
ANALYSIS FOR DISTRIBUTED COOPERATION BASED ON
LINEAR PROGRAMMING METHOD

Toshihiro Matsu and Hiroshi Matsuo
Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Aichi, Japan

Keywords: Multi-agent, Distributed cooperative problem solving, Linear programming, Optimization.

Abstract: Distributed cooperative systems have optimization problems in their tasks. Supporting the collaborations of
users, or sharing communications/observations/energy resources, are formalized as optimization problems.
Therefore, distributed optimization methods are important as the basis of distributed cooperation. In partic-
ular, to handle problems whose variables have continuous domains, solvers based on numerical calculation
techniques are important. In a related work, a linear programming method, in which each agent locally per-
forms the simplex method and exchanges the sets of bases, has been proposed. On the other hand, there is
another interest in the cooperative algorithm based on a linear programming method whose steps of processing
are more distributed among agents. In this work, we study the framework of distributed cooperation based on
a distributed linear programming method.

1 INTRODUCTION

Distributed cooperative systems have optimization
problems in their tasks. Supporting the collaborations
of users, or sharing communications/observations/en-
ergy resources, are formalized as optimization prob-
lems. To solve the problems in distributed cooper-
ative processing, understanding the protocols of the
distributed optimization algorithms is important. In
the research area of Distributed Constraint Optimiza-
tion Problems (Modi et al., 2005; Petcu and Faltings,
2005; Mailler and Lesser, 2004), cooperative problem
solving is mainly studied for (non-linear) discrete op-
timization problems. On the other hand, to solve the
problems whose variables have continuous domains,
another type of solvers is also important. Other re-
lated works propose optimization algorithms based on
numerical calculation techniques for distributed coop-
erative systems (Wei et al., 2010; Burger et al., 2011).
In a related work (Burger et al., 2011), simplex al-
gorithm for linear programming has been applied to
multiagent systems. In the method, each agent lo-
cally performs the simplex method to solve its prob-
lem and exchanges the sets of bases. A good point
of the method is the simple protocol. On the other
hand, there is another interest in the cooperative algo-
rithm based on a linear programming method whose
processing is more distributed among agents. While
there are a number of studies about parallel simplex

methods (e.g. (Ho and Sundarraj, 1994; Yarmish and
Van Slyke, 2009)), their goals are slightly different
from the situation in multiagent cooperation. In this
work, we study a basic framework of distributed co-
operation based on a distributed linear programming
method whose parts are distributed among agents.
The essential distributed processing and extracting the
parallelism are investigated.

2 PREPARATIONS

2.1 Linear Programming Problems

The linear programming problems are fundamen-
tal optimization problems that consist ofn vari-
ables,m linear constraints, a linear objective function
(Chvatal, 1983). For the sake of simplicity, we as-
sume the following problems.

max : cTx (1)

subject to Ax = b, x≥ 0 (2)

Here,n-dimensional vectorx consists of decision and
slack variables. Each constraint contains a slack vari-
able.m×n matrix A andm-dimensional vectorb re-
spectively represent coefficients and constants of the
constraints.n-dimensional transposed vectorcT rep-
resents coefficients of the objective function.

228 Matsui T. and Matsuo H..
ANALYSIS FOR DISTRIBUTED COOPERATION BASED ON LINEAR PROGRAMMING METHOD.
DOI: 10.5220/0003750702280233
In Proceedings of the 4th International Conference on Agents and Artificial Intelligence (ICAART-2012), pages 228-233
ISBN: 978-989-8425-96-6
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



2.2 Simplex Method

The simplex method is a fundamental solution
method of the linear programming problems(Chvatal,
1983)D In computation of the method, initial bases
are selected. Then the bases are repeatedly improved
until they reach the optimal solution. In the case of the
problems shown in 2.1, slack variables and the objec-
tive value are simply selected as the initial bases. The
objective value must always be a base.

