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Abstract: Privacy preservation is a main motivation for using the DCOP model and as such, it has been the subject of
comprehensive research. The present paper provides for the first time a categorization of all possible DCOP
privacy types. The paper focuses on a specific type, internal constraint privacy, which is highly relevant for
models that enable asymmetric payoffs (PEAV-DCOP and ADCOP). An analysis of the run of two algorithms,
one for ADCOP and one for PEAV, reveals that both models lose some internal constraint privacy.

1 INTRODUCTION
Constraint optimization (Meseguer and Larrosa,
1995) is a powerful framework for describing opti-
mization problems in terms of constraints. In many
real-world problems, such as Meeting Scheduling
problems and Mobile Sensor nets, the constraints are
enforced by distinct participants (agents). Such prob-
lems were termed Distributed Constraint Optimiza-
tion Problems (DCOPs) (Hirayama and Yokoo, 1997)
and in the past decade various algorithms for solving
DCOPs were proposed (Modi et al., 2005; Mailler
and Lesser, 2004; Petcu and Faltings, 2005; Gersh-
man et al., 2009). While these algorithms compete in
terms of reducing the run-time and/or communication
overhead, they maintain the inherent distributed struc-
ture of the original problem. Nonetheless, up until
recently there was no evidence that DCOP algorithms
outperform (in terms of run-time) state-of-the-art cen-
tralized COP methods. This observation was re-
cently challenged by methods that rely on GDL (Ste-
fanovitch et al., 2011; Vinyals et al., 2011). How-
ever, in these new set of algorithms the original dis-
tribution of variables among agents is not necessar-
ily preserved. In fact, the “distribution” of variables
among agents in these algorithms is actually only for
the means of parallelization of the problem solving
process. Hence, this new group of algorithms can be
referred to as Parallel COP algorithms as opposed to
Distributed COP algorithms.

Following the subsequent observation, the neces-
sity of “classical” DCOP search remains questionable
– if not for performance considerations, then what do
we need DCOP for? The answer to that is obviously

the will to preserve the original distributed structure
of the problem. And why should one try to preserve
this structure? The answer to the second question is
privacy. Indeed, much of DCOP research throughout
the years has focused on privacy issues (Maheswaran
et al., 2006; Greenstadt et al., 2007; Silaghi and Mitra,
2004). It turns out that the term privacy is too general
and almost every work on DCOP privacy considered
a slightly different angle of this term.

The first contribution of the present paper is a cat-
egorization of the various aspects of DCOP privacy.
The given categorization indicates that probably the
most interesting privacy aspect in real-world DCOPs
is constraint privacy, and indeed most previous work
on DCOP privacy actually refers to constraint privacy.
This aspect is further sub-categorized into internal
and external constraint privacy.

The paper’s second contribution regards internal
constraint privacy that has not been widely stud-
ied. Two models that do consider internal constraint
privacy are examined – PEAV-DCOP (Maheswaran
et al., 2004) and ADCOP (Grubshtein et al., 2010).
Some important insights regarding internal constraint
privacy preservation in these models are given.

The rest of the paper is organized as follows. Sec-
tion 2 formally describes the DCOP model. A cate-
gorization of privacy types is given in section 3, and
is followed by a review of previous work accord-
ing to the proposed categories (section 4). Section 5
overviews the existing models that enable asymmetric
payoffs, while section 6 exhibits internal constraint
privacy loss in these models. The conclusions and
ideas for future work are given in section 7.
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2 DCOP DEFINITION

A DCOP is a tuple < A ;X ;D;R >. A is a finite set
of agents A1;A2; :::;An. X is a finite set of variables
X1, X2; :::;Xm. Each variable is held by a single agent
(an agent may hold more than one variable). D is a
set of domains D1, D2; :::;Dm. Each domain Di con-
tains a finite set of values which can be assigned to
variable Xi. R is a set of relations (constraints). Each
constraint C 2R defines a non-negative cost for every
possible value combination of a set of variables, and
is of the form:

C : Di1 �Di2 � : : :�Dik ! R+ (1)

A binary constraint refers to exactly two variables and
is of the form Ci j : Di�D j ! R+. A binary DCOP
is a DCOP in which all constraints are binary. An as-
signment is a pair including a variable, and a value
from that variable’s domain. A partial assignment
(PA) is a set of assignments, in which each variable
appears at most once. A solution is a full assignment
of aggregated minimal cost.

