
CLASSIFICATION OF DEFORMABLE GEOMETRIC SHAPES 
Using Radial-Basis Function Networks and Ring-wedge Energy Features 

El-Sayed M. El-Alfy 
College of Computer Sciences and Engineering, King Fahd University of Petroleum and Minerals, 

Dhahran 31261, Saudi Arabic 

Keywords: Pattern Recognition, Shape Classification, Industrial Automated Inspection, Neural Networks, Radial-Basis 
Function Networks. 

Abstract: This paper describes a system for automatic classification of geometric shapes based on radial-basis 
function (RBF) neural networks even in the existence of shape deformation. The RBF network model is 
built using ring-wedge energy features extracted from the Fourier transform of the spatial images of 
geometric shapes. Using a benchmark dataset, we empirically evaluated and compared the performance of 
the proposed approach with two other standard classifiers: multi-layer perceptron neural networks and 
decision trees. The adopted dataset has four geometric shapes (ellipse, triangle, quadrilateral, and pentagon) 
which may have deformations including rotation, scaling and translation. The empirical results showed that 
the proposed approach significantly outperforms the other two classification methods with classification 
error rate around 3.75% on the testing dataset using 5-fold stratified cross validation. 

1 INTRODUCTION 

Shape analysis, recognition and classification play 
important roles in a number of applications 
including object recognition, shape matching and 
retrieval, hand-drawn geometric shapes using hand-
held devices, cell shape classification in microbial 
ecology, computer-aided design, and industrial 
automated inspection (Bishop, 1995; Costa and 
Cesar Jr., 2000). These have been an active research 
area that recently attracted the attention of many 
researchers within the machine-learning community. 
A number of algorithms have been suggested for 
addressing these problems in the literature. For 
example, Lazzerini and Marcelloni (2001) described 
a fuzzy approach for representation and 
classification of two-dimensional shapes. In their 
approach shapes are represented using fuzzy sets and 
a similarity measure is used to compare these fuzzy 
representations. Tsai et al. (2005) employed the level 
set function as the shape descriptor and proposed an 
approach for separating a shape database into 
different shape classes based on the EM algorithm. 
Barutcuoglu and DeCoro (2006) presented a 
framework for combining multiple classifiers 
predictions based on a class hierarchy. Gorelick et 
al. (2006) presented an approach using the Poisson 

equation for computing many useful properties of a 
shape silhouette and demonstrated the utility of the 
extracted properties for shape classification and 
retrieval. Ling and Jacobs (2007) used the inner-
distance (i.e. the length of the shortest path between 
landmark points within the shape silhouette) as a 
replacement for Euclidean distance to build more 
accurate descriptors for complex shapes. McNeil and 
Vijayakumar (2005) presented a correspondence-
based technique for shape classification and retrieval 
using a set of equally spaced boundary points. 
Another approach based on abductive learning was 
proposed in (El-Alfy, 2008). Pun and Lin (2010) 
explored the application of discrete Hidden-Markov 
Model (HMM) for geometric shape recognition 
using an array of landmark points on the shape 
contour. However, the highest predictive accuracy is 
around 80%, which may not be acceptable. Another 
iterative improvement of a nearest neighbor 
classifier and its application to geometric shape 
recognition is presented in (Yau and Manry, 1991). 
But still the classification accuracy is low and can be 
improved further. 

In this paper we present a radial-basis function 
(RBF) neural network approach for automatic 
classification of deformable geometric shapes. RBF 
networks are becoming increasingly popular with 
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diverse applications in function approximation and 
pattern recognition (Haykin, 2009). We evaluate the 
performance and compare it with two other standard 
classification methods on a benchmark dataset of 
geometric shapes. The adopted dataset has four 
geometric shapes: ellipse, triangle, quadrilateral, and 
pentagon. The shape deformations may include 
rotation, scaling, and translation. 

