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Abstract: Distributed cooperative systems have optimization problems in their tasks. Supporting the collaborations of
users, or sharing communications/observations/energy resources, are formalized as optimization problems.
Therefore, distributed optimization methods are important as the basis of distributed cooperation. In partic-
ular, to handle problems whose variables have continuous domains, solvers based on numerical calculation
techniques are important. In a related work, a linear programming method, in which each agent locally per-
forms the simplex method and exchanges the sets of bases, has been proposed. On the other hand, there is
another interest in the cooperative algorithm based on a linear programming method whose steps of processing
are more distributed among agents. In this work, we study the framework of distributed cooperation based on
a distributed linear programming method.

1 INTRODUCTION methods (e.g. (Ho and Sundarraj, 1994; Yarmish and
Van Slyke, 2009)), their goals are slightly different

Distributed cooperative systems have optimization from the situation in multiagent cooperation. In this

problems in their tasks. Supporting the collaborations WOk, we study a basic framework of distributed co-
of users, or sharing communications/observations/en-OP€ration based on a distributed linear programming

ergy resources, are formalized as optimization prob- Meéthod whose parts are distributed among agents.
lems. To solve the problems in distributed cooper- The essential distributed processing and extracting the

ative processing, understanding the protocols of the Parallelism are investigated.

distributed optimization algorithms is important. In

the research area of Distributed Constraint Optimiza-

tion Problems (Modi et al., 2005; Petcu and Faltings, 2 PREPARATIONS

2005; Mailler and Lesser, 2004), cooperative problem

s_ol\_/ing_ is mainly studied for (non-linear) discrete op- o q Linear Programming Problems
timization problems. On the other hand, to solve the
problems whose variables have continuous domains
another type of solvers is also important. Other re-
lated works propose optimization algorithms based on
numerical calculation techniques for distributed coop-
erative systems (Wei et al., 2010; Burger et al., 2011).
In a related work (Burger et al., 2011), simplex al-
gorithm for linear programming has been applied to max: c'x Q)
multiagent systems. In the method, each agent lo- subjectto Ax=bh, x>0 2)
cally performs the simplex method to solve its prob-

lem and exchanges the sets of bases. A good pointHere,n-dimenSional vectox consists of decision and

of the method is the simple protocol. On the other Slack variables. Each constraint contains a slack vari-
hand, there is another interest in the cooperative algo-able.mx n matrix A andm-dimensional vectob re-
rithm based on a linear programming method whose spectively represent coefficients and constants of the
processing is more distributed among agents. While constraints.n-dimensional transposed vectr rep-
there are a number of studies about parallel simplex resents coefficients of the objective function.

'The linear programming problems are fundamen-
tal optimization problems that consist of vari-
ablesmlinear constraints, a linear objective function
(Chvatal, 1983). For the sake of simplicity, we as-
sume the following problems.
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2.2 Simplex Method N is uniquely determined satisfying the following
condition.

The simplex method is a fundamental solution hin Adn v =—1 (6)

method of the linear programming problems(Chvatal,

1983)D In computation of the method, initial bases 2-2.3 Exchange of Bases

are selected. Then the bases are repeatedly improved

until they reach the optimal solution. In the case of the Now the new base and non-base are exchanged. First,

problems shown in 2.1, slack variables and the objec-in D, rowiN that corresponds to the new base is up-

tive value are simply selected as the initial bases. Thedated. The new value of each elemeljt; is shown

objective value must always be a base. as follows.
The set of bases is represented by Boolean vector din | _
h. Each elemenb; of h is true if variablex; is a dvj=—g - (A<isn+l) (7)
iN,j

base. Otherwisdy; is false. The objective value is

omitted inh because it is always a base. Matiis Then, for each row excludingiV, x;e is eliminated.
employed as a table that represents bases, constraintg ;-h new value . is shown as follows.

