 PARAMETER ESTIMATION 
USING EKF 

In general, the nonlinear system dynamics and a 
measurement are described by (Wang et al., 2009): 

( 1) ( ( ), ) ( )x k f x k k     (1)

( ) ( ( ), ) ( )z k g x k v k   (2)
 

( )k  and ( )v k  are the process and measurement 

noises which are assumed to be drawn from zero 
mean multivariate normal distributions with 
covariances. kQ  

and kR  respectively. These two 

noises are two independent white noises.   is the 
vector of the unknown parameters and is included in 
the state vector 
 

( ) [ ( ), ( )]TX k x k k (3)
 

In order to use the Kalman or Extended Kalman 
filters, some assumptions should be made. 
Alongside the properties said for process and 
measurement noises, we should assume Gaussian 
probability distributions for the state variables. The 
resulting dynamic equations are 

( 1) ( ( )) ( )X k F X k w k    (4)

( ) ( ( )) ( )z k G X k v k   (5)

Where  

( ) [ ( ),0]T Tw k k  (6)

( ( )) [ ( ( ), ( )), ( )]T T TF X k f x k k k   (7)

( ( )) ( ( ), ( ))G X k g x k k  (8)
 

Equations (4) and (5) serve as the state transition and 
observation models respectively. Through a two 
phase estimation process, the state vector is updated 
in each step regarding the observations available. 

A gene regulatory network containing n  genes is 

described by the following discrete-time nonlinear 
stochastic dynamical system (Chen and Aihara, 
1999), Where 

ija  identifies the linear regulatory 

relationship between genes i  and j and 
ijb  identifies 

the nonlinear relationship between genes i  and j , 
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function f  is a sigmoid function and is easily 

differentiable. When a detailed description is 
lacking, a sigmoid function is often used.  

3 THE PROPOSED METHOD 

In our algorithm, the model (9) is written for each 
pair of genes in the network. So equation (9) for 
genes 1 and 2 turns into: 

1 11 1 12 2 11 1 1

12 2 2 01 1

( 1) ( ) ( ) ( ( ))

        ( ( )) ( )

x k a x k a x k b f x k

b f x k I k
   
  

2 21 1 22 2 21 1 1

22 2 2 02 2

( 1) ( ) ( ) ( ( ))

         ( ( )) ( )

x k a x k a x k b f x k

b f x k I k
   
  

 
(11)

Setting 
1 1 2 2( ( )) [ ( ( )), ( ( ))]Tf x k f x k f x k model (9) 

can be written in vector form as follows: 

0( 1) ( ) ( ( )) ( )x k Ax k Bf x k I k      (12)

( ) ( ) ( )y k x k v k   (13)

if
11 21 12 22[ , , , ]TA a a a a   

and 
11 21 12 22[ , , , ]TB b b b b  , 

the vector of unknown parameters would be 

0[     ]T T TA B I   . Regarding equation (11), the 

expression value of gene 1 at time step k  is a linear 
and a nonlinear function of the expression value of 
the same gene at time-step 1k   and a linear and 
nonlinear function of the expression value of gene 2 
at time-step 1k  . In this paper, the coefficients 11a , 

22a , 11b , 22b  
are set to zero in each time-step so that 

each gene is bound to construct its expression values 
at each time step from the expression values of the 
other gene at the previous step, not its own. After 
running the algorithm, we would have 4 time-series,

12a , 21a , 12b , 21b . For deducing the effect of gene 2 

on gene 1, we first added up the absolute values of 
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12a  and 12b  and then took an average over all time-

steps. The calculated number is indicative of the 
strength of the regulatory influence of gene 2 on 
gene 1. We did the same for finding the effect of 
gene 1 on gene 2. After performing this process on 
all pairs of genes, we would have an n n  matrix (n 
is the number of genes in the network), let’s call it 
M . ( , )M i j  denotes the effect of gene j  on gene i
. The final interactions between genes are deduced 
from the elements of the matrix M . By setting a 
threshold, directed interactions would be inferred 
based on these numbers. We should assert that in 
each run of the algorithm (for each pair of genes), 
the initial condition of the state vector and standard 
deviation of the process and measurement noises are 
kept constant so that the conditions are equal for all 
cases.  

