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Abstract: Dual feasible functions (DFFs) were used with much success to compute bounds for several combinatorial
optimization problems and to derive valid inequalities for some linear integer programs. A major limitation of
these functions is that their domain remains restricted to the set of positive arguments. To tackle more general
linear integer problems, the extension of DFFs to negative arguments is essential. In this paper, we show how
these functions can be generalized to this case. We explore the properties required for DFFs with negative
arguments to be maximal, we analyze additional properties of these DFFs, we prove that many classical
maximal DFFs cannot be extended in this way, and we present some non-trivial examples.

1 INTRODUCTION « i (k- 1)xe Z

frsa(x) = { |(k+1)x]/k otherwise ’
Dual feasible functions (DFFs) were introduced in

(Johnson, 1973), and used since then to computebut it cannot be extended as a maX|maI DFF ta x
bounds for different combinatorial optimization prob- R with the same formula. Lt <& < &7. Then
lems and valid inequalities for integer linear programs  fes; (2 — ) = K2 > K2 = fpqy(££2), and hence
(see for example (Nemhauser and Wolsey, 1998), fr5; would not be monotonous.

(Fekete and Schepers, 2001) and (Clautiaux et al.,
2010)). To ensure the quality of the bounds, one has to
resort to maximal DFFs. The criteria for a DFF to be
maximal were described first by Carlier and Néron in
(Carlier and Néron, 2007). Recently, in (Rietz et al.,
2011), some of the strongest maximal DFFs of the lit-
erature were analyzed with respect to their worst cases
in the computation of lower bounds.

In (Clautiaux et al., 2010), the authors showed that
DFFs could be used to compute valid inequalities for
integer programs. However, all the DFFs developed
until now apply exclusively to positive data. This
fact constitutes a clear restriction for their use in the
computation of valid inequalities for general integer 2 DEFINITIONS AND ESSENTIAL
programs. The extension of DFFs to negative argu- PROPERTIES
ments is not trivial. It raises different issues that are
addressed in this paper.

The paper is organized as follows. The definition
and the characteristics of maximal DFFs with a do-
main that is the whole set of real numbers are intro-
duced in the next section. Additional properties of
these functions and some tools to construct maximal
DFFs follow in Section 3. Several non-trivial exam-
ples of general DFFs (with positive and negative ar-
guments) are presented in Section 4. In Section 5, we
show through an example how these functions apply
to general integer linear programs.

The notion of (maximal/extremal) dual feasible

Example 1. The function #s1 was defined in (Fekete  function can be extended to domain and range R.
and Schepers, 2001) for< x < 1and ke N\ {0} as The defining conditions of these functions remain
nearly the same as for the DFFs restricted to positive
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arguments. These conditions are stated in the sequel.certainxg € R. Sinceg(—

Definition 1. A function f: R — R is called adual
feasible function (DFF) if for all n e N and all

X1, xneRW|thzx.<1 Wehavez f(x) <1

Definition 2. A DFF f: R — R is amaximal dual
feasible function (MDFF)if there is no other DFF
g: R— Rwith g(x) > f(x) forallx € R.

Definition 3. A MDFF f: R — R isextrema] if any
MDFFs g h: R — R with 2f(x) = g(x) + h(x) for all
x € R are necessarily identical to f.

Note that the identity functioffig is clearly a DFF.
Any DFF f : R — R has the following properties:

o zx, <0= Z f(x) <0, especiallyf(x) <0
=il
forallx<0
e 0<x<1l=f(x)<1/|1/x|

o if f(x1) > Ofora certain € R, thenf(x) < O for
allx < 0.

In a general integer linear program with the deci-
sion variabless, ..., X, € Nand a set of coefficients

..,an € R, if the inequality Z aixi <1 is re-

quwed then the following mequallty obtained by ap-
plyinga DFFf : R — R

-iXi x f(g) <1

is valid because
n X

Zam— Za<1
=1

and hence > Z Z f(a).
i=1j=1
In the following proposition, we show that
MDFFs with domain R are different from those with
domain[0, 1].

Proposition 1. For every c< [0,1], the function f:
R — R with f(x) :=cx for all xe R is a MDFF.
Proof. For this proof, we resort to the definitions 1

n
and 2. Lene N\ {0} andxg, ..., X, € R with Z X <

1 be given. Thenz f(x)=cx Z X < ¢, and hence

f is a DFF. Suppose that there isa DGFR — R
with g(x) > cx, for all x € R, andg(Xp) > cxo for a
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Xo) > f(—xo), it follows
thatg(xo) +9(—Xo) > cXo— X = 0. That s a contra-
diction. Sincef is not dominated by another DRJ;
the assertion follows. O

The following theorem characterizes the MDFFs.
It is inspired on the theorem by Carlier and Néron
(Carlier and Néron, 2007), but here the domain and
range are R and not only an interval.