The set of bases is represented by Boolean vector
h. Each elementh j of h is true if variablex j is a
base. Otherwise,h j is false. The objective value is
omitted inh because it is always a base. MatrixD is
employed as a table that represents bases, constraints
and an objective function in each step of the solution
method. In the initial state, each elementdi, j of D
takes the following value.

di, j =











−ai, j 1≤ i ≤m∧1≤ j ≤ n
bi 1≤ i ≤m∧ j = n+1
c j i = m+1∧1≤ j ≤ n
0 i = m+1∧ j = n+1

(3)

The column for the objective value is omitted similar
to h. Note thatdi,k for basexk takes−1. In the other
row i′ such thati′ ∈ {1· · ·m}\{i}, di′,k is 0. In the
problems shown above, the initialD means that the
slack variables are selected as the initial bases.

2.2.1 Selection of New Base

In the first step of an iteration, the solution method se-
lects one non-base variablex jB that has a positive co-
efficient of the objective function. Thenx jB becomes
a new base in the following steps. If all coefficients
of the objective function are not positive, the solu-
tion method stops. In that case, for eachi such that
1≤ i ≤m, di,n+1 represents the value of the base vari-
able of rowi. Also, dm+1,n+1 represents the optimal
objective value. Here,jB is shown as follows.

jB = argmaxjdm+1, j (4)

s.t. 1≤ j ≤ n∧¬h j ∧dm+1, j > 0

2.2.2 Selection of New Non-base

Instead of the new basex jB, variablex jN of base vari-
ables is selected as a non-base variable. In the repre-
sentation ofD, selecting one rowiN decides the corre-
sponding base variable. Here, rowiN that minimizes
the maximum feasible value ofx jB is selected.

iN = argmini
di,n+1

−di, jB
(5)

s.t. 1≤ i ≤m∧di, jB 6= 0∧
di,n+1

−di, jB
> 0

jN is uniquely determined satisfying the following
condition.

h jN ∧diN, jN =−1 (6)

2.2.3 Exchange of Bases

Now the new base and non-base are exchanged. First,
in D, row iN that corresponds to the new base is up-
dated. The new value of each elementd′iN, j is shown
as follows.

d′iN, j =
diN, j

−diN, jB
(1≤ j ≤ n+1) (7)

Then, for each rowi excludingiN, x jB is eliminated.
Each new valued′i, j is shown as follows.

d′i, j = di, j +di, jBd′iN, j (8)

(i ∈ {1, · · · ,m+1}\{iN}, 1≤ j ≤ n+1)

Here,d′i, jB is 0 becaused′iN, jB = −1. That represents
the elimination ofx jB. Additionally, elements ofh are
updated ash jB← T, h jN ← F. After the exchange of
the bases, the processing is repeated from selecting
the new base.

3 A DISTRIBUTED SOLVER

In this work, we study a framework of distributed co-
operation based on the linear programming problem
and simplex method. Basically, problem and solver
are divided into agents. In the initial state, each agent
knows partial information that is directly related to the
agent. Each agent only updates the initial constraints
and its own coefficient of the objective function in the
solution method. Information that is exchanged be-
tween agents and extraction of parallelism are mainly
investigated. For the simple protocol, we employ a
mediator that manages information.

3.1 Division of Problem

To represent the state of the agent, variablex j is re-
lated to agentj. For the sake of simplicity, we assign
agents for slack variables. In the following context,x j
and j may not be distinguished. In particular, a medi-
ator is represented asz. Based on the variables, initial
D is divided into agents. Agentj knows constraints
that are related to its variable in the initial state. A
constraint is known by multiple agents.j also knows
coefficients of the objective function for known con-
straints. On the other hand, mediatorzdoes not know
any elements ofD in the initial state.

Each agentj has tableD j that contains holes. The

ANALYSIS FOR DISTRIBUTED COOPERATION BASED ON LINEAR PROGRAMMING METHOD

229



notations ofD j are compatible withD. While D j has
the same size asD, its unknown elements are zero.Dz
represents the table of mediatorz. Agent j also has
h j that partially contains elements ofh. In the initial
state, each agent knows whether the variables related
to the known constraints are the base or not. For each
known base or non-base,h j is appropriately initial-
ized. Other elements ofh j are initialized by default
value, false. Additionally, it is assumed that agents
share information about the address of agentzand the
number of all agents.