and an objective function in each step of the solution "

method. In the initial state, each elemekhf of D dij = dij+dsdn; (8)

takes the following value. . . 4
E | el _ (ie{L - mei\(M, 1<j<n+1)
—gj 1<i<mAl<j<n

bi 1<i<mAj=n+1 Here,di’.jB is0 becauseli’N.jB = —1. That represents
dij = Cj i=m+1A1<j<n ©) " the elimination ofs. Additionally, elements o are
0 i=m+1Aj=n+1 updated a$i;s < T, hjn < F. After the exchange of

the bases, the processing is repeated from selecting

The column for the objective value is omitted similar
the new base.

to h. Note thatd; \ for basex, takes—1. In the other
row i’ such that’ € {1---m}\{i}, dix is 0. In the
problems shown above, the initiBl means that the

slack variables are selected as the initial bases. 3 ADISTRIBUTED SOLVER

2.2.1 Selection of New Base In this work, we study a framework of distributed co-

) _ ) _ operation based on the linear programming problem
In the first step of an iteration, the solution method se- 5nq simplex method. Basically, problem and solver
lects one non-base variabi@ that has a positive co-  gre divided into agents. In the initial state, each agent
efficient of the objective function. Theqs becomes  knows partial information that is directly related to the
a new base in the following steps. If all coefficients agent. Each agent only updates the initial constraints
of the objective function are not positive, the solu- anq its own coefficient of the objective function in the
tion method stops. In that case, for eadhuch that  gg|ytion method. Information that is exchanged be-
1<i<m,dinrepresents the value of the base vari- ween agents and extraction of parallelism are mainly
able of rowi. Also, dm;1n+1 represents the optimal jnyestigated. For the simple protocol, we employ a

i® = argmaxdm:a,| @) o
S.t.1< j <nA=hjAdm1; >0 3.1 Division of Problem
2.2.2 Selection of New Non-base To represent the state of the agent, variablés re-
lated to agenj. For the sake of simplicity, we assign
Instead of the new basgs, variablex;n of base vari-  agents for slack variables. In the following context,

ables is selected as a non-base variable. In the repreandj may not be distinguished. In particular, a medi-
sentation oD, selecting one row! decides the corre-  ator is represented asBased on the variables, initial
sponding base variable. Here, riWthat minimizes D is divided into agents. Agerjtknows constraints

the maximum feasible value &fs is selected. that are related to its variable in the initial state. A
G et constraint is known by multiple agentgalso knows
iN = argmir;'ai (5)  coefficients of the objective function for known con-
LB straints. On the other hand, mediatatoes not know
. dini1 any elements ob in the initial state.
Li<i< - - .
st 1<i<mAd s #0A —d je >0 Each agenj has tableD; that contains holes. The
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notations ofD; are compatible witlD. While Dj has
the same size d3, its unknown elements are zeid,
represents the table of mediator Agent j also has
h; that partially contains elements bf In the initial

By the updatek identifies that; is a new non-base.
Next, k updatey. RowiN is previously saved as row
vectord,y, and rowiN is updated as shown in Equa-

tion (7). Then using the updated ral andd,,, ; je

state, each agent knows whether the variables related:hat have been received from rows of other con-
to the known constraints are the base or not. For eachstraints and its own coefficien,. 1 x of the objective

known base or non-bash; is appropriately initial-
ized. Other elements df; are initialized by default
value, false. Additionally, it is assumed that agents
share information about the address of agetd the
number of all agents.

3.1.1 Selecting New Base

To select new bases, coefficients of the objective func-
tion have to be compared for all non-base variables. In
the first step, each agepsends coefficierdm,1,j of

Xj in the objective function to mediator agentEx-
ceptionally, in the case wherg is a base 0dmy1;j <

0, 0 is sent. Additionally, for each non-base variable
Xj that is known by agenj, j computes maximum
valuev} of x;- in the case wherg;: is selected as the
new base. This computation is a part of Equation (5).
LetV|" denote a set of/, that is computed by. ]

sends/;" with dm, 1 j to mediatorz

Mediator z receives coefficients of the objective
function from all agents whose variable is a non-base.
Also, z receives the maximum values of the variables
from all agents. When all values are receivedge-
lects the candidate of new bagg. Thenz sends a
request to changes to a new base. The request and
dn 1 j8 @re sent to the agent who reported the mini-

mum value of the maximum valuxT?B of Xje.
3.1.2 Selecting New Non-base

Selecting the new non-base is performed by agent
that is requested by mediator agenfs shown in the
previous subsubsection, agdnteceives the request
to change;s to a new base and,, ; ;s. Then, based

on Dy, agentk computes rowN, which corresponds
to the new non-base in the case whejeis changed
to the new base.