Theorem 1. Let f: R— R be a given function.

(a) If f satisfies the following conditions, then f is a
MDFF:

1. f(0)=0;
2. fissuperadditive, i.e. for allixx; € R, it holds
that

f(x1+x2) > f(x) + f(x2); (1)
3. there is are > 0, such that f{x) > Ofor all x €
(0,¢);
4, forall xe R, it holds that

f(X)+ fi(l—x)=1. 2

(b) If f isa MDFF, then the above properties (1.)—(3.)
hold for f, but not necessarily (4.);

(c) If f satisfies the above conditions (1.)—(3.), then f
is monotonously increasing.

Proof. The proofis made in the following order: first,
we prove (c), then (b), and finally (a) is proved.

(c) If f satisfies the first three conditions, then for
any x > 0 it follows thatn:= |x/¢] +1 € N\ {0}
and 0< x/n < €. Hence, we havd (x/n) > 0 and
f(x) > nx f(x/n) > 0. Therefore, the monotonicity
follows immediately fromf (x2) > f(x1) + f (X2 —x1)
for any x3,x2 € R with x; < X,. The remaining
proof is partially similar to Theorem 1 of (Carlier and
Néron, 2007).

(b) Letf : R — R be a MDFF. We prove the prop-
erties (1.)—(3.). One hag0) < 0 due to the condition
for DFFs. On the other hand(x) < 0 for a certain
x> 0 is impossible, becaudeis maximal and setting
f(x) to zero cannot violate the condition for DFFs.
Assume thatf (x; +X2) < f(x1) + f(x2) for certain
x1,X2 € R. Define a functiorg: R — R as

9(x) = { '

if X#£ X1+ X2

f(x1)+ f(x2) otherwise

Sincef is a MDFF,g must violate the defining condi-
tion for a DFF. Replacing(x1 + x2) by g(x1) + g(x2)
andxi + X2 by two onesx; andxz leads to a violation
if x1,X2 # 0, because of the definition gf That is a
contradiction.

(a) The converse direction is to prove thatfif
satistfies the conditions (1.)—(4.), théris a MDFF.
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n
For anyn € N and xg,..., %, € R with 5 x <1,
i=1

the superadditivity condition (2.) yieldg f(x) <

(zx.) Let xg —1fzx,>0 Therefore, we

havef( ) > 0. Because oif(l X0) + f(x0) =1,

it follows that f is a DFF. Letg: R — R be a DFF
with g(x) > f(x) for a certainx € R. Sinceg is a
DFF, one hagy(1—x)+g(x) < 1. It follows that
g1l-x) <1-9g(x) <1l-1f(x)=f(1-x) due to
(2), henceg does not dominaté. Therefore,f is a
MDFF. O

true after swappingi; againstx;. Thereforex; < xo
can be enforced without loss of generality. Now we
prove that the inequality (1) holds for al,x; € R,

if it is true for all x1,x2 € R with x1 +x2 < 2/3. If
X1+ X2 > 2/3, thenxe > 1/3 due tox; < x2. Hence
1-x2<2/3andf(x1)+ f(1—x—x1) < f(1-x2)
according to the inequality (1). The symmetry (2)
yields f(x1) +1— f(x1 + x2) < 1— f(x2), and hence
f(x1) + f(x2) < f(x1 +x2), as needed. Therefore,
X1+ X2 < 2/3 can be assumed in the rest of the
proof, and henceq < 1 < 34, If 2% > 1—xq,

then letxs :=1— xl—xz < *Xl. Due to the previ-
ous parts of the proof and the prerequisites, the su-

The third condition is necessary for the assertion peradditivity rule (1) can be used, implyirfgx;) +

(a) as it can be shown through a counter example. Thef(X3) < f(x1 +s).

following functionf : R — R obeys only the 1st, 2nd

f(
and 4th condition of the theorem and it is not a DFF fEX )+ f(l-—x1—x3

(see Figure 1):

3x—2 ifx<0
—Xx f0<x<1/2
f(x):= 1/2  ifx=1/2 (3)
2—x ifl1/2<x<1

3X otherwise

The first condition is obviously fulfilled. The fourth
is also checked easily. ¥< 0, then 1-x> 1 and
f(X)+f(1l-x) =3x—2+3(1—-x)=1. f0<x<
1/2,thenf(x)+ f(1—x) = —x+2—(1—x)=1.To
check the superadditivity, assume thaK xo. If X2 <

0 or xg > 1, then the proof is trivial. I, > 1 and
0<x1+x2<1/2,thenf(xs+x2) — f(x1) — f(x2) =
f(XlJer) — (3X172) —3Xo = 274(X1+X2) >0. The
other cases are left to the reader.