3 PRIVACY CATEGORIZATION

In order to categorize the different pieces of data that
one may wish to keep private during DCOP solving,
we begin with a distinction between two types of pri-
vate data. The first type is data regarding the original
problem to be solved. This type refers to the defini-
tion of a DCOP as given in section 2. The second type
is data about the search process itself.

When considering the first type of data we refer to
the tuple < A ;X ;D;R >. We look at privacy from
the point of view of a variable. In most cases this
also coincides with the perspective of an agent, as it
is a common assumption in DCOP research that every
agent holds a single variable. We will refer to cases
in which this assumption does not hold in following
sections. Thus, we remain with two elements of the
tuple that a variable/agent may wish to preserve their
privacy – D and R :

� Domain Privacy – agents may desire to keep their
domains private. The standard DCOP model usu-
ally assumes that the domains of all the agents
are fully known, leading in most cases to an a-
priory loss of any domain privacy. Nevertheless,
agents may decide to abandon this assumption and
still use the standard DCOP model. Contrary to
that, in Open Constraint Optimization Problems
(OCOP) (Faltings and Macho-Gonzalez, 2005)

the domains are inherently gradually revealed in
an attempt to preserve some domain privacy.

� Constraint Privacy – agents may desire to keep
the information contained in the constraints pri-
vate. We distinguish between preserving the con-
straint information from agents participating in
the constraint (internal constraint privacy) and
preserving the constraint information from other
agents (external constraint privacy). Various
DCOP algorithms differ in their level of external
constraint privacy. For instance, in the OptAPO
algorithm (Mailler and Lesser, 2004; Grinshpoun
and Meisels, 2008) agents disclose all their con-
straint information to mediator agents, which ob-
viously leads to poor external constraint privacy
preservation. The story with internal constraint
privacy is more complicated, since the standard
DCOP model assumes that a constraint is totally
known by the agents participating in it. This ob-
viously leads to absolutely no internal constraint
privacy preservation. Two variations of the DCOP
model – PEAV-DCOP (Maheswaran et al., 2004)
and ADCOP (Grubshtein et al., 2010) – allow for
preservation of internal constraint privacy. An
overview of these models is given in section 5.

The second type of data includes information regard-
ing the current state (assignment) of a variable or the
behavior of the agent:

� Assignment Privacy – agents may desire to keep
the assigned values to their variables private. To
achieve this, agents must avoid sending their as-
signed values to other agents. This category
refers to the dynamic changes of assigned values
throughout the search process, as well as to the
assigned values in the final solution.

� Algorithmic Privacy – It is a common as-
sumption in DCOP research that all participat-
ing agents/variables run the same algorithm –
otherwise, there seems to be no sense for the
search process. However, an agent may attempt to
“tweak” an algorithm for some personal benefits.
For example, consider a scenario in which each
change of assignment applies some minor cost to
the agent holding the variable. The agents may
decide together to run the DSA algorithm (Zhang
et al., 2005) with a certain value of the p param-
eter that controls the likelihood of updating its
value if the agent attempts to do so. In this ex-
ample, an agent may decide to use a lower value
of p than initially decided, thus reducing its per-
sonal cost during the search process. Naturally,
this agent would like to keep the knowledge of its
selfish behavior private.
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4 RELATED WORK

In light of the above categorization, we go over pre-
vious DCOP privacy studies in order to put them in
context of the proposed categorization.