3.1.3 Exchanging Bases

The exchange of the bases starts from agesttown
in 3.1.2 and is performed on agents who have part of
D to be updated. In the following, the processing in
agentk and the related agents is shown.

First, k updates an element bf based oy and
hi for row iN that corresponds to the new non-base.
The Boolean value ofij that satisfies the condition
hj Adn ; = —1 shown in Equation (6) is set to false.
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function are updated. In particularkf= jB, Omy1k IS
0. Other coefficients of the objective function are al-
ways 0, which represents the unknown value. More-
over, k updates the value dTJ-B in hg from false to
true. Nowk identifies thak;s is a base.

The update oDy has to be sent to agerkswhose
Dy is affected by the updatek sends its coefficient
dmy1k Of the objective function to mediator agent
At the same time, the maximum valu¥s of the
non-base variables that are known kyre sent. k
also sends the request that is changed to a new
base. The requedt,, ; js, which has been received
from z, and row vectod;, are sent to agents whose
constraints are affected by the variables contained in
the constraint ofVth row. When agerit’ receives the
request of new bases from agentk, K updateDy
andhy based omy,, 1 j8 andd,y, which are received
in the same message. Thknsendsdy. ;1 to me-
diatorz. The maximum valueva of the non-base
variables that are known By are also sent.

1 initialize D,. t; < 0. addt; to setT.
2 until the processing is terminateld {
3 while Zs receive queue is not empty
A the loop is not brokedo { receive a messagde.
maintenance}:
receive (OVdm 1.k Vi , XJ set oka{j, X, P)
from agenk {

4
5
6
7
8  store/updat€m; 1k, V' , XQ and set O‘xi i

9 tx«txt+pfortkinT.}
10 maintenancé
11 ift=1foralltinT then{
12 emptyT. select new base$B.
13 if XB is empty{ terminate the processing.
14 foreachx;s in XB do {
15 select agerit that has minimunv/s in V"
16 tjs + 0. addt;s to setT.
17 send (BV,jB, dm; 1 je. Je)tok }}}

Figure 1: Processing in mediatnr

3.2 Area of Influence in Computation

The solution method needs to specify the agents that
are related to the exchange of bases. For that purpose,

agentk sends two setka ankaﬂ- to mediatorz XJ
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1 initialize Dy. initialize hy.
2 if hyVdm1x <Othen{letd=0.}

3

else{ letd =dmi1x- }

4 send (OVd, V,”, X/, set okaﬂ-, z 1/n) to agentz.
5 until the processing is terminateid {

Xéj is the set of variables, which is affected in the
case where agektthanges non-basgto a new base.
Xéj is computed if at least one non-base variagle
relates to a constraint that is known kgnd the max-
imum numberv| of x; is bounded by a constraint.

