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Abstract: Much attention has been devoted in artificial intelligence to the verification of multi-agent systems and dif-
ferent logical formalisms have been proposed, such as Alternating-time Temporal Logic (ATL), Alternating
µ-calculus (AMC), and Coalition Logic (CL). Recently, logics able to express bounds on resources have been
introduced, such asRB-ATL andPRB-ATL, both of them based onATL. The main contribution of this paper
is the introduction and the study of a new formalism for dealing with bounded resources, based onµ-calculus.
Such a formalism, called Priced Resource-Bounded Alternatingµ-calculus (PRB-AMC), is an extension of
bothPRB-ATL andAMC. In analogy withPRB-ATL, we introduce aprice for each resource. By considering
that the resources have each a price (which may vary during the game) and that agents can buy them only if
they have enough money, several real world scenarios can be adequately described. First, we show that the
model checking problem forPRB-AMC is in EXPTIME and has a PSPACE lower bound. Then, we solve the
problem of determining the minimal cost coalition of agents. Finally, we show that the satisfiability problem
of PRB-AMC is undecidable, when the game is played on arenas with only one state.

1 INTRODUCTION

Much attention has been devoted in the artificial in-
telligence field to the verification of multi-agent sys-
tems. In that regard, different logical formalisms
have been proposed, such asAlternating-time Tem-
poral Logic (ATL) (Alur et al., 2002),Alternating
µ-calculus(AMC) (Alur et al., 2002), andCoalition
Logic (CL) (Pauly, 2002). Such logics allow one to
predicate about the abilities of teams of agents with
respect to specific tasks. Recently, some efforts have
been done towards the definition of more powerful
formalisms, which are able to capture also quantita-
tive aspects related to the task to be performed. In par-
ticular, we mentionRB-ATL (Alechina et al., 2009;
Alechina et al., 2010) andRAL (Bulling and Farwer,
2010). By means of formulae of these logics it is
possible to assign an endowment of resources to each
agent of a team and express the property that the team
is able to perform a given task with the available re-
sources. In (Della Monica et al., 2011), a further
variation of ATL, called Priced Resource-Bounded
Alternating-time Temporal Logic(PRB-ATL), has
been considered; in this logic aprice for each re-
source is introduced and team operators are accord-
ingly extended. By means of these features, several
real world scenarios can be adequately described. All

the formalisms introduced so far are based onATL

or CL. The main contribution of this paper is the
introduction and the study of a new formalism for
dealing with bounded resources, based onµ-calculus.
Recall that theµ-calculus is an extension of modal
logic with least and greatest fixpoints of monotone
operators on sets. Intuitively, least fixpoints corre-
spond to inductive definitions (e.g. liveness proper-
ties), and greatest fixpoints correspond to coinductive
definitions (e.g. safety properties). Nesting fixpoints
give further power to theµ-calculus so that it sub-
sumes many temporal, dynamic, and game-theoretic
logics used in system verification, artificial intelli-
gence, game theory, etc.

The formalism we propose is calledPriced
Resource-Bounded Alternating µ-calculus
(PRB-AMC). It is an extension of bothAMC

andPRB-ATL.

We study the model checking problem for
PRB-AMC, which turns out to be decidable in EX-
PTIME and PSPACE-hard, analogously to what hap-
pens forPRB-ATL (Della Monica et al., 2011). We
remark that in our logic, agents can both consume
and produce resources. Note that, when production
is allowed, the model checking problem can be unde-
cidable (see, e.g, (Bulling and Farwer, 2010)). Our
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decidability property is due to the fact that although
agents can produce resources, the production should
not exceed the initial availability of the resources.
Such a restriction to the notion of production makes
sense as, in practical terms, it allows one to model sig-
nificant real-world scenarios, such as, acquiring mem-
ory by a program, leasing a car during a travel, and,
in general, any scenario in which an agent is releasing
resources previously acquired.

We also tackle the problem of coalition forma-
tion. How and why agents should aggregate is not
a new issue and has been deeply investigated, in
past and recent years, in various frameworks, as for
example in algorithmic game theory, argumentation
settings, and logic-based knowledge representation,
see (Wooldridge and Dunne, 2006; Dunne et al.,
2010; Bulling and Dix, 2010). Analogously to what
has been done in (Della Monica et al., 2011) for
PRB-ATL, here we face this problem in the setting of
priced resource-bounded agents with the goal speci-
fied by anPRB-AMC formula. In particular we study
the problem of determining the minimal cost coali-
tions of agents acting in accordance to rules expressed
by a priced game arena and satisfying a given for-
mula. We show that also the optimal coalition prob-
lem is in EXPTIME and has a PSPACE lower bound.