3.1.1 Selecting New Base

To select new bases, coefficients of the objective func-
tion have to be compared for all non-base variables. In
the first step, each agentj sends coefficientdm+1, j of
x j in the objective function to mediator agentz. Ex-
ceptionally, in the case wherex j is a base ordm+1, j <
0, 0 is sent. Additionally, for each non-base variable
x j ′ that is known by agentj, j computes maximum
valuev⊤j ′ of x j ′ in the case wherex j ′ is selected as the
new base. This computation is a part of Equation (5).
Let V⊤j denote a set ofv⊤j ′ that is computed byj. j

sendsV⊤j with dm+1, j to mediatorz.
Mediator z receives coefficients of the objective

function from all agents whose variable is a non-base.
Also, z receives the maximum values of the variables
from all agents. When all values are received,z se-
lects the candidate of new basex jB. Thenz sends a
request to changex jB to a new base. The request and
dm+1, jB are sent to the agent who reported the mini-

mum value of the maximum valuev⊤jB of x jB.

3.1.2 Selecting New Non-base

Selecting the new non-base is performed by agentk
that is requested by mediator agentz. As shown in the
previous subsubsection, agentk receives the request
to changex jB to a new base anddm+1, jB. Then, based
on Dk, agentk computes rowiN, which corresponds
to the new non-base in the case wherex jB is changed
to the new base.

3.1.3 Exchanging Bases

The exchange of the bases starts from agentk shown
in 3.1.2 and is performed on agents who have part of
D to be updated. In the following, the processing in
agentk and the related agents is shown.

First,k updates an element ofhk based onDk and
hk for row iN that corresponds to the new non-base.
The Boolean value ofh j that satisfies the condition
h j ∧diN, j = −1 shown in Equation (6) is set to false.

By the update,k identifies thatx j is a new non-base.
Next,k updatesDk. RowiN is previously saved as row
vectord−

iN
, and rowiN is updated as shown in Equa-

tion (7). Then using the updated rowiN anddm+1, jB

that have been received fromz, rows of other con-
straints and its own coefficientdm+1,k of the objective
function are updated. In particular, ifk= jB, dm+1,k is
0. Other coefficients of the objective function are al-
ways 0, which represents the unknown value. More-
over, k updates the value ofh jB in hk from false to
true. Nowk identifies thatx jB is a base.

The update ofDk has to be sent to agentsk′ whose
Dk′ is affected by the update.k sends its coefficient
dm+1,k of the objective function to mediator agentz.
At the same time, the maximum valuesV⊤k of the
non-base variables that are known byk are sent. k
also sends the request thatx jB is changed to a new
base. The request,dm+1, jB, which has been received
from z, and row vectord−

iN
are sent to agents whose

constraints are affected by the variables contained in
the constraint ofiNth row. When agentk′ receives the
request of new basex jB from agentk, k′ updatesDk′

andhk′ based ondm+1, jB andd−
iN

, which are received
in the same message. Thenk′ sendsdm+1,k′ to me-
diator z. The maximum valuesV⊤k′ of the non-base
variables that are known byk′ are also sent.

1 initializeDz. tz← 0. addtz to setT.
2 until the processing is terminateddo {
3 while z’s receive queue is not empty
4 ∧ the loop is not brokendo { receive a message.}
5 maintenance.}

6 receive (OV,dm+1,k, V⊤k , X↑k , set ofX↓k, j , x, p)
7 from agentk {

8 store/updatedm+1,k, V⊤k , X↑k and set ofX↓k, j .

9 tx← tx+ p for tx in T. }
10 maintenance{
11 if t = 1 for all t in T then {
12 emptyT. select new basesXB.
13 if XB is empty{ terminate the processing.}
14 foreach x jB in XB do {
15 select agentk that has minimumv⊤jB in V⊤k .

16 t jB ← 0. addt jB to setT.
17 send (BV,jB, dm+1, jB , Jx jB

) to k. } } }

Figure 1: Processing in mediatorz.