The rest of the paper is organized as follows. The 
next section describes the shape classification and 
feature extraction problem. Section 3 describes the 
radial-basis function neural network methodology. 
Section 4 describes the adopted dataset and the 
empirical evaluation. Finally, Section 5 summarizes 
the paper results. 

2 PROBLEM DESCRIPTION AND 
FEATURE EXTRACTION 

In this section, we describe the shape classification 
problem and how features are extracted.  

2.1 Problem Description 

The problem addressed in this paper is 2D 
geometric-shape classification which is a multi-class 
classification problem. The aim is to construct a 
prediction model that can be used to determine the 
class for each given 2D shape image. This problem 
is also a vital component in many object recognition 
and classification problems which are based on the 
shape features as opposed to color and texture 
features (McNeil and Vijayakumar, 2005). Figure 1 
shows a block diagram of the main steps involved in 
constructing a typical shape classification system 
from a dataset of shape images. The first three steps 
in Figure 1 are responsible for representing each 
image by a small set of discriminative features that 
can be used to distinguish between different classes. 
A good set of features must be made invariant to 
various deformations that may occur to the shapes. 

Several sets of features have been investigated in 
the literature as shape descriptors. These can be 
grouped into three main types: topological features, 
point distribution features, and transform-based 
features (Yau, 1990). Topological features include 
features such as concavities and convexities, cross 
points, number of loops, etc.  Topological features 
are difficult to compute. Other proposed methods 
include the representation of each shape by a finite 
set of points taken on the 2D boundary (McNeil and 
Vijayakumar, 2005). Here, an edge detection 

algorithm is first applied; then some points on the 
contour are selected based on various criteria such as 
uniform sampling, polygon approximation, high 
curvature or distance from the centroid (Zhang et al., 
2003; Super, 2004; Chen et al., 2008). Although 
they are relatively easier to compute than topological 
features, they are affected by deformations caused to 
the shape. The third category of features sets are 
based on transformations. This approach is easy to 
implement and can capture the essential 
characteristics of shapes even in the existence of 
various degrees of shape deformations (Yau, 1990). 
The last step in Figure 1 constructs a classifier 
model using the extracted features and a machine 
learning methodology. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Phases of constructing a typical shape classifier. 

2.2 Calculation of Ring-Wedge Energy 
Features 

In our work, we used one example of transform-
based features that computes energies in different 
ring and wedge areas in the Fourier transform of the 
shape image (George et al., 1989; Yau and Manry, 
1991). In this approach, to determine the features for 
each input image f(x, y), the Fourier transform, 
F(r, θ), is first computed, 

F(r, θ) = F [f(x, y)] (1) 

where r and θ are the radius and angle in the 
frequency domain. The transformed image is 
partitioned into equally-spaced rings and wedges 
with step sizes Δr and Δθ, respectively. Then the 
energy is computed for each ring and wedge. Let 
Er(m) and Ew(n) be the energies of m-th ring and the 
n-th wedge respectively, then, 
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where Sr(m) and Sw(n) are the surface areas of the m-
th ring and n-th wedge respectively. We use 16 
features defined using normalized ring and wedge 
energies as follows, 
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We refer to these features as x1, x2, …, x16 in 
order. Mathematically, scale, translation, and 
rotation shape deformations can be expressed in the 
spatial domain of the image as f(x*, y*) = f(a1.x + b1.y 
+ c1, a2.x + b2.y + c2) where a1, b1, c1, a2, b2, and c2 
are arbitrary constants. For example, by setting a1 = 
1, a2 = 1, b1 = 0, b2 = 0, c1 = α, and c2 = β, the shape 
is translated by α in x-direction and β in y-direction. 
Similarly when a1 = α, a2 = α, b1 = 0, b2 = 0, c1 = 0, 
and c2 = 0, the shape is scaled by α. Rotation by θ 
occurs when a1 = cos θ, a2 = -sin θ, b1 = sin θ , b2 = 
cos θ, c1 = 0, and c2 = 0. It can be shown that the 
Fourier transform, and hence the ring-wedge 
features, is invariant to translation deformation. The 
scale deformation can be handled by scaling the 
image to a standard size during pre-processing. Also 
the ring features are invariant to rotation 
deformation but the wedge features are not. Hence, 
the wedge features can be made invariant to rotation 
by circularly rotating Ew(n) such that, 