A previous study has characterized different types
of DCOP privacy loss (Greenstadt et al., 2007). The
types are – initial vulnerability, intersection vulner-
ability, domain vulnerability and solution vulnerabil-
ity. While some of these types may seem similar to
our proposed categories, they actually all belong to
the same category – constraint privacy. In fact, these
all represent different vulnerabilities of DCOP search
that may lead to external constraint privacy loss. For
example, solution vulnerability refers to the external
constraint information that is revealed by the solution
itself – in some cases there may be several solutions,
and the specific solution that was chosen may reveal
some constraint information.

The above study is a very good representative of
previous work – most of the studies on DCOP privacy
actually focus on external constraint privacy. The
same study introduces an algorithm that reduces the
privacy loss of all the types except for solution vulner-
ability (Greenstadt et al., 2007). Solution vulnerabil-
ity is addressed by another study (Silaghi and Mitra,
2004). Both studies selectively use encryption tech-
niques in strategic stages of the problem solving.

In early research of DCSP and DCOP privacy, ev-
ery work had a slightly different notion of what con-
straint privacy is, which resulted in the use of various
metrics for privacy loss (Silaghi and Faltings, 2002;
Franzin et al., 2004; Silaghi and Mitra, 2004). These
metrics were all unified with the introduction of the
Valuation of Possible States (VPS) framework (Mah-
eswaran et al., 2006). This general quantitative frame-
work enables the expression, analysis, and compar-
ison of various constraint-privacy-loss metrics. The
VPS framework was later used for a comprehen-
sive privacy-loss analysis of different DCOP algo-
rithms (Greenstadt et al., 2006). Additional re-
search on DCOP external constraint privacy includes
using cryptographic techniques for Vehicle Routing
Problems (Léauté and Faltings, 2011), investigating
the privacy-loss in k-optimal algorithms (Greenstadt,
2009), and integrating privacy-loss into the utility
function (Doshi et al., 2008).

In cases where the agents sharing a constraint have
equal payoffs, they naturally want to prevent other
agents from learning about their mutual constraints.
However, when this constraints symmetry does not
exist, the agents are naturally more concerned about
their private information not reaching their peers (in-
ternal privacy) than not reaching some third-party
agents that are not involved in the constraint (external

privacy). Consequently, models that enable internal
private constraint information are in the center of this
paper, and are thoroughly discussed in the following
sections. An interesting work on DCSPs has consid-
ered internal constraint privacy (Brito et al., 2009).
In this work entropy was used as a measure of pri-
vacy loss. The same paper also proposes algorithms
that account for assignment privacy as well as internal
constraint privacy.

The centralized Open Constraint Optimization
Problems (OCOP) model (Faltings and Macho-
Gonzalez, 2005) assumes that domains may be very
large and even infinite, and are thus not revealed a-
priorly. In DCOP this is not the case and domains are
usually assumed to be known in advance. However,
except for values of an agent that are constrained with
values of another agent, there is no necessity to re-
veal all the domains to all the participants before the
search process begins. Therefore, in sparse and loose
problems most domain information is expected to re-
main private when using Branch & Bound algorithms.
Moreover, the ODPOP algorithm (Petcu and Faltings,
2006) reveals values in a best-first manner and is ex-
pected to effectively preserve domain privacy.

To the best of our knowledge there has been no
research regarding algorithmic privacy. This is prob-
ably due to the fact that most DCOP studies as-
sume that the agents are cooperative (though privacy-
preserving). However, a recently proposed model,
Quantified DCOP, assumes the existence of adver-
saries (Matsui et al., 2010). This research direction
may potentially lead to algorithmic privacy issues.