3.2 Area of Influence in Computation

The solution method needs to specify the agents that
are related to the exchange of bases. For that purpose,
agentk sends two setsX↑k andX↓k, j to mediatorz. X↑k

ICAART 2012 - International Conference on Agents and Artificial Intelligence

230



1 initializeDk. initialize hk.
2 if hk∨dm+1,k < 0 then { let d = 0.}
3 else{ let d = dm+1,k. }

4 send (OV,d, V⊤k , X↑k , set ofX↓k, j , z, 1/n) to agentz.
5 until the processing is terminateddo {
6 while k’s receive queue is not empty
7 ∧ the loop is not brokendo { receive a message.} }
8 receive (BV,jB, dm+1, jB , Jx jB

) from agentz{

9 select rowiN

10 corresponding to new non−base variable.
11 foreach j such that 1≤ j ≤ n do {
12 if h j ∧diN , j =−1 then { h j ← F . } }
13 saveiNth row of Dk asd−iN .
14 updateiNth row of Dk.
15 foreach i such that 1≤ i ≤m, i 6= iN do {
16 updateith row of Dk usingiNth row of Dk. }
17 updatedm+1,k
18 usingiNth row of Dk anddm+1, jB of BV message.
19 h jB ← T.
20 if hk∨dm+1,k < 0 then { let d = 0.}
21 else{ let d = dm+1,k. }

22 send (OV,d, V⊤k , X↑k , set ofX↓k, j , jB, 1/|Jx jB
|)

23 to agentz.
24 foreach agentk′ in Jx jB

\{k} do {
25 send (NBV,jB, dm+1, jB of BV message,d−iN , |Jx jB

|)

26 to agentk′. } }
27 receive (NBV,jB, dm+1, jB , d−iN , |Jx jB

|) from agentk′{

28 foreach j such that 1≤ j ≤ n do {
29 if h j ∧ j th element ofd−iN =−1 then { h j ← F . }

}

30 updated−iN similar to iNth row of D.
31 if k hasiNth row then { updateiNth row of Dk. }
32 foreach i such that 1≤ i ≤m, i 6= iN do {
33 updateith row of Dk usingiNth row of d−iN . }
34 updatedm+1,k usingd−iN anddm+1, jB of BV message.
35 h jB ← T.
36 if hk∨dm+1,k < 0 then { let d = 0.}
37 else{ let d = dm+1,k. }

38 send (OV,d, V⊤k , X↑k , set ofX↓k, j , jB, 1/|Jx jB
|)

39 to agentz. }

Figure 2: Processing in non-mediator agentk.

is the set of the variables on which agentk depends.
X↑k is computed by each agentk excluding mediator

z. As shown as follows,X↑k is the set of variables that
are related to constraints contained inDk.

X↑k = {x j | (di, j ∈ Dk∧1≤ i ≤m∧1≤ j ≤ n∧ (9)

di, j 6= 0)∧ (h j ∈ hk∧1≤ j ≤ n∧h j)}

Here, the condition ofh j is necessary to informk that
basex j is changed to a non-base.

X↓k, j is the set of variables, which is affected in the
case where agentk changes non-basex j to a new base.

X↓k, j is computed if at least one non-base variablex j

relates to a constraint that is known byk and the max-
imum numberv⊤j of x j is bounded by a constraint.
Otherwise, the set is empty. Here letiN denote the
row of Dk that corresponds to a new non-base in the
case of new basex j . As shown as follows,X↓k, j is the

set of variables that are related to the constraint ofiNth
row.

X↓k, j =







{x j |diN, j ∈Dk,
1≤ j ≤ n,diN, j 6= 0}

¬hk∧
x j is bounded

φ otherwise
(10)

X↓k, j can be computed before deciding whether vari-
ablex j is selected as the new base or not.

When mediator agentz selects new basex jB, the
setJxjB

of the agents that relates to the change of basis
is shown as follows.

JxjB
= { j|∃x∈ X↓

k, jB
,x∈ X↑j } (11)

Herek represents the agent in which the maximum
valuev⊤jB of x jB is minimum.

3.3 Employing Parallelism

In earlier steps of the solution method for sparse prob-
lems, it is possible to update multiple bases that do not
interfere with each other in parallel. To employ the
parallelism, the selection of the new base in mediator
z is extended. In the extended processing, non-base
variables that have positive coefficients of the objec-
tive function are sorted in descending order. Then in-
dependent updates of bases are enumerated based on
the ordering. The first non-base is always selected as
a new base. The following non-bases are similarly se-
lected if they do not interfere with other new bases.
Set JxjB

of agents that relates to the update of new

basex jB is shown in Equation (11). SetXB of the new
bases is shown as follows.