(1) max{ ( )}w wn
E E n= . (6) 

3 METHODOLOGY 

3.1 RBF Neural Network Model 

Radial-basis functions (RBFs) were introduced for 
solving multivariate problems numerically in 
(Powel, 1985). A radial-basis function network 
(RBFN) is a special type of artificial feed-forward 
neural networks (Haykin, 2009). As demonstrated in 
Figure 2, the structure of a typical RBF network 
normally has an input layer, a single hidden layer 
and an output layer. The input layer does not do any 
processing and acts as a fan-out for the input 
variables. The number of neurons in the input layer 
is equal to the number of real-valued predictor 
(independent) variables in the feature space (i.e. 
same dimensionality). However, for each categorical 

variable with L categories, L-1 units are used in the 
input layer. Neurons in the hidden layer use 
nonlinear RBF kernel activation functions. Although 
various types of radial-basis functions can be used, 
Gaussian bell-shaped functions are the most 
common at this layer. The output of each neuron in 
the hidden layer is inversely proportional to the 
Euclidean distance from the center of the neuron. 
The purpose of the hidden layer is to non-linearly 
map the patterns from a low-dimension space to a 
high-dimension space where the patterns become 
more linearly separable. Neurons in the output layer 
typically use linear activation functions. The output 
layer has one or more units based on the number and 
type of dependent variables. RBF network calculates 
a function as a linear weighted summation of the 
outputs of the units in the hidden layer. RBF 
networks are relatively recent than multi-layer 
perceptrons (MLPs) and has many applications in 
universal function approximation, pattern 
recognition and classification, prediction and control 
in dynamical systems, signal processing, chaotic 
time series prediction, and weather and power load 
forecasting. 

∑ ∑ 

… 

… 

… 

∑ 

x1 x2 xn 
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 layer 

Input layer 
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w11 whm wh1 
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Figure 2: RBF neural network model architecture. 

Assume the RBF network has m units at the 
output layer, h units at the hidden layer and n units 
at the input layer. Weights of the connections 
between the input layer and the hidden layer are all 
equal to unity (unlike MLP). Let j denote a specific 
unit at the output layer and i denote a specific unit at 
the hidden layer. The weights for the connections 
between the hidden layer and the output layer are 
denoted by wij for i =1, 2, …, h and j = 1, 2, …, m. 
Assume the vector of the independent input 
variables is denoted as x = (x1, x2, …, xn). The output 
of unit i in the hidden layer is given by the Gaussian 
kernel function as follows, 
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where iμ and iσ denote the center and width (or 
spread) parameters of the radial-basis function of 
unit i, and || x - iμ ||2 denotes the square of the 
Euclidean distance between the input vector x  and 
the unit center iμ . The center parameter represents 
an input vector at which the function has its 
maximum value. The width parameter determines 
the radius of the area around the center at which the 
activation function is significant. The smaller the 
radius, the more selective the function is. These 
parameters have major impact on the performance of 
the RBF networks. The j-th component of the output 
is given by the weighted sum of the outputs of the 
units in the hidden layer as follows, 

1
( ) ( ), 1,2,..., .

h

j ij j
i

f x w g x j m
=

= =∑  (8) 

The design of an RBF network model means 
determining the number of basis function (i.e. units 
in the hidden layer), connection weights between the 
hidden layer and the output layer, and centers and 
widths of the hidden layer units. These parameters 
are determined by training the network for a given 
dataset using one of the available training 
algorithms. 