Finally, we show that the satisfiability problem of
PRB-AMC is undecidable, when the game is played
on a one-point arena, that is, the underlying graph is
constituted by a single vertex. (Notice that such an
undecidability result does not immediately extend to
generic graphs.) While the result seems to be weak
per se, we conjecture that the problem is undecidable
in the general setting and we hope to use the present
result as a preliminary step towards the proof of the
general case.

2 SYNTAX AND SEMANTICS

The scenario is the same asPRB-ATL. So, we have
a setAG of n agents, a setRESof r resources, the
setM = (N∪{∞})r of resource availabilities, the set
N = (N∪{∞})n of money availabilities, whereN is
the set of all natural numbers 0,1,2, . . .. We let~b,~m
range overM and~$ range overN . Moreover, given a
vector~$, we will refer to the component correspond-
ing to the agenta as~$[a].

On the logical side, we use a set of atomic propo-
sitions Π and a set of fixpoint variablesVAR, to be
used inµ-calculus formulas. The syntax of formulas
is as follows:

φ ::= p | X | ¬φ | φ∧φ | 〈〈A~$〉〉©φ | µX.φ(X) | ∼~b

where p ∈ Π, X ∈ VAR, A ⊆ AG , ~$ ∈ N , ~b ∈ M
and∼∈ {<,>,=,≤,≥}. Moreover,µX.φ(X) is de-
fined only whenX occurs in an even number of nega-
tions in φ, so that formulas define monotonic opera-
tors on sets and we can apply Knaster-Tarski Fixpoint
Theorem (Tarski, 1955). Recall that the greatest fix-
point operatorνX.φ(X) can be defined as usual, that
is, νX.φ(X) = ¬µX.¬φ(¬X).

The semantics is based onpriced game structures
with environment, i.e., tuplesG = (Q,π,ENV,d,qty,
δ,ρ). They are analogous to the priced game struc-
tures used in (Della Monica et al., 2011), the only
new ingredient being the environmentENV : VAR→
2Q×M , with which we can evaluate formulas contain-
ing fixpoint variables. Recall that:

The semantics is based on priced game struc-
tures with environment analogous to the ones used
in (Della Monica et al., 2011), i.e. tuplesG =
(Q,π,ENV,d,qty,δ,ρ); here there is one extra fea-
ture, that is an environmentENV : VAR→ 2Q×M ,
with which we can evaluate formulas containing fix-
point variables. Recall that:
• Q is a finite set of locations, usually denoted

q,q1,q2, . . ..
• π : Q→ 2Π is a labeling function assigning to each

location the set of all atomic propositions which
are true on it.
• d(q,a) is the number of actions available for the

agenta on stateq. We code actions with num-
bers from 1 tod(q,a). We assume thatd(q,a)≥ 1
(there is always at least one action available) and
the action 1 means “doing nothing”.
For each location q ∈ Q and team A =
{a1, . . . ,ak} ⊆ AG , we denote byDA(q) the set
of action profiles available to the team A at the
location q, defined asDA(q) = {1, . . . ,d(q,a1)}×
. . .×{1, . . . ,d(q,ak)}. For the sake of readability,
we denoteDAG (q) by D(q). Given a teamA, an
agenta∈ A, and an action profile~αA, we will re-
fer to the component of the vector~αA correspond-
ing to the agenta as~αA[a]. Actions (resp., action
profiles) are usually denoted byα,α1, . . . (resp.,
~α,~α1, . . .).
• qty(q,a,α) is an element ofZr representing the

quantity of resources consumed or produced by
the agenta while performing the actionα ∈
d(q,a) on the locationq (Z is the set of integers).
Positive components represent resource produc-
tions, negative ones represent resource consump-
tions. qty(q,a,1) is the zero vector, for allq∈ Q,
a ∈ AG . With an abuse of notation we also de-
note byqtythe function defining the amount of re-
sources required by an action profile~αA ∈DA(q),
that isqty(q,~αA) = ∑a∈Aqty(q,a,~αA(a)).
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• δ(q,〈α1, . . . ,αn〉) is the transition function giving
the state reached fromq when then agents per-
form the action profile〈α1, . . . ,αn〉 ∈D(q).
• ρ(~m,q,a) is the price of ther resources depending

on resource availability~m∈ M , the locationq ∈
Q, and the agenta.
In order to define the semantics ofPRB-AMC,

we must introduce the notion of strategy. Unlike
(Della Monica et al., 2011), here it is enough to con-
sider only one-step strategies.