The following proposition simplifies the proof of
a given real function to be a MDFF by Theorem 1.
Proposition 2. If the function f: R — R satisfies (2)
for all x < 1/2, then (2) holds for all x R. If addi-
tionally the inequality (1) holds for allxx, € R with
(x1+% < 2/3and) % < xp < 34, then the inequal-
ity (1) is true for all %, % € R.

Figure 1: The need for monotonicity.

Proof. If x> 1/2, thenz:=1—-x< 1/2, and hence
f(z2)+ f(1—2) = 1 due to (2). That implies(x) +
f(1—x) = 1. This symmetry will be assumed for the
entire remaining proof.

The conditionx; < x, < 1% implies x; + X, <
2/3 andx; < 1/3, becausey < 4 leadsto &; < 1
and thereforex; +x, < 24 < 1+21/ 3 _ 2 Obvi-
ously, the inequality (1) is valid if and only if it is

The symmetry rule (2) yields

x1)+1—f(1—x3) <1-f(1—x1—x3), and hence
x3) = f(x1)+ f(x2) < f(1—x3) =

f(x1+X2). O

3 ADDITIONAL PROPERTIES OF
MDFFS

In this section, some further tools to (dis)prove that a
given function is a MDFF are provided.

Proposition 3. If f : R — R is a MDFF, then for

all x € R the limitslim f(x) and lim f(x) exist and
XTX XX

lim f(x) = inf {lim f(x) —lim f(x)}.

im £(x) = inf {lim (x) — lim f ()}

Proof. fis monotonously increasing and defined for

all real arguments. To verify the existence of the

left and right limits at a certaix € R, choose any
sequences$x,) and (yn) of real numbers withk <

..<Xn<...<)?<...<yn<...<y0,andnﬂmxn:
Ilmyn—x Thenf( )< < (X)) << F(X) <
- < f(yn) <--- < f(Yo). Any monotonous and

bounded sequence converges. Therefore, the claimed
limits exist.
The superadditivity rule (1) implies(—2) <
fx—1) —f(x+1) < Iim f(x) — Iim f(x) for every
x€ R, and hence:= |nf {Ilm f(x )—Iim_f(x)} is fi-
xcR XX
nite. Because of (x) >0 for aII x> 0, it follows that

Ii;ra f(x) > a. For anye < 0, there is arx € R with
X

lim f(x) —lim f(x) > € —a. The superadditivity (1)
XX XTX

implies f(g) < f(x+ §) — f(X—5). The monotonic-
ity of f implies f(x+5) < Iimf(x) andf(x— %) >
XTX

Ii?f(x), and hence —a< f(x—5) - f(x+5) <
X
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—f(¢), i.e. f(¢) <a—e. Since this holds for all
£ < 0, it follows that IiTrgﬁ(x) < a. Together with
X

Ii% f(x) > a, the assertion follows. O
X

The next proposition shows in contrast to the case

of domain and rang®, 1] that the set of differentiable
MDFFs is much stronger restricted.

Proposition 4. If the function f: R — R possesses
the properties (1.) and (2.) of Theorem 1, and if it is
continuously differentiable at the points 0 and &,
then f(a) = f'(0).

Proof. Let h € R, h > 0. The superadditivity off
yields f(a+h) > f(a)+ f(h) andf(a) > f(a+h)+
f(—h), and hencé (h) < f(a+h)—f(a) < —f(-h).
Since f(0) = 0 andh > 0, this can be rewritten
(h)hf(O) < fath-f@) ()hf( h) _ f(=h)—f(0)
Usmg the limith | O yields due to the assumed contm—
uous differentiability off the inequality chairf’(0) <
f'(a) < £/(0), and hencd’(a) = f/(0). O

Corollary 1. Any continuously differentiable MDFF
f : R— R has the form §x) = cx with ce [0, 1].

Proof. The derivative is constant, and henf) =
cx+d with certain constants d € R. Sincef(0) =0,
it follows that f (x) = cx. Definition 1 yieldsf (1) <1,
hencec < 1. Sincef(x) <0 forx < 0, one hag >
0. O

Proposition 5. Let f: R — R be a superadditive
function. If there is an & R\ {0} with f(a) +
f(—a) =0, then the function gR — R with g(x) :=
f(x) —xx f(a)/a (for all x € R) is periodic with pe-
riod a.

Proof. The superadditivity off implies f(x+ a) >
f(x)+ f(a) and f(x) > f(x+a) + f(—a) for all
x € R. Hence,f(x+a) < f(x) — f(—a) = f(X) +
f(a) because off (a) = —f(—a), and finally f (x+
) = f(x) + f(a) for all x e R. That yieldsg(x+
a) —g(x) = f(x+a) — f(x) — (x+a) x f(a)/atxx
f(a)/a=f(a)—ax f(a)/a=0. O

An example of this kind of MDFFs is the Burdett and
Johnson functiorfg; 1 (see Proposition 12).
If a function is given, which satisfies most of the

a

demands, but is not symmetric, then sometimes a

MDFF can be constructed from it like it was done
in the Theorem 1 of (Clautiaux et al.,
generally.
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2010), but not

Proposition 6. Let f: R — R be a function with
f(1) > 0 and satisfying the conditions (1.)—(3.) of our
Theorem 1. Define the function & — R as

f .
% ifx < 3
9(x) = 1/2 ifx=1/2 -
1-g(1-x) otherwise

H/—\

g(y) < g(x+y) holds for all x< 0 and ye

X) +
>%], then g is a MDFF, but not generally.