∀x jB ∈XB,∀x jB′ ∈XB, jB 6= jB
′
,JxjB

∩Jx
jB
′ = φ (12)

3.4 Pseudo Code

Pseudo codes of the solution method are shown in
Figures 1 and 2. In this processing, three types of
messages are employed as follows. OV message
transports coefficient values of the objective function
and related information from each agent to mediator
z. BV message transports requests of changing new
bases from mediator to related agents. NBV mes-
sage propagates requests of changing new bases from

ANALYSIS FOR DISTRIBUTED COOPERATION BASED ON LINEAR PROGRAMMING METHOD

231



Table 1: Results.

(a) #cycles until termination (b) #parallel upd. (c) #terms in const.(d) #agents related to upd.
alg. ser par

a o n m min. max. ave. min. max. ave. min. max. ave. min. max. ave. min. max. ave.
2 1 20 10 20 35 30 11 32 25 1 2 1.27 4 12 5.00 7 20 11.02

40 20 47 65 57 23 41 30 1 5 2.07 4 22 5.26 7 40 12.08
80 40 92 122 110 20 41 30 1 9 3.97 4 23 5.20 7 57 11.40

3 2 20 10 20 38 28 20 38 28 1 1 1 5 12 7.09 12 20 16.85
40 20 41 62 52 32 59 42 1 2 1.26 5 22 7.75 12 40 21.95
80 40 86 116 103 38 80 53 1 5 2.08 5 37 8.38 12 80 23.47

4 3 20 10 17 38 26 17 38 26 1 1 1 6 12 8.69 17 20 19.41
40 20 32 74 53 29 71 54 1 2 1.05 6 22 11.15 17 40 31.09
80 40 86 113 98 53 101 72 1 3 1.44 6 42 12.44 17 80 41.06

the agents that have received the requests to related
agents.

Figure 1 shows the processing in mediator agent
z. After the initialization,z waits for OV messages
from other agents.z detects that all OV messages are
received using setT of the counter for the termination
detection. Thenzselects setXB of new bases that can
be updated in parallel. The changing of new bases is
requested by sending BV messages. When setXB of
new bases is empty, mediatorz detects the termina-
tion of the solution methods. In the case whereXB

is not empty and no agent can update the bases, me-
diatorz also detects the situation that the problem is
unbounded.

Figure 2 shows the processing in non-mediator
agentk. After the initialization,k waits for BV mes-
sages from mediatorz or NBV messages from other
agentsk′. When either message is received,k updates
Dk andhk. Then consequent messages are sent. When
the solution method is terminated, there are the cases
where the constraint of each base variablexk does not
exist in agentk. In that case, to determinek’s assign-
ment, the agent that has the constraint has to notifyk
of the constraint in post processing.

4 EXPERIMENTS

4.1 Settings of Experiments

We evaluated the example problems whose con-
straints partially overlap with neighborhood variables
on a ring network. The problem is considered as the
situation where neighboring agents share a limited
amount of resources. Parameters to generate the prob-
lem are as follows.nD: the number of the decision
variables.nD excludes the number of additional slack
variables that is the same as the number of the con-
straints.a: the number of decision variables for each
constraint.o: the number of overlapping variables in
a constraint that overlaps with the next constraint in

the ring network.[vO⊥,vO⊤): the range of the coeffi-
cients of the objective function.[vC⊥,vC⊤): the range
of the coefficients of the constraints.[vR⊥,vR⊤): the
range of the parameter for the constants of the con-
straints. For each constraint, the parameter represents
the ratio of the constant to the summation of all coef-
ficients.

Here,nDCa ando are set so that the constraints
are uniformly placed on the ring network. The val-
ues of coefficients and constants are randomly deter-
mined with uniform distribution. In the following,
the problems are represented using the total number
n= nD+mof variables, the numbermof constraints,
a ando. [vO⊥,vO⊤) and [vC⊥,vC⊤) are respectively
[1,3). [vR⊥,vR⊤) is [0.5,1). The results are totaled for
20 instances.

The following two methods are compared. ser: the
baseline method that sequentially updates bases. par:
the method that employ parallelism if possible. When
there is no parallelism, both methods work similarly.

As the criteria of the execution time, we used the
number of the cycles of exchanging messages. In a
cycle, the following processing is performed. First,
each agent processes all messages in its own receiv-
ing queue and puts messages in the sending queue if
necessary. Then the simulator moves the messages
from the sending queues to the destinations’ receiv-
ing queues for all agents.