Let us fix the initial global availability of resources
~m0 and letA be a set of agents. A one-step strategy
FA for A is a function giving for each(q,~m) ∈Q×M
an action profile~αA containing a move~α[a] for each
a ∈ A. The outcome of a one-step strategy on(q,~m)
is the set of all configurations(q′,~m′) ∈ Q×M such
that there is an extension~αAG of~αA to AG such that:
• q′ = δ(q,~αAG ),
• ~m′ = ~m+qty(q,~αAG ),
• 0≤ ~m+qty(q,~αAG \A)≤ ~m0,

where~αAG \A is the restriction of~αAG to AG \A.

A one-step(~$,~m0)-strategyFA is a strategy such
that for every(q′,~m′) in the outcome ofFA on (q,~m),
we have:
• 0≤ ~m′ ≤ ~m0;
• ρ(~m,q,a) ·consumed(q,a,FA(q)[a])≤ $[a], for all

a∈ A,
whereconsumed(q,a,α) is obtained fromqty(q,a,α)
by replacing the positive components, representing
resource productions, with zeros, and the negative
ones, representing resource consumptions, with their
absolute values.

We define the semantics of our logic in two steps.
As a first step, we define a preliminarypre-modelhood
relation, and as a second step, we define the proper
modelhoodrelation, that makes use of the former one.
Thepre-modelhoodrelation is a quinary relation, de-
noted by:

G,~m0,q,~m |=0 φ,

whereG is a priced game structure with environment,
~m0 is the initial availability,q is a location,~m is the
current availability andφ is a formula.

We always suppose that~m≤ ~m0 and~m0 has the
same infinite components as~m.

The definition of|=0 is by induction onφ, and the
clauses are:
• G,~m0,q,~m |=0 p iff p∈ π(q);
• G,~m0,q,~m |=0 X iff (q,~m) ∈ ENV(X);
• G,~m0,q,~m |=0 ¬φ iff not G,~m0,q,~m |=0 φ;
• G,~m0,q,~m |=0 φ ∧ φ′ iff G,~m0,q,~m |=0 φ and

G,~m0,q,~m |=0 φ′;
• G,~m0,q,~m |=0 〈〈A

~$〉〉 © φ iff there exists a
(~$,~m0)-strategyFA such that, for all configura-

tions (q′,~m′) in the output ofFA, it holds that
G,~m0,q′,~m′ |= φ;
• G,~m0,q,~m |=0 µX.φ(X) iff (q,~m) belongs to the

smallest setE such thatE = {(q′,~m′)|G[X :=
E],~m0,q′,~m′ |=0 φ}, whereG[X := E] is the same
priced structure with environment asG, except
thatENV(X) = E;
• G,~m0,q,~m |=0∼~b iff ~m∼~b.

Finally, the propermodelhoodrelation is defined:

G,q,~m |= φ↔G,~m,q,~m |=0 φ.

3 EXPRESSIVENESS

Recall from (Della Monica et al., 2011) that
PRB-ATL has the following syntax:

φ ::= p | ¬φ | φ∧φ | 〈〈A~$〉〉©φ | 〈〈A~$〉〉φU φ
| 〈〈A

~$〉〉�φ | ∼~b,
where p ∈ Π, A ⊆ AG , ~$ ∈ N , ~b ∈ M and
∼∈ {<,>,=,≤,≥}.

Intuitively 〈〈A
~$〉〉φU φ′ means thatA can ensureφ

until φ′ holds, and〈〈A
~$〉〉�φ means thatA can ensure

thatφ holds forever.
So,PRB-ATL extendsATL, hence also the tem-

poral logic CTL. Moreover, it is well known that
CTL (resp.,ATL) can be efficiently translated into
µ-calculus (resp., the alternation-free fragment of
AMC), but not conversely, and thatCTL∗ (resp.,
ATL

∗) can be translated into theµ-calculus (resp.,
AMC), but not conversely.