If g
[%

~|

Proof. The functiong satisfies obviously the condi-
tions (1.), (3.) and (4.) of Theorem 1 by construction.
We show the superadditivity gfunder the additional
constraint. According to Proposition 2, choose any
x,y € R with x <y < 35X, Five cases have to be dis-
tinguished:

1. x,y,x+Yy < 1/2: the superadditivity off yields
9(x) +9(y) < g(x+Y), becausd (1) > 0;

2. X,y < 1/2=x+Yy: the superadditivity of implies
f(1) >2x f(1/2) and f(x) + f(y) < f(1/2) <
1 x f(1), and hencey(x) +g(y) < 1 = g(x+y);

3. X,y < 1/2 < x+y: the superadditivity off leads
to f(x) + f(y)+ f(1—x—y) < f(1), and hence
g(X) +9g(y) +9(1—x—y) <1 and by symmetry
9(¥) +9(y) < g(x+Y);

4. x=0: this case is trivial because gf0) =

. X< 0, 3 <y< X this case is explicitly given in

the prerequisites.

(631

There are no other cases, becaxuse) leads tol%X <

%. Thereforeg is superadditive due to Proposition 2.
A counter-example to the superadditivity of
without the additional constraint arises froffx) :=
|3x| for all x e R. This function satisfies all the
conditions (1.)—-(3.) of Theorem 1, but the resulting
function g is not superadditive. We gef(—1/3) =
~1/3, 9(7/12) = 1-g(5/12) = 1- [§]/3 = 2/3
and g(1/6) = g(1/4) = 0, and henceg(—1/3) +
9(1/2) = 1/6 > g(1/6) and g(~1/3) + g(7/12) =
1/3>9(1/4). O

Define frac(x) := x — |x] as an abbreviation for
the non-integer part of any real expressioff he fol-
lowing proposition helps in proving superadditivity.

Proposition 7. Let f: R— R and g: [0,1) — R be
superadditive functions such that for allyxz € R
with0 <y <z< landy+z> 1litholdsthat

f(x+1)—f(x) >9(y) +9(2) —g(y+z—1). (4)

Then the function h R — R defined by (x) :=
f(|X]) +9(frac(x)) is superadditive.
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Proof. Choose anyx,y € R. To verify h(x +
y) > h(x) + h(y), the non-integer parts of,y need
to be considered. Iffrac(x) + frac(y) < 1, then
frac(X+Y) = frac(x) +frac(y) and|x+Yy| = |X] + |y,
and henceh(x +y) —h(x) — h(y) = f([x] + [y]) -
£(|x)) — (ly)) + g(frac(x) + frac(y)) — glfrac(x)) —
g(frac(y)) > 0, because of the superadditivity band
g

The other case israc(x) + frac(y) > 1 leading
to frac(x +y) = frac(x) + frac(y) — 1 and [ X+ Y| =
|X| + ly] +1. The prerequisite (4) brings(|x]
ly] +1) = f([x] + [y]) + g(frac(x)) + g(frac(y)) =
g(frac(x) + frac(y) — 1), and henceh(x + y)

+

h(x) —h(y) = f([x] + [y] + 1) = f(|x]) — f(LYJ)I
g(frac(x) + frac(y) — 1) — g(frac(x)) — g(frac(y)) >
f(Ix]+ Ly)) — f(1x)) = f(ly]) = 0. O

Proposition 7 becomes more useful in conjunction
with the following proposition about composed
functions.

Proposition 8. The composition (g(-)) of superad-
ditive functions fg: R — R'is superadditive, if the
inner function g is additive or if the outer function f
is monotonously increasing, but not generally.

Proof. If g is additive, theng(x+y) = g(x) + g(y)
for all x,y € R. The superadditivity off implies in
this casef(g(x+y)) = f(9(x) +9(y)) = f(g(x)) +
f(g(y)). If f is monotonously increasing, then
one getsg(x+Y) > g(x) +g(y) and f(g(x+y)) >

flg(x) +a(y)) = f(a(x) + f(g(y)). If f is not
monotonously increasing arglis not additive, then

the composition needs not to be superadditive, as the

following counter-example shows. Létbe the func-
tion (3) andg be the Burdett and Johnson function
fga1 (see Proposition 12) with paramet@r= 9/2.
One getsy(1/9) = 0 andg(2/9) = 1/4, and hence
f(g(1/9)) = (0) = 0 and f(g(2/9)) = f(1/4) =
—-1/4<2x f(g(1/9)). O

4 EXAMPLES

In this section, we present and analyze non-trivial
examples of MDFF whose domain and range is the
set of real numbers R.