The threshold is set in a way that at most 
12%A  upper values of the elements of the matrix 

are chosen. A is the percentile of true connections to 
all possible connections. So, with an approximate 
knowledge of the number of connections, nearly all 
of them can be extracted by our method, See table 1. 

Table 1: Threshold derivation based on percentile of real 
interactions. 

Data set name 
percentile of 

True 
connections 

percentile of 
chosen 

elements 
Yeast Data Set 27.27% 25% 

E-coli first Data Set 12.5% 18.75% 
E-coli 2nd Data Set 51% 50% 
IRMA (Switch on) 32% 44% 
IRMA (Switch off) 32% 44% 

4 RESULTS AND DISCUSSIONS 

Our algorithm was evaluated and compared with 
ARACNE   (Margolin  et  al.,  2006),   TDARACNE 

(Zoppoli et al., 2010), dynamical Bayesian Networks 
implemented in the Banjo package (Yu et al., 2004) 
and ODE implemented in the TSNI package (Bansal 
et al., 2006), with gene expression data of yeast cell 
cycle (Spellman et al., 1998), two SOS signalling 
pathways in E. coli (Ronen et al., 2002); (Gardner, 
2003) and an in vivo synthetic network, called 
IRMA (Cantone et al., 2009).  

The performance is measured in terms of 
Positive Predictive Value (PPV), Recall and F-score. 
PPV is the percentage of inferred connections which 
are correct and Recall is the percentage of true 
connections which are correctly inferred by the 
algorithm. Suppose TP = number of True Positives, 
FP = number of false positives and FN = number of 
false negatives, 

TP TP
PPV=             Recall=

TP+FP TP+FN  

The overall performance depends on both the PPV 
and Recall. The F- score is the geometric mean of 
PPV and Recall and is a good indicator of 
performance: 

 

2(PPV.Recall)
F-score

PPV+Recall
  (14)

4.1 Yeast Data Set 

Next, we selected an eleven gene network from 
yeast S. Cerevisiae cell cycle. 

Selected genes are Cln3, Cdc28, Mbp1, Swi4, Clb6, 
Cdc6, Sic1, Swi6, Cln1, Cln2, and Clb5. Here the 
cdc15 dataset was used as it has the maximum 
number of gene expression measurements.After data 
normalization and interpolation using cubic-spline 
interpolation, the algorithm was run. The results 
were evaluated using Pathway studio software and 
summarized in Table 2.  

Table 2: Comparison of our algorithm with previous methods. The displayed values are in percent. 

Our method TD ARACNE TSNI BANJO 
PPV Recall F-Score PPV Recall F-Score PPV Recall F-Score PPV Recall F-Score 

Yeast Data set 
41 38 39 41 22 29 29 19 23 43 28 34 

E-coli SOS pathway (first data set) 
33 50 40 85 75 80 13 25 17 18 38 24 

IRMA network 
Our Algorithm TD-ARACNE TSNI BANJO ARACNE 

PPV Recall F-score PPV Recall F-score PPV Recall F-score PPV Recall F-score PPV Recall F-score 
Switch-ON data 

54 88 67 71 67 69 80 50 61 30 25 27 50 60 54 
Switch-OFF data 

  55 75 63 37 60 46 60 38 46 60 38 46 25 33 28 
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Figure 1: Yeast cell cycle pathways in Pathway Studio and inferred by 4 algorithms; from top left to bottom right. Pathways 
in Pathway Studio software, inferred graph by our algorithm, by TSNI, by TD-ARACNE, by Banjo. True connections are 
shown with direct lines. The conections inferred with false direction are considered False positives and not displayed. 