In our more general setting, we extend the previ-
ous results as follows:

Theorem 3.1. PRB-ATL can be translated in
PRB-AMC.

Proof. The proof hinges on the model checking algo-
rithm for PRB-ATL. In fact, in order to make it clear
that these operators are fixpoint definable, it suffices
to rewrite the subroutines of the model checking al-
gorithm 1 of (Della Monica et al., 2011) for the oper-

ators〈〈A
~$〉〉φ1U φ2 and〈〈A

~$〉〉�φ.
We intend that the vector~$ can contain finite and

infinite components. The rewriting process goes by
induction on the sum of the finite components of~$.

We say that~$ is zero-infinite if it consists only of
zeros and infinites, and, for every~$, we denote by~$0

the least vector with the same infinite components as~$
(which is necessarily zero-infinite). In the algorithms
we assume the convention∞−∞ = ∞.

Rather than distinguishing two subroutines
for zero and nonzero money assignments as in
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(Della Monica et al., 2011), we distinguish two
subroutines for zero-infinite and non-zero-infinite
money assignments.

In all our subroutines we replace thePreoperators

with next operators〈〈A
~$〉〉©φ, which are available in

PRB-AMC.
We fix a priced arena with environmentG and an

initial availability ~m. Given a formulaφ, we use the
notation[φ] to denote the set{(q′,~m′) |G,~m,q′,~m′ |=0
φ}, where|=0 is the auxiliary pre-modelhood relation
defined in the previous section. By definition of the
proper modelhood relation|=, we have(q,~m) ∈ [φ] if
and only ifG,q,~m |= φ, for eachq∈Q.

Let us begin with the subroutine forφ =

〈〈A
~$〉〉ψ1Uψ2 when~$ is zero-infinite.

1: τ← [ f alse]
2: σ← [ψ2]
3: while τ 6= σ do
4: τ← σ
5: σ← τ∪ ([〈〈A~$〉〉© τ]∩ [ψ1])
6: end while
7: [φ]← σ

Now we observe that the while loop (line 3) cal-
culates fixpoints. More precisely, it is equivalent to

a simultaneous assignmentσ,τ := µX.ψ2∨ (〈〈A
~$〉〉©

X ∧ψ1). By replacing the while loop with a fixpoint
assignment we obtain the algorithm:

1: τ← [ f alse]
2: σ← [ψ2]

3: σ,τ← µX.ψ2∨ (〈〈A
~$〉〉©X∧ψ1)

4: [φ]← σ

where it is clear that the semantics ofφ is definable in
PRB-AMC.

Likewise, if~$ is not zero-infinite then we have:

1: τ← [〈〈A
~$0〉〉ψ1Uψ2]

2: for all~$′ <~$ with the same infinites as~$ do
3: σ← τ∪ ([〈〈A~$−~$′〉〉©〈〈A~$′〉〉ψ1Uψ2]∩ [ψ1])
4: while τ 6= σ do
5: τ← σ
6: σ← τ∪ ([〈〈A~$0〉〉© τ]∩ [ψ1])
7: end while
8: end for
9: [φ]← σ

The first line of the algorithm is a fixpoint def-
inition by the zero-infinite case. Moreover, in each
iteration of the for loop (line 2), the first assigment is
a fixpoint definition by induction, and the while loop
(line 4) is equivalent to a fixpoint assignment on the

variablesσ andτ. By replacing the while loop with
this fixpoint assignment, we have a fixpoint definition
of σ andτ at the end of every iteration of the for loop.
So, at the end of the algorithm we have a fixpoint def-
inition of the semantics ofφ.

The situation is analogous forφ = 〈〈A
~$〉〉�ψ. Let

us begin with the subroutine for〈〈A
~$〉〉�ψ when~$ is

zero-infinite.

1: τ← [true]
2: σ← [ψ]
3: while τ 6= σ do
4: τ← σ
5: σ← [〈〈A

~$〉〉© τ]∩ [ψ]
6: end while
7: [φ]← σ

In this case, the while loop (line 3) calculates a

greatest fixpoint, i.e.,σ,τ := νX.〈〈A
~$〉〉©X∧ψ. By

replacing the while loop with a fixpoint assignment,
we have a fixpoint definition of the semantics ofφ.