Proposition 9. Letabe Rwith0<a<1and a<
b. The following function f R — R satisfies all the
conditions (1.)-(4.) of Theorem 1, and hence it is a
MDFF:
(1+b)x
1- a)

ifx<0
ifo<x<1/4
(1+a)x—2 if3<x<3
(1- a)x+a |f§<x<1
(I1+b)x—b forx> 1

Proof. The functionf is piecewise linear and contin-
uous. In particular, we havé(0) =0, f(3) = 132,
f(2) = 3f2 and f(1) = 1. The conditions (1.), (3.)
and (4.) can be checked easily. Only the superadditiv-
ity condition (2.) needs a large case distinction. For
this purpose, choose anyy € R with x <y (with-

out loss of generality) and+y < 2/3 according to

Proposition 2. Define
d(x,y) == f(x+y) = f(x) = f(y).

We have to prove thad(x,y) > 0. This function is
also piecewise linear and continuous.

f¥)

1. If x+y <0, thenx < 0 due tox <y, and hence
d(xy) = (1+Db)(x+y—x) — f(y) = (1+b)y
f(y). Exceptfor; <y < 1, the desired inequality
f(y) < (1+b)yis obvious. Sincel is piecewise
linear and continuous, we gd{x,y) > 0 for the
excluded case too.

2. If 3 <x+y< 2 thenx< 2, y> £, and the fol-
Iowmg subcases arise:

(@ x<0andi <y< 32 yields d(xy) = (1
a)x (x+y)—§—-(1+bx—(1+ay+3
(a—b)x>0.

(b) y > 1yieldsx < 0 andd(x,y) = (1+a) x (x
y)— 5 —(1+b)x—(1+b)y+b= (a—b) x (x
Y)tb-5 >R rb-5 =22 >0

(c) x< O/\% < y< 1needs notto be analyzed, be-
causdl is continuous and piecewise linear.

(d) 0<x<y< 2 givesd(xy) = (1+a) x (x+

y)—5-(1-a)x(x+y)=2ax(x+y)-5 =
2-5-0

(e) 0<x< ¥ <y< 2 bringsd(x,y) = (1+a) x
(x+y) -5 - (1 a)x— (1+ay+3=(1+
a)x—(l—a)x 2ax > 0.

() 2<x<y<2leadstad(x,y) = (1+a) x (X-+
y)—3—-(1+a)x(x+y)+a=35>0
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3. The remaining casesOx+y< 2 or2 <x+y<1
need no further analysis, because settingx+y
yieldsd(x,y) = f(2) — f(xX) — f(z—x), and this

Then f is necessarily the function (5) withhl.

Proof. The superadditivity implieg (x/2) > x/2 for

expression is a continuous and piecewise linear gy c N because (1/2) = 1/2. Therefore, we have

function in both argumentsandz
|

The next function has a simple structure similar

to the function fccm1 by Carlier, Clautiaux and

bc#£ 0. Hence, the functiorf possesses gaps of at
least the sizéb|. According to Proposition 3, it fol-
lows that IiTrOnf(x) < —|b] < 0= f(0). Therefore, we

X

havec > 0 andd € Z, causing|cx+d] = |cx| +d.

Moukrim (see e.g. (Clautiaux et al., 2010)), but it !f d # O, then replace by a+bd and after thatd

is still different. Moreover, we will see thaccm 1

by zero. That does not change Therefore, we

cannot be generalized to be a MDFF with domain R. May assumel = 0 for the rest of the proof. We get

Proposition 10. Letbe R, b> 1. The following func-
tion f: R— R is a MDFF:

bx |2x| ifx<1/2
f(x):{ 1/2 ifx=1/2 (5
1-bx|2—2x| ifx>1/2

Proof. f satisfies obviously the conditions (1.), (3.)
and (4.) of Theorem 1. Only the superadditivity (2.)
needs a more careful check. Choose for this purpose

anyx,y € Rwith x <y < 1%’( according to Proposi-
tion 2, and hence < 1/3 and thereford (x) < 0. A
case distinction follows.