4.2 Results

The number of cycles until the termination is shown
in Table 1(a). Generally, the method par that simul-
taneously updates multiple new bases terminates in
a lower number of cycles. In very sparse problems
like (a,o,n,m)= (2,1,80,40), par effectively reduces
the number of cycles. On the other hand, in prob-
lems like(n,m) = (20,10) and(a,o) = (4,3) whose
constraints are relatively overlapped, the effects are
small. The number of parallel updates of new bases
is shown in Table 1(b). The problems in which the

ICAART 2012 - International Conference on Agents and Artificial Intelligence

232



Figure 3: Transition of number of parallel updates of new
basis (par,a= 2,o= 1).

number of cycles is effectively reduced as shown in
Table 1(a) have a relatively large number in the paral-
lelism. The number of terms in a constraint is shown
in Table 1(c). The result represents that the size of
the constraints increases with the progress of the so-
lution method. Although the maximum number of the
terms is less than the number of the variables, the par-
allelism is lost as shown above. Table 1(d) shows the
number of agents related to an update of a new base.
The maximum number that equals the number of vari-
ables represents that the locality of updates was lost in
later cycles.

The transition of the number of parallel updates
of the new basis for an example problema= 2,o= 1
is shown in Figure 3. The number of parallelism is
relatively large in the first steps and decreases in later
cycles. There are two reasons of the decrement. One
reason is that the possible new bases are eliminated
by the solution method. Another is that the number of
variables in the updated constraints increases.

5 CONCLUSIONS

In this work, we studied a framework of distributed
cooperative problem solving based on the linear pro-
gramming method. Essential processing for dis-
tributed cooperation and extracting the parallelism
are shown. While there is possibility of parallel up-
dates of the new bases in the sparse problems, the
global tantalization of the information is necessary
for the selection of new bases, and the extraction of
the parallelism. Instead of the mediator, there are
opportunities to decompose the tantalization using a
tree structure of agents. Considering the fact that
the locality of the problem is lost with the progress
of the solution method, there is the possibility of an
approach in which agents store the revealed infor-

mation and employ it to reduce distributed process-
ing. In (Burger et al., 2011), each step of the sim-
plex method is not decomposed. Instead, each agent
solves local problems and exchanges the sets of cur-
rent bases. Although we focused on the sparse prob-
lems and the more distributed solver, the possibility
of using the characteristics should be investigated to
divide columns and to avoid synchronization. De-
composition of the processing of the mediator using
a structured group of agents, applying efficient meth-
ods, and comparison/integration with related works
will be included in future works.

ACKNOWLEDGEMENTS

This work was supported in part by a Grant-in-Aid for
Young Scientists (B), 22700144.

REFERENCES

Burger, M., Notarstefano, G., Allgower, F., and Bullo, F.
(2011). A distributed simplex algorithm and the multi-
agent assignment problem. InAmerican Control Con-
ference, pages 2639–2644.

Chvatal, V. (1983). Linear programming. W.H.Freeman
Company.

Ho, J. K. and Sundarraj, R. P. (1994). On the efficacy
of distributed simplex algorithms for linear program-
ming. Computational Optimization and Applications,
3:349–363.

Mailler, R. and Lesser, V. (2004). Solving distributed con-
straint optimization problems using cooperative me-
diation. In3rd International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pages 438–
445.

Modi, P. J., Shen, W., Tambe, M., and Yokoo, M. (2005).
Adopt: Asynchronous distributed constraint optimiza-
tion with quality guarantees.Artificial Intelligence,
161(1-2):149–180.

Petcu, A. and Faltings, B. (2005). A scalable method
for multiagent constraint optimization. In9th Inter-
national Joint Conference on Artificial Intelligence,
pages 266–271.

Wei, E., Ozdaglar, A., and Jadbabaie, A. (2010). A dis-
tributed newton method for network utility maximiza-
tion. In 49th IEEE Conference on Decision and Con-
trol, CDC 2010, pages 1816 –1821.

Yarmish, G. and Van Slyke, R. (2009). A distributed,
scaleable simplex method.The Journal of Supercom-
puting, 49:373–381.

ANALYSIS FOR DISTRIBUTED COOPERATION BASED ON LINEAR PROGRAMMING METHOD

233