3.2 Training Strategy 

Assume a dataset of N labeled observations 
1{( , )}N

i i ix s =  is given, where ix  is the feature vector 
and si is the label associated with observation i. The 
purpose of training the RBF network is to determine 
the optimal network parameters that minimize the 
sum-squared error function between the network 
output and the desired output for a given training set. 
There are several training strategies for learning the 
parameters of an RBF network. The commonly used 
approach is a two-stage hybrid learning approach. In 
the first stage, an unsupervised clustering algorithm 
is used to determine the centers and widths of radial-
basis functions. During this stage data points in the 
dataset are partitioned into groups or clusters such 
that the data points assigned to each cluster 
minimizes a cost function in a similarity measure 
(e.g. the squared Euclidean distance) between any 
pair of points in the same cluster. Although any 
clustering algorithm can be used, the standard 
approach is to use k-means clustering due to its 

simplicity and effectiveness. This method uses a 
two-step iterative optimization procedure until 
converge is attained. Under this approach, the size of 
the hidden layer is equal to the number of clusters k, 
where k is much less than the number of 
observations N in the dataset. In the second stage of 
the hybrid learning approach, a supervised learning 
approach using a recursive least-squares algorithm is 
employed to estimate the optimal weights of the 
connections between the hidden layer and the output 
layer. After that a supervised gradient based 
algorithm is used to tune the network further using 
some of the training patterns in the dataset. The 
details of this strategy can be found in (Haykin, 
2009). 

The training procedure employed in this paper is 
the one implemented in the DTREG software 
package. It uses an evolutionary approach to 
determine the optimal centers and widths for 
neurons in the hidden layer (Chen et al., 2005). To 
avoid over-fitting to the training data, it estimates 
the leave-one-out error and uses it as a stopping 
criterion for adding neurons to the hidden layer. It 
also uses a ridge regression algorithm to compute 
the optimal connections weights between the hidden 
layer and the output layer. 

4 EMPIRICAL EVALUATION 
AND RESULTS 

4.1 The Dataset 

We adopted a benchmark dataset for geometric 
shape recognition that has been utilized in the 
literature, e.g. (Yau and Manry, 1991). It includes a 
total of 800 images of four categories of geometric 
shapes: ellipse, triangle, quadrilateral, and pentagon; 
which are referred to as {s1, s2, s3, s4} in this paper. 
Each image consists of a matrix of size 64×64 
binary-valued pixels. There are 200 images for each 
shape category generated using different degrees of 
deformation including rotation, scaling, and 
translation distortions. Figure 3 shows some sample 
of images in the dataset (McNeil and Vijayakumar, 
2005). Images in the dataset are processed to 
represent each image by a vector of 16 real-valued 
features extracted using ring-wedge energies 
(RWE). Table 1 shows the statistical characteristics 
of the predictor variables (a.k.a. features) in terms of 
the minimum, maximum, mean, and standard 
deviation (std). 
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Table 1: Statistics of various features: minimum (min), maximum (max), average (mean), standard deviation (std). 

Feature Type min max mean std 
x1 Continuous 1.701448 8.377751 4.454941 1.140443 
x2 Continuous 1.514297 7.804499 3.498672 1.045025 
x3 Continuous 0.696465 6.744747 2.885716 1.118037 
x4 Continuous 0.370465 5.971567 2.364773 1.044711 
x5 Continuous 0.310115 8.298036 2.304304 1.247915 
x6 Continuous 0.36461 7.128069 2.385969 1.128959 
x7 Continuous 0.592846 7.266519 2.739837 1.141935 
x8 Continuous 1.217079 7.53666 3.128944 1.004257 
x9 Continuous 2.013517 8.473231 4.342271 1.123421 
x10 Continuous 2.723593 9.918232 6.707424 1.092196 
x11 Continuous 2.448623 10.02286 7.068465 1.218173 
x12 Continuous 2.990693 10.25685 7.114858 1.231805 
x13 Continuous 2.971142 10.21713 7.099484 1.235933 
x14 Continuous 2.86403 10.07608 7.065576 1.224407 
x15 Continuous 2.970317 10.00546 6.88241 1.210681 
x16 Continuous 2.966 9.986865 6.524544 1.192905 

 

 
Figure 3: Sample of geometric shapes in the adopted 
dataset. 