1. Ify<1/2 andx+y < 1/2, thenf(x) + f(y) =
b (12¢] +[2y]) <bx [2x+2y] = f(X+Y).

2. Ify<1/2<x+y, thenf(x) <0, f(y) <0 and
f(x+y)>1/2> f(x)+ f(y).

3. Ify=1/2andx+y < 1/2, thenf(x+y) — f(x)
bx ([2x+2y] — [2%]) =bx (|2x+ 1] — [2x])
bx1>1> f(y).

4. Ify=1/2 <x+y, thenf(x+y) >1/2=f(y) >
f(x)+ f(y).

5. Ify>1/2>x+y, thenf(x+y)— f(x)— f(y) =
bx (|2x+2y] — [2¢] +[2—2y])—1>bx (| 2x+
2y+1-2y]—|2x])—-1=b—1>0.

6. If x <0, thenx+y < x+ 1% = X < 1 and
hence the case+y=1/2 <yis impossible.

7. Ify>1/2 andx+y> 1/2, thenf (x+y) — f(x) —
flyy=1—bx[2—2x—2y|—bx [2x| —1+bx
[2—2y] >bx ([2—2y] - [2—2x—2y+2x]) > 0.

O

A generalization of this function runs into difficulties,
as the following proposition shows.

Proposition 11. Let ab,c,d € R and the MDFF f:
R — R be defined as follows:

a+bx|cx+d] ifx<1/2
f(x) = 1/2 ifx=1/2 .
1-f(1-x) otherwise
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0= f(0) =a+bx |cx0] =a The assumption
0O<c<2leadstof (3 —2)—f(L)=bx [§-1]-
bx |-1]=bx(-1)—bx (—1)=0in contradiction
tod="f(3) <f(3=1%)— () according to the su-
peradditivity rule. Therefore, we have that 2.
Suppose now that> 2. Lete := %@C(C). Then
f(l+e—21)=1-f(1—¢e) =1 because@e< i<
1. sincef (:14) = b x (1 [c]), the superadditivity
rule implies 1+ bx (1— [c]) < f(1+g— 2421 =

C
f(1+£7%> _ f(fraﬂJrs) _ f(1+frac(c)> -0,

[ 2c
and hencé > Wlfl On the other hand} < 3 and

f(1) =byield due to|c| x < 1 and the superaddi-
tivity the contradiction > f(|c] x 1) > |c] x f(%) =
lc] xb>|c] x ﬁ >1. Henceg > 2 is impossible,
such that finallyc = 2 follows.
Due to the superadditivity rulef(—3) = —b,
)

and hencé > 1.
If more general functions are allowed likg:

R — R with parameterd,c,d € R and a function
f :[0,1) — R according to

1/2, x=1/2,
1-9g(1-x), otherwise,

bx |ex+d]| + f(frac(ex+d)),x < 1/2,
9(x) := {

then, there are more possibilities. Sinax+d| =
|cx+ frac(d) | 4+ |d] and frac(cx+ d) = frac(cx+
frac(d)), we can assume € d < 1. Otherwise, the
additional constarih x |d] shall become a part df,
such thatl can be replaced biyac(d), leading to the
same functioryg. Some necessary conditions fpto
be a MDFF are the following:

e f(d) =0, because of & d < 1 andg(0) = 0;

e bc> 0, becausg must be monotonously increas-
ing andg(0) = 0 andg(x) < 0 forx < 0. If we had
bc = 0 theng would be constant or periodic for
x<1/2,andbc< 0would yieIdX_Ijmmg(x) = +o0;
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e f must be monotonous, namely non-increasing if 1. frac(CX) + frac(Cy) < 1 yields
b < 0 and non-decreasinglif> 0, because of the d _ frac(cx)+frac(Cy)—frac(C)

needed monotonicity af; 1-frac(C)
' frac(Cx)+frac(Cy)—2frac(c) _ frac(C) 0:
e f must be bounded, namely(0) — I;Tr? f(x)] < 1-frac(C) ~ 1-frac(C) '

2.1 < frac(Cx) + frac(Cy) < 1 + frac(C)

|b|, otherwiseg would not be monotonous; frac(on+fraciCy)—2irac(e)

o if d =0, thenf must be superadditive in the inter- brings d = 1 - 1-frac(c)
val[0,min{1,5})if c> 0 and in the entire domain 1+frac(©) f;aC(Cx) —frac(Cy) 5 o
[0,1) if ¢ < 0, because of the needed superadditiv- 1-Trac(©) _
ity of g. 3. frac(CXx) + frac(Cy) > 1+ frac(C) gives
) ) ) ) d = 1 frac(cx)+frac(cy)—1-frac(c)
An example of this type of functiortsis presented in - + 1-frac(C)
the following proposition. frac(cx+frac(cy)—2frac(c) _ 4 n fracc)-1 _ g
1-frac(C) 1-frac(C) )