6 while K's receive queue is not empty Otherwise, the set is empty. Here &t denote the
7 Atheloop is not brokedo { receive a message} row of Dy that corresponds to a new non-base in the
8 receive (BV,jB, 1, j80 Jxe) from agentz { case of new basg. As shown as foIIows}(ij is the
9 selectrow set of variables that are related to the constraiilt thf
10 corresponding to new netbase variable. rOW.
11 foreachj suchthat ¥ j<ndo{
Xjldin ; €D -
12 ifhjAdn;=—1then{hj«F.}} \ {11|<'N:J<€ g’ 0 _h'fAb ded
13 savath row of Dy asdy. A= <j=ndn;#0} XJhIS ounde
14  updatéNth row of Dy. ¢ otherwise (10)
15 foreachi such that < i <m,i #iN do { ! . .
16 updateth row of Dy usingiNth row of D. } Xk7j can be computed before deciding whether vari-
17 updatey. 1k ablex; is selected as the new base or not.
18 usingiNth row of Dy anddy, 1 j» of BV message. When mediator agerzt selects new bases, the
19 hp«T. ’ sety, of the agents that relates to the change of basis
20 if hyVdme1k <Othen{letd=0.} is shown as follows.
21 else{ letd = dm+l,k- } JX,B — {”HX c X;;L'Bax c XJT} (11)
22 send (OVA, V|, X/, setofX . 1%, 1/ ) ] o]
23 to agent Herek represents the agent in which the maximum
: T .
24 foreachagent' in Jy,\{k} do { valuevjB of x;s is minimum.
25  send (NBV,jB, dy,, 1 ie of BV messagegy, |k 4 .
26 to ;genk], | }m“"B gedy: [ ) 3.3 Employing Parallelism

27
28

receive (NBV,j®, dry 1 je, diy, |3 |) from agentk' {

foreach j such that I< j < ndo {

In earlier steps of the solution method for sparse prob-
lems, itis possible to update multiple bases that do not

29 ith; /\}Jth element offy, = —1then { hj «F.} interfere with each other in parallel. To employ the
30 updatai:, similar toiNth row ofD. parallelism, the selection of the new base in mediator

zis extended. In the extended processing, non-base

: . ‘N
2; :cf K haf]'. th rf]vl'r:hfrll{_ufdat_e ‘L‘, r(;)w Of Dk } variables that have positive coefficients of the objec-
33 Oreagat'éfﬁcrow ;D— ! S_inma:\‘?illrowoo%{ . tive function are sorted in descending order. Then in-

up oDk Using e} dependent updates of bases are enumerated based on
34  updatedm, gk usingd,y anddy,, 1 js of BV message.

35
36
37
38
39

th «~T.

if heVdmi1k <Othen{letd=0.}
else{ letd = dm; 1k }

send (OVd, V", X!, set ofxij, iB, I
to agent. }

Figure 2: Processing in non-mediator agent

the ordering. The first non-base is always selected as
a new base. The following non-bases are similarly se-
lected if they do not interfere with other new bases.
SetJXjB of agents that relates to the update of new

basexe is shown in Equation (11). S¥ of the new
bases is shown as follows.

Wxje € X5 Wi € XB, 1B 1%, 305 Ny, = 0 (12)

is the set of the variables on which agé&rdepends. 3.4 Pseudo Code
XQ is computed by each agektexcluding mediator
z. As shown as foIIows),(Q is the set of variables that

are related to constraints containedip

Pseudo codes of the solution method are shown in
Figures 1 and 2. In this processing, three types of
messages are employed as follows. OV message
9) transports coefficient values of the objective function
and related information from each agent to mediator
z. BV message transports requests of changing new
bases from mediator to related agents. NBV mes-
sage propagates requests of changing new bases from

X' ={x;j | (dijeDAL<i<mALl<j<nA
dij #0)A(hjehenl<j<nAhj)}

Here, the condition offij is necessary to inforrkthat
basex; is changed to a non-base.
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Table 1: Results.

(a) #cycles untiltermination | (b) #parallel upd] (c) #terms in const. (d) #agents related to upf.
alg. ser par
a ol n m|min. max. ave|min. max. ave|min. max. ave|min. max. ave.|min. max. ave.
2 1{20 10| 20 35 30 11 32 25 1 2 127 4 12 5.00| 7 20 11.02
40 20| 47 65 57| 23 41 30 1 5 207 4 22 526 7 40 12.08
80 40f 92 122 110 20 41 30 1 9 397 4 23 520 7 57 11.40
3 2(20 10| 20 38 28 20 38 28 1 1 1 5 12 7.09| 12 20 16.85
40 20| 41 62 52| 32 59 42| 1 2 1.26] 5 22 7.75| 12 40 21.95
80 40| 86 116 103 38 80 53 1 5 208 5 37 8.38| 12 80 23.47
4 3120 10| 17 38 26| 17 38 26/ 1 1 1 6 12 8.69| 17 20 19.41
40 20| 32 74 53 29 71 54| 1 2 105/ 6 22 11.15 17 40 31.09
80 40/ 86 113 98 53 101 72 1 3 144] 6 42 12.44 17 80 41.06