5 DCOP WITH ASYMMETRIC
PAYOFFS

The standard DCOP model assumes equal payoffs for
constrained agents. When such a strong assumption
is applied, there is no meaning at all to internal con-
straint privacy, and the agents holding a constraint
only worry about the data of this constraint leaking to
other agents (external constraint privacy). However,
in many real-life situations constrained agents value
differently the results of decisions on constraint issues
even if they consider the same constraints. In fact, this
is the natural scenario in a typical Multi-Agent System
(MAS). In the meeting scheduling problem for exam-
ple, agents which attend the same meeting may derive
different utilities from it. Moreover, their preferences
and constraints regarding its time and location are ex-
pected to be different. Several alternatives for repre-
senting asymmetric constraints by DCOPs are given
next.
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5.1 Disclosure of Constraint Payoffs

The simplest way to solve MAS problems with asym-
metric payoffs by DCOPs is through the disclosure
of constraint payoffs. That is, aggregate values of all
agents taking a joint action. However, constraint dis-
closure a-priorly reveals all internal constraint infor-
mation, and is thus an inadequate solution.

5.2 Private Events as Variables (PEAV)

The PEAV model (Maheswaran et al., 2004) suc-
cessfully captures asymmetric payoffs within stan-
dard DCOPs. The incurred cost of the PEAV model
on an agent involves one mirror variable per each of
its neighbors in the constraints graph. Consistency
with the neighbors’ original variables is imposed by a
set of hard equality constraints. One way to represent
hard constraints is to assign a cost that is calculated
for each specific problem (Maheswaran et al., 2004).

Figure 1: Example of a PEAV-DCOP.

As an example, consider the DCOP on the left-
hand side of Figure 1. The presented example in-
cludes three agents (each holding a single variable
that coincides with the agent’s name). When repre-
senting this problem as a PEAV-DCOP, each agent
needs to produce a mirror variable for each of its
neighbors in the original constraints graph. The re-
sulting problem is illustrated in the right-hand side
of Figure 1. Here the subscript in each new variable
refers to the original variable the new one represents,
whereas the superscript refers to the agent in which
this new variable resides in. So x1

2 is the mirror vari-
able of x2 in agent A1, and x2

1 is the mirror variable
of x1 in agent A2. The solid lines represent the hard
equality constraints, while the dashed lines represent
the internal constraint information.

Since the PEAV model uses the standard DCOP
model (with multiple variables per agent), any DCOP
algorithm can be used to solve the resulting PEAV-
DCOP problem. Note that most DCOP algorithms
assume a single-variable-per-agent in their original

description. Some methods for dealing with mul-
tiple variables per agent in DCSP have been sug-
gested (Yokoo, 2001). One solution is to convert
a constraint reasoning problem involving multiple
variables into a problem with only one variable by
defining a new variable whose domain is the cross
product of the domains of each of the original vari-
ables. Such complex variables imply extremely large
domains, and therefore this solution is seldom used.
A more applicable method is to create multiple vir-
tual agents within a single real agent and assign one
local variable to each virtual agent.

5.3 Asymmetric DCOPs (ADCOPs)

ADCOPs (Grubshtein et al., 2009; Grubshtein et al.,
2010) generalize DCOPs in the following manner:
instead of assuming equal payoffs for constrained
agents, the ADCOP constraint explicitly defines the
exact payoff of each participant. That is, domain val-
ues are mapped to a tuple of costs, one for each con-
strained agent.

More formally, an ADCOP is defined by the tu-
ple < A ;X ;D;R >, where A , X and D are defined
exactly as in regular DCOPs. Each constraint C 2 R
of an asymmetric DCOP defines a set of non-negative
costs for every possible value combination of a set of
variables, and takes the following form:

C : Di1 �Di2 ��� �Dik ! Rk
+ (2)

This definition of an asymmetric constraint is nat-
ural to general MAS problems, and requires little ma-
nipulation when formulating these as ADCOPs.

ADCOPs require that the solving process will al-
ways take into account both sides of a constraint, ren-
dering existing DCOP algorithm inapplicable. Along
with the ADCOP model, several designated ADCOP
algorithms have been proposed (Grubshtein et al.,
2009). We briefly present the simplest one.