4.2 Experiments and Results 

The proposed approach was tested on the adopted 
benchmark dataset described in the previous 
subsection. We built different RBF network models 
using ring-wedge energy features extracted for each 
shape in the dataset. This helps in reducing the 
dimensionality of the vector space and handling 
various shape deformations. We employed 5-fold 
stratified cross validation to evaluate the quality of 
the models. In this approach the dataset is randomly 
split into 5 non-overlapping partitions (a.k.a. folds). 
During this process, a stratified method is used to 
ensure that the distribution of different categories of 
the target variable is approximately the same in 
various partitions. Then, a model is built using four 
partitions (i.e. 80% of the dataset) for training and 
evaluated on the remaining partition (1 out of 5 
partitions, i.e. 20% of the dataset). This process is 
repeated five times. Each time a different partition is 

used for testing and the remaining four partitions for 
training. The overall performance measures are 
averaged over the 5 models. 

The RBF network model uses the hybrid 
learning algorithm which is implemented in the 
DTREG software package as explained previously 
in Section 3. The performance of RBF network 
model is assessed in terms of a confusion matrix 
which shows how each category is predicted by the 
model. In all experiments, we assumed equal 
misclassification costs for all categories. Table 2 
shows the resulting confusion matrix for the RBF 
network model for both training and testing datasets 
using 5-fold stratified cross validation. The numbers 
in the diagonals are the correctly classified cases for 
each category whereas the off-diagonal cells 
represent the misclassified cases. 

Table 2: 5-fold stratified cross validation of RBF 
classification model in terms of confusion matrix for (a) 
Training and (b) Testing. 

(a) Training Predicted Category 

S1 S2 S3 S4 

A
ct

ua
l 

C
at

eg
or

y S1 200 0 0 0 

S2 0 200 0 0 
S3 0 2 187 11 

S4 0 0 1 199 

(b) Testing Predicted Category 

S1 S2 S3 S4 

A
ct

ua
l 

C
at

eg
or

y 

S1 200 0 0 0 

S2 0 200 0 0 

S3 0 2 180 18 
S4 2 0 8 190 

We then compared the performance of RBF 
networks with two other standard classifier models: 
multi-layer perceptron (MLP) neural networks and 
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decision trees (DTs). The constructed MLP is a 3-
layer neural network in which there are 16 neurons 
in the input layer (number of features), 6 neurons in 
the hidden layer with sigmoid activation functions, 
and 4 neurons in the output layer (number of 
categories of the target variable) with linear 
activation functions. The input layer standardizes 
each input variable so that its value falls in the range 
between -1 and +1. The network weights are 
adjusted using a conjugate gradient with line search 
back-propagation algorithm. This algorithm 
converges significantly faster than the original 
gradient decent backpropagation developed by 
Rumelhart and McClelland for MLP (Sherrod, 
2011). 

The constructed decision tree is a single binary 
tree that shows how the target variable can be 
predicted using values of a set of the predictor 
variables. Each non-terminal (internal) node in the 
decision tree splits a group of rows of the dataset 
into two subgroups based on one particular predictor 
variable. During the composition of the decision 
tree, a recursive partitioning procedure uses Gini’s 
criterion and backward pruning to build an optimal 
size tree while maximizing the heterogeneity of the 
categories of the target variable in the child nodes. 

Table 3 shows the comparison results for the 
constructed RBF, MLP and DT models in terms of 
the misclassification rates (i.e. the percentage of 
observations that are predicted to be of a category 
different than the actual category associated with 
them). We can clearly notice that the classification 
error rate when using the RBF model is lower than 
that for MLP and DT. 