Proposition 12. Let Ce R, C> 1. The function In all cases the superadditivity is also valid, such that

fes1 : R — R due to Burdett and Johnson (Bur- all conditions of Theorem 1 are satisfied. O
dett and Johnson, 1977) withgifi(x) = (|Cx| +
frac(cx) frac (©) : The survey (Clautiaux et al., 2010) already stated
max{0, ———— == C|isa MDFF. . : |
{ 1-frac(c H/1el that fgy1, restricted to the domaif®, 1], is a MDFF,

but without a complete proof. This functiofigy

can be seen as a use of Propositions 7 and 8. The
next function f 1 due to Letchford and Lodi is
built similarly, cf. (Clautiaux et al., 2010). On the
contrary, the improved functiofi__» of (Clautiaux

Proof. The conditions (1.) and (3.) of Theorem 1 are
obviously satisfied. To prove the other ones, choose
any x,y.€ R.. We haveC — Cx = |C]| + frac(C) —

|Cx| — frac(Cx) and

e eitherfrac(Cx) > frac(C), and hence et al., 2010) cannot be extended to a MDFF with
domain R.
[C] x (fB1(X) + fB22(1—X))
= [Cx +|C-Cx Proposition 13. Let Ce R\ N, C > 1 and ke N
_ 1 . . .
+ max{0, frac(Cx) frac(C)} k 2. [m]. The. followmg function|f 1 : R— R .
1—frac(C) satisfies the conditions (1.)~(3.) of Theorem 1, but is
frac(C — Cx) — frac(C) not symmetric and cannot be improved by Proposition
Fma0, —=—r e ) 6 in spite of f1(1) = 1:
_ c)- frac(Cx) — frac(C) fLia(x) =
1—frac(C) [(k—1) frac(0x)—frac(C)1
frac(C) + 1 — frac(Cx) — frac(C) |Cx| + max0, 1-frac(c) }
1—frac(C) [C]
1—frac(C
= |C]- 1+ﬁaCEC; =[C], Proof. One getsfi 1(0) = (0+max{0,[(k— 1) x
—frac(c
k =0 and fL1(1) = (|C| +
e or frac(Cx) < frac(C) and therefore |C| x 1- frac V D/1C] (1) = (€]

max{0,0}) 1. Moreover, for allx > 0 it
(fijyic(l)%iff&l(}g%)—: LLCCJXJ FlemCedrot hold{s ob}viélLJsJIy thaff 1(x) > 0, becauséCx| > 0

' and |C| > 0. To prove the superadditivity, Propo-
such that the symmetry (2) is verified. The su- Sitions 7 and 8 are used. We skfx) := x and
peradditivity fgs1(x+Y) > fgs1(X) + feaa(y) isob-  g(x) := max{0, [(k— 1) x ’1(_];:2(0: 5 1}/kin Proposi-
viously valid for frac(Cx) < frac(C) or frac(Cy) < tion 7. We verify that for alk,y,z € R with 0 < y <
frac(C).  Therefore, assumérac(Cx) > frac(C) z<1andy+z> 1 the inequal’ityf (x+1)— f(x) >

Tgij erraE((:C;lj/)er;:E(C:()g)jr fraygwh:\rﬁ gx + E:)j i a(y) +9(2 —gly+z—1) hfold(sc.) That is equivalent
= y—frac
(faa(x +y) — fey1(x) — feya(y)) = [frac(CX) + to k> max{0, [(k—1) x 1—frac(C)] }+maxo, [(k—

frac frac(Cx)+frac(Cy)) frac(c) z—frac(C) y+z—1-frac(c)
ffrac(Cy)Jf + max{(f) 1 frac(c) - 1) x l_frac(c>1}—max{0, [(k—1)x 71—fr?c(C) 1
rac(cx)+frac(cy)—2frac(c) . : . z—frac(c)
1 frac() . Three cases arise: Sincez < 1, it follows that[(k — 1) x Lfrac(C)W <
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k —1, and hence the desired inequality is obvi-
ously fulfilled, if y < frac(C). Therefore, as-
sumey > frac(C), such that the inequality becomes

k> [(k—1) x y—fraC(C)1 4 T(k—1) x z—frac(C)] _

1-frac(c) 1-frac(C)
max{0, [(k— 1) x ]} Since for allx €

y+z—1-frac(C

1-frac(C)
R it holds thatx < [X] < x+ 1, one getg (k—1) x
y—frac(c) z—frac(Cc)

1-frac(C 1 +I(k=1) x 4= frac(c )] — max{0, [(k —
y+z 1- frac y+z—2xfrac(c)
1) x =1 frac(c ) <2+ (k=1)x 1fracc)
y+z 1 fracic) _ k=1
(k=1 x ZFaeo . = 21 Tiaco < (72

frac(C) + 1+ frac(C)) = k+ 1. The left part of this
inequality is integer, implying that it is not aboke
Therefore, the chosen functiorisand g satisfy the
prerequisite (4) of Proposition 7, such that the func-

tion x — |x] +max{0, [(k— 1) x f@%%gﬂLq/@
is superadditive. This function can be composed with
the linear functiorx+— Cxaccording to Proposition 8.
Finally, dividing the entire expression BZ| > 1 has
no influence on the superadditivity. Therefofg, 1
is superadditive.