the agents that have received the requests to relatedhe ring network [vo+,v°T): the range of the coeffi-
agents. cients of the objective functioriv®,v*T): the range
Figure 1 shows the processing in mediator agent of the coefficients of the constraintg/R*- vRT): the
z After the initialization,z waits for OV messages range of the parameter for the constants of the con-
from other agentsz detects that all OV messages are straints. For each constraint, the parameter represents
received using sék of the counter for the termination  the ratio of the constant to the summation of all coef-
detection. Thea selects seX® of new bases thatcan = ficients.
be updated in parallel. The changing of new basesis  Here,n°Ca ando are set so that the constraints
requested by sending BV messages. WherX8ebf are uniformly placed on the ring network. The val-
new bases is empty, mediatodetects the termina- ues of coefficients and constants are randomly deter-
tion of the solution methods. In the case whf® mined with uniform distribution. In the following,
is not empty and no agent can update the bases, methe problems are represented using the total number
diator z also detects the situation that the problem is n= nP + mof variables, the numben of constraints,
unbounded. aando. VoL \OT) and[V*L \*T) are respectively
Figure 2 shows the processing in non-mediator [1,3). VR VR")is[0.5,1). The results are totaled for
agentk. After the initialization,k waits for BV mes- 20 instances.
sages from mediataror NBV messages from other The following two methods are compared. ser: the
agentk’. When either message is receivkdipdates  paseline method that sequentially updates bases. par:
Dy andhg. Then consequent messages are sent. Whenthe method that employ parallelism if possible. When
the solution method is terminated, there are the caseshere is no parallelism, both methods work similarly.

where the constraint of each base variakldoes not As the criteria of the execution time, we used the
existin agenk. In that case, to determinés assign-  number of the cycles of exchanging messages. In a
ment, the agent that has the constraint has to nktify cycle, the following processing is performed. First,
of the constraint in post processing. each agent processes all messages in its own receiv-

ing queue and puts messages in the sending queue if
necessary. Then the simulator moves the messages

4 EXPERIMENTS from the sending queues to the destinations’ receiv-
ing queues for all agents.

4.1 Settings of Experiments
4.2 Results
We evaluated the example problems whose con-
straints partially overlap with neighborhood variables The number of cycles until the termination is shown
on a ring network. The problem is considered as the in Table 1(a). Generally, the method par that simul-
situation where neighboring agents share a limited taneously updates multiple new bases terminates in
amount of resources. Parameters to generate the proba lower number of cycles. In very sparse problems
lem are as follows.nP: the number of the decision like (a,0,n,m) = (2,1,80,40), par effectively reduces
variablesnP excludes the number of additional slack the number of cycles. On the other hand, in prob-
variables that is the same as the number of the con-lems like (n,m) = (20,10) and(a,0) = (4,3) whose
straints.a: the number of decision variables for each constraints are relatively overlapped, the effects are
constraint.o: the number of overlapping variables in small. The number of parallel updates of new bases
a constraint that overlaps with the next constraint in is shown in Table 1(b). The problems in which the
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Figure 3: Transition of number of parallel updates of new
basis (para=2,0=1).

number of cycles is effectively reduced as shown in
Table 1(a) have a relatively large number in the paral-
lelism. The number of terms in a constraint is shown
in Table 1(c). The result represents that the size of

mation and employ it to reduce distributed process-
ing. In (Burger et al., 2011), each step of the sim-
plex method is not decomposed. Instead, each agent
solves local problems and exchanges the sets of cur-
rent bases. Although we focused on the sparse prob-
lems and the more distributed solver, the possibility
of using the characteristics should be investigated to
divide columns and to avoid synchronization. De-
composition of the processing of the mediator using
a structured group of agents, applying efficient meth-
ods, and comparison/integration with related works
will be included in future works.
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