The network built by Pathway Studio Software and 
the inferred network is displayed in Figure 1.The 
color density of the lines define the number of 
credible references acclaiming the connection. As 
can be seen, our algorithm mostly recovers the most 
confident interactions 

4.2 e-Coli SOS Pathway (First Data 
Set) 

We also tested the proposed algorithm using eight 
genes in E. coli SOS pathway. The SOS pathway is 
activated in response to DNA damage in which the 
cell cycle is arrested and DNA repair is induced. The 
selected genes for this experiment are polB, uvrA, 
lexA, uvrD, recA, uvrY, ruvA and umuDC. The 
results are displayed in Table 2. The true network 
and the inferred network are displayed in Figure 3.  

4.3 e-Coli SOS Pathway (Second Data 
Set) 

We also tested the algorithm on nine other genes of 
the SOS pathway in E-Coli. Selected genes are dinI, 
rpoS, rpoD, umuDC, Ssb, recA, lexA, recF and 
rpoH. We compared the network that we found with 
the one that was identified in (Gardner, 2003) and 
with a literature survey of the known interactions 
among these nine genes (Fig. 2). Apart from self 
feedbacks, the network has 43 connections. TSNI 
algorithm could find 20 connections correctly 
(Bansal et al., 2006) while NIR found 22 
connections correctly out of 43 known connections. 

We could predict 30 of the connections correctly 
with PPV=69.7%, recall=71% and F-score=70%  

 

Figure 2: Gene regulatory interactions between nine genes 
of SOS network in E-Coli (second dataset) known in 
literature. Positive effects are shown as line, and negative 
ones as dashed lines. 

4.4 IRMA Network 

In (Cantone et al., 2009), a synthetic network was 
built in the yeast Saccharomyces cerevisiae. 

In this study, they tested the transcription of 
network genes when culturing cells in galactose or 
glucose. There are two sets of gene profiles, Switch 
ON and Switch OFF. The first one corresponds to 
shifting of the growing cells from glucose to 
galactose and the second one corresponds to the 
reverse shift. The inferred graph and true network 
are displayed in Figure 4. The results are also 
displayed in Table 2. 
 
 

INFERENCE OF GENE REGULATORY NETWORKS BY EXTENDED KALMAN FILTERING USING GENE
EXPRESSION TIME SERIES DATA

153



 

  

 

 

Figure 3: e-Coli SOS true pathway and inferred by 4 algorithms; from top left to bottom right, Original pathways, inferred 
graph by our algorithm, by Banjo by TD-ARACNE, by TSNI. True positives are shown by direct lines and false positives 
by dashed lines. Missing verse on the connection means that the algorithm recovers the wrong verse. 

 

Figure 4: Left: Yeast synthetic network, right: network by 
our algorithm (switch OFF dataset). Missing verse on the 
connection means that the algorithm recovers wrong verse 

As can be seen, in case of Yeast, we have a 
considerable increase in Recall, which means the 
proposed method can infer more of the true 
interactions. It should be noted that this increase in 
Recall not only hasn’t caused the PPV to decrease 
but also has led to a larger F-Score. In case of the 
first E-Coli dataset, PPV, Recall and F-Score have 
increased considerably comparing the results of 
TSNI and Banjo. In case of IRMA switch ON data, 
PPV, Recall and F-score is greater than those of 
ARACNE, Banjo and TSNI. Although the proposed 
method has an F-Score almost equal to that of TD 
ARACNE, the Recall value is greater. In case of 
IRMA Switch OFF dataset, F-Score has an increase 
around 20% compared to the best result by other 
methods. 

5 CONCLUSIONS 

An algorithm was developed in this paper using 
extended Kalman filtering. Results were good for 

medium networks, but as said, the interactions are 
deduced based on a two by two process. The 
algorithm should be extended so that inference of 
much larger networks is possible without much 
computational cost. Using a clustering method prior 
to running the algorithm and performing the 
algorithm in each cluster separately seems a good 
solution. In addition, in the expression profiles, only 
the mRNA concentration is measured, while with 
taking into account other biological data, better 
results can be gained. 
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