The SyncABB algorithm is an asymmetric version
of SyncBB (Hirayama and Yokoo, 1997). After each
step of the algorithm, when an agent adds an assign-
ment to the Current Partial Assignment (CPA) and
updates one direction of the bound, the CPA is sent
back to the assigned agents to update the bound by
the costs of all backwards directed constraints (back-
checking). When the bound on the CPA is exceeded,
a new value must be assigned, and the state of the
CPA must be restored. The state of the CPA in-
cludes assignments of all higher priority agents and
the cost (both backward and forward) associated with
them. As the assignment does not change when back-
checking, only the cost must be restored. More details
can be found in (Grubshtein et al., 2009).
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6 LOSS OF INTERNAL
CONSTRAINT PRIVACY

The ADCOP and PEAV-DCOP models were both de-
signed to not a-priorly reveal all internal constraint
data. Nevertheless, while performing search, personal
costs of agents must be revealed, aggregated and com-
pared against the value of the objective. Thus, infor-
mation may be gathered by different agents about the
nature of their peers’ private valuations (costs). We
illustrate this fact by choosing two very simple algo-
rithms, one for each model – SyncABB (ADCOP) and
SyncBB (PEAV).

Following common practice, we evaluate privacy
loss in terms of entropy (Greenstadt et al., 2006; Brito
et al., 2009). Each constraint of an agent is repre-
sented by a matrix. Each cell in the matrix represents
the agent’s valuation of the constrained tuple. The en-
tropy represents the uncertainty of the agent regarding
the content of the matrices held by other agents. The
general scheme for computing the entropy decrement
is based on knowledge gain from a received CPA.

6.1 Privacy Loss in ADCOP

In ADCOP algorithms the data is revealed in return-
ing CPAs. We require a returning CPA because only
after the initial assignment is made by the agent can
others asses its impact on them. An agent receiving
a CPA message and a cost must first reduce the cost
incurred by itself and the initial value the CPA had
when it was last received by the agent. The remaining
cost value k represents the aggregated cost which can
be due to conflicts with its assignment or other inter-
agent conflicts. Assuming a binary ADCOP, the agent
may calculate the number of all the possible conflicts
that may have triggered the cost k and were not part
of the conflicts relevant to the previous version of the
CPA. This number of conflicts will be denoted by n in
the following analysis.

In our analysis, we use Asymmetric Max-DCSPs.
Max-DCSP is a subclass of DCOP in which all con-
straint costs are equal to one (Modi et al., 2005). We
use Asymmetric Max-DCSPs to simplify the privacy
loss computation. Since Asymmetric Max-DCSPs are
more restrictive than general DCOPs, their privacy
loss can actually serve as an upper bound for general
ADCOPs.

Throughout the SyncABB search process an agent
may collect samples whenever the CPA reaches it in
order to learn about the costs of its peers. When a
CPA is moving backwards for back-checking it in-
cludes one new value assignment which was not in-
cluded when it was last moved backwards for this
purpose. Thus, an agent which receives the CPA can

identify the new assignment and the difference in cost
between the current lower bound and the lower bound
which was on the CPA when it last held it. However,
the agent cannot tell which of the agents, through
which the CPA has passed, has contributed to this
change of cost. This amount of uncertainty is depen-
dent upon the number of agents which are already as-
signed on the CPA. The longer the partial assignment
is the less an agent can learn from a CPA sent back
for back-checking.

For each relevant sample the agent must calculate
the appropriate k and n values. When agent Ai re-
ceives a returning CPA it can obtain data about A j,
the initiator of the back-checking (one of its succeed-
ing peers). When receiving a returning CPA from its
successor (A j = Ai+1) the agent can also obtain data
about its preceding peers (8Al jl < i). In all samples,
k is equal to the difference between the current CPA’s
cost and the value the CPA had when it was previously
received by the agent (excluding the cost incurred by
the agent itself). The value of n is determined by j,
the priority (position in the order) of the initiator of
the back-checking:

n = 2 � ( j�1)�1 (3)

Since internal constraint private data can be obtained
only when back-checking, the last agent (An) cannot
learn anything about its peers.