It remains to show that the additional constraint
of Proposition 6 is violated for some feasible pa-
rameter choices (and hendg_ 1 is not symmet-

ric). Choose anyC € (1,2) and any enough large
oddk e N. Let x:= = andy:= 3. That
yields fi 1(x) = |[-1]/|C] = —1 and fiLi(x+
y) = fLLl(CZ—CZ) = [$ -1 + max{0,[(k — 1) x

f

erﬁq? J1/k} = —1+ max{0,[(k — 1) x
SEer /K = —1rmax0. [ k) = 14 K,
becausé is odd, and finallyf 1 (x+y) = 3£ — & <
—1+3. O

5 USING MDFFS TO COMPUTE
VALID INEQUALITIES

In this section, we demonstrate how the MDFFs can
be used to generate valid inequalities to solve integer
linear programs, and we illustrate their use through a
simple example. Let be given an instance

max c'x
st. Ax<b
xe N",

where A € R™", b € R™ and ¢ € R" whith
mn € N\ {0O}. We can take every non-negative
linear combination of the constraints to generate
another valid inequality,e. choose any € RT \ {o}
to obtain one inequality"Ax <b'Tu. If f :R - R
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is any monotonously increasing superadditive func-
tion, e.g. a MDFF, then the monotonicity df
yields f(b"u) > f(u"Ax), and this is not below

n m

> f( 3 ajui) x xj due to the superadditivity of
=1 =1

and the conditiox € N".

Example 2. Consider the following integer linear
program (with negative coefficients):

max z:=10x;— 3%z
st. X1 —2% <9
X1,%2 € N

The solutionx :=(3,6) " is feasible and yieldsz 12.
In the sequel, we show that this solution is optimal by
showing that the following inequality

10x; — 3% < 12

is in fact a valid inequality. Furthermore, we show
that this inequality can be derived using a MDFF with
domain and range R.

Choose any &= 0 and a MDFF f to get the valid
inequality f(7u) x x3 + f(—2u) x x2 < f(9u). We try
several functions f, namely according to

e Proposition 9: to get the desired inequality, we set
u:=1/9, yielding3 < 7u< 1, and hence

(1—a)x g—i—a) xxl—g X
with 0 <a < 1and b> a. The inequality (6) be-
comes the sharpest for the smallest possible b, i.e.
for b=a. That yields

(24 o8 xxa—(5+

Choosing a= 1/14 yields 2 63x x2 <1or

equivalentlylOx; — 3%, < &. Since the left hand
side is integer, it follows thatz 12is optimal.

Proposition 10: here we have to distinguish sev-
eral cases with respect to O, but this function
fails to give the needed strong valid inequality.
Forinstance, < u< 2 yields the valid inequality
2X1 — X2 < 2, but it remains too weak.

Proposition 12: We may use anyX1 and u>
frac(7cu)—frac(C)

(1+b)xx2 <1 (6)

2

2
X X1 — §a)XX2§1.

0, yielding ([ 7Cu] +max{0; === fracic) }) %
x1 + (|—2Cu] + max{0; fracl fra)c(fr;ac( Iy x
Xo < |9Cu| + max{0; %} for in-

stance C:= 10/7 and u:= 1, yielding 10x; —
3xp < 123. The choice C= £ and u:= 13 leads
directly to 10x; — 3% < 12, as desired.
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Note that the valid inequalittOx; — 3%, < 12 is Johnson, D. (1973). Near optimal bin packing algorithms.

a Chvatal-Gomory-inequality (cf. (Nemhauser and
Wolsey, 1998)), and it can be obtained by using-u

Dissertation, Massachussetts Institute of Technology,
Cambridge, Massachussetts.

10/7 and rounding down to the next integer. Nemhauser, G. L. and Wolsey, L. (1998). Integer and com-

binatorial optimization.

Rietz, J., Alves, C., and de Carvalho, J. V. (2011). Worst-

6 CONCLUSIONS

In this paper, we generalized the notion of (maximal)
dual feasible functions to functions of which the do-
main comprises the entire set of real numbers. This
extension is important to allow the use of DFFs for de-
riving valid inequalities for any general integer linear
program. This generalization is also non-trivial. In-
deed, the well-known symmetry condition, which was
necessary for a DFF with domdi® 1] to be maximal,
does not hold for all MDFFs with domain R. Further-
more, the influence of the conditions that characterize
these functions becomes more restrictive, many
well known classical MDFFs cannot be generalized to
domain R. On the contrary, besides the MDfd 1,
some other non-trivial MDFFs were defined. Some
examples were proposed and discussed in this paper.
Finally, we illustrated through the use of an example
how valid inequalities could be derived using these
new MDFFs.
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