Table 3: Comparing misclassification rates for different 
models. 

Dataset 
Method 

RBF MLP DT 

Training 1.75 4.5 6.625 

Testing 3.75 5.25 17.0 

To see how the constructed RBF model behaves 
for each category as compared to other methods, we 
used four other performance measures. These 
measures are: sensitivity (Sn), specificity (Sp), 
positive predictive value (PPV) and negative 
predictive value (NPV). These values are assessed 
for each category. We refer to a given category si as 
positive category and all other categories are 
grouped and regarded as negative category for this 
given category. To define performance measures 
mathematically, let TPi, TNi, FPi, and FNi refer to 

the number of true positive, number of true negative, 
number of false positive and number of false 
negative for category si, respectively. Then the 
evaluations of the performance measures are defined 
as follows for category si: 

 Sensitivity of si: the proportion of those 
predicted as being of category si that are truly 
predicted by the model. 

/ ( ), 1, 2,..., .i i i iSn TP TP FN i S= + =  (9) 

 Specificity of si: the proportion of those 
predicted to be of categories other than si that 
are truly predicted by the model. 

/ ( ), 1, 2,..., .i i i iSp TN TN FP i S= + =  (10) 

 PPV: the proportion of those who are actually 
of category si and are truly predicted by the 
model. 

/ ( ), 1, 2,..., .i i i iPPV TP TP FP i S= + =  (11) 

 NPV: the proportion of those who are of 
categories other than si and are truly predicted 
by the model. 

/ ( ), 1, 2,..., .i i i iNPV TN TN FN i S= + =  (12) 

Table 4: The per-category performance comparison for 
different models during training. 

Cat. Measure Method 
RBF MLP DT 

s1 Sn 100 97 93 
 Sp 100 100 98.67 
 PPV 100 100 95.88 
 NPV 100 99.01 97.69 
s2 Sn 100 100 97 
 Sp 99.67 99.33 98.17 
 PPV 99.01 98.04 94.63 
 NPV 100 100 98.99 
s3 Sn 93.5 90.5 91 
 Sp 99.83 97.67 97.17 
 PPV 99.47 92.82 91.46 
 NPV 98.67 96.86 97 
s4 Sn 99.5 94.5 92.5 
 Sp 98.17 97 97.17 
 PPV 94.76 91.3 91.58 
 NPV 99.83 98.15 97.49 

Tables 4 and 5 compare the per-category 
performance measures for the three constructed 
models for the training and testing datasets, 
respectively. Again, the results demonstrate that the 
RBF network model outperforms MLP and DT 
models. 
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Table 5: The per-category performance comparison for 
different models during testing. 

Cat. Measure Method 
RBF MLP DT 

s1 Sn 100 98 86.5 
 Sp 99.67 99.83 95.83 
 PPV 99.01 99.49 87.37 
 NPV 100 99.34 95.51 
s2 Sn 100 100 89 
 Sp 99.67 99 96.5 
 PPV 99.01 97.09 89.45 
 NPV 100 100 96.34 
s3 Sn 90 87 79 
 Sp 98.67 97.5 92.67 
 PPV 95.74 92.06 78.22 
 NPV 96.24 95.74 92.98 
s4 Sn 95 94 77.5 
 Sp 97 96.67 92.33 
 PPV 91.35 90.38 77.11 
 NPV 98.31 94.1 92.49 

5 CONCLUSIONS 

In this paper we described a novel approach for 
automatic classification of deformable geometric 
shapes based on RBF networks and transform-based 
features. The performance of the proposed system is 
empirically evaluated and compared with other 
classification algorithms. Results showed that the 
proposed approach has better performance than the 
other considered classification algorithms in terms 
of classification accuracy, sensitivity, specificity, 
positive predictive value, and negative predictive 
value. As a future work we are comparing the 
proposed approach with other classifiers and we are 
investigating other ways to improve the results 
further. 
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