The scenario depicted in Figure 2 demonstrates
the information leak in SyncABB when running on
some asymmetric Max-DCSP example with 4 agents.
We join the example after the back-checking initiated
by A2 is finished and A1 sends the CPA to the next
assigning agent, which is A3 (stage a). The cost in-
curred by the CPA at this point is 2. A3 remembers
this cost (stage b) until the next time it receives the
CPA. During the back-checking (stages c and d) the
cost increases to 4. A1 sends the CPA to the next as-
signing agent, which is A4. After A4 assigns its value
the cost of the CPA increases to 6 (stage e). Following
that, the CPA returns to A3 for back-checking (stage
f). A3 remembers the cost from the previous time that
he held the CPA (which was 2). The difference be-
tween the new cost and the old one is k = 4. The 5
thin arrows in Figure 2(f) represent the possible con-
flicts which triggered the cost k and were not part of
the conflicts relevant to the previous version of the
CPA. Since the initiator of this back checking is A4,
one can see that the value of n in the given example
coincides with Equation 3:

n = 2 � ( j�1)�1 = 2 � (4�1)�1 = 5
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(a) (b) (c)

(d) (e) (f)

Figure 2: Information leak in SyncABB running on an asymmetric Max-DCSP example.

6.2 Privacy Loss in PEAV

Contrary to the ADCOP case, in PEAV-DCOPs the
private information is revealed when the CPA ad-
vances forward. In fact, in most standard DCOP al-
gorithms there is no such thing as a returning CPA
(except after backtracking).

We will demonstrate the leakage of internal con-
straint information in PEAV through the simplest al-
gorithm – SyncBB (Hirayama and Yokoo, 1997). The
SyncBB algorithm requires an ordering of all partici-
pating variables. A natural example of such an order-
ing to the PEAV-DCOP that was presented in Figure 1
is given in Figure 3.

Figure 3: A variable ordering for the example in Figure 1.

In the beginning of the search process, agent A1
assigns a value to variable x1

1. It then goes on and as-
signs values to the variables x1

2 and x1
3, which are the

next variables in the ordering. At this point the CPA
holds the sum of costs of the constraints between vari-
able x1 and variables x2 and x3 from the point-of-view
of agent A1. Let us now look at the fourth variable in
the ordering, i.e. variable x2

2. When the CPA reaches
it, some internal constraint information (of agent A1)
reaches agent A2. To evaluate the privacy-loss we use
the abbreviations k and n from the previous subsec-
tion. In this example we have n = 2, whereas the
value of k is exactly the current cost of the CPA. In
case k is equal to 0 or 2 (considering this is a Max-
DCSP) the internal constraint information of agent A1
is completely revealed to agent A2. This example re-

sembles the initial vulnerability that was described for
external constraint privacy (Greenstadt et al., 2007).
A conclusive formula such as the one in Equation 3
cannot be given for SyncBB, since it depends on the
chosen variable ordering.

7 CONCLUSIONS

Privacy preservation is probably the main motiva-
tion for using the DCOP model. This explains the
comprehensive research on DCOP privacy through-
out the years. The present paper examines all the
data that may be accumulated during DCOP search.
This examination leads to categorization of all possi-
ble DCOP privacy types, including types that have not
been studied in the past. According to the proposed
categorization, most DCOP privacy studies in the past
have targeted constraint privacy. The paper distin-
guishes between the constraint information of agents
participating in the constraint (internal constraint pri-
vacy) and the constraint information of other agents
(external constraint privacy). While most DCOP pri-
vacy research has focused on external constraint pri-
vacy, two models, PEAV and ADCOP, inherently re-
late to internal constraint privacy.

An analysis of the run of two algorithms, one for
ADCOP and one for PEAV, reveals that both mod-
els lose some amount of internal constraint privacy.
A question remains regarding which of the two mod-
els is better when considering both privacy preserva-
tion and performance. Previous studies have shown
that PEAV is inapplicable for Local Search (Grub-
shtein et al., 2010). However, when it comes to com-
plete search both models are fitting. We leave the
investigation of the privacy/performance tradeoff in
complete search for future work.
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