Finally, if~$ is not zero-infinite then we have:

1: τ← [〈〈A
~$0〉〉�ψ]

2: for all~$′ <~$ with the same infinites as~$ do
3: σ← τ∪ ([〈〈A~$−~$′〉〉©〈〈A~$′〉〉�ψ]∩ [ψ])
4: while τ 6= σ do
5: τ← σ
6: σ← τ∪ ([〈〈A~$0〉〉© τ]∩ [ψ])
7: end while
8: end for
9: [φ]← σ

The first line of the algorithm is a fixpoint defini-
tion by the zero-infinite case. Moreover, in each iter-
ation of the for loop (line 2), the first line is a fixpoint
definition by induction, and the while loop (line 4)
calculates a least fixpoint. So by replacing the while
loop with a fixpoint assignment onσ andτ, we have a
fixpoint definition ofσ andτ at the end of every iter-
ation of the for loop. At the end of the algorithm, we
have a fixpoint definition of the semantics ofφ.

Notice that the existence of anefficienttranslation
from PRB-ATL to PRB-AMC (like the one ofCTL
into µ-calculus) is an open problem currently under
investigation.

4 MODEL CHECKING

In (Della Monica et al., 2011), the authors consider
the model checking problem forPRB-ATL, proving
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that it is in EXPTIME and it is PSPACE-hard. In this
paper, we extend these results toPRB-AMC.

Theorem 4.1. The model checking problem for
PRB-AMC is in EXPTIME and it is PSPACE-hard.

Proof. The PSPACE-hardness directly follows from
the one of the model checking problem forPRB-ATL.

To prove the EXPTIME upper bound, we pro-
vide an exponential time recursive algorithm, called
set (see Algorithm 1, whereM ≤~m

′
denotes the set

{~m∈ M | ~m≤ ~m′}, for a resource availability~m′ ∈
M ), which, given a priced game structure with envi-
ronmentG, a formulaφ, and a resource availability
~m′, outputs the set of all configurations(q,~m), with
~m≤ ~m′, which verifyφ in G. The algorithm is a com-
bination of those in (Della Monica et al., 2011) and
(Emerson, 1996).

Note that the time complexity of the algorithm
is O((|G| × |M|r)|φ|), while the space complexity is
O(|G|× |M|r), whereM is the maximum component
occurring in the initial resource availability vector~m′.

Finally, in order to check whether a formulaφ
is true over a game structureG and a configuration
(q,~m) in G, the model checking algorithm simply
consists in verifying if(q,~m) belongs to the output
of set(φ,G,~m).

Algorithm 1: set(φ,G,~m′)
// computes the set of configurations (q,~m)

such that ~m≤ ~m′ and G,~m′,q,~m |=0 φ.

1: if φ =∼~b then
2: return {(q,~m) | ~m∼~b and~m≤ ~m′}
3: else if φ = p /* p∈ Π */ then
4: return {(q,~m) | p∈ π(q),~m≤ ~m′}
5: else if φ = X /* X ∈VAR*/ then
6: return {(q,~m) | (q,~m) ∈ ENV(X),~m≤ ~m′}
7: else if φ = ¬ψ then
8: return (Q×M ≤~m

′
)\set(ψ,G, ~m′)

9: else if φ = ψ1∧ψ2 then
10: return set(ψ1,G,~m′)∩set(ψ2,G,~m′)

11: else if φ = 〈〈A
~$〉〉©ψ then

12: return Pre(A,ψ,~$,G,~m′)
13: else if φ = µX.ψ(X) then
14: X′← /0
15: X← set(ψ(X),G,~m′)
16: while X′ 6= X do
17: X′ = X
18: X = set(ψ(X),G,~m′)
19: end while
20: return X
21: end if

Observe that the problem is PSPACE-complete
when the number of resources is constant.

5 THE OPTIMAL COALITION
PROBLEM

In (Della Monica et al., 2011), an optimality prob-
lem is introduced, called theOptimal Coalition prob-
lem (OC). This is the problem of finding the coali-
tions which achieve the given formulas with least
cost, if such coalitions exist. Formally, we intro-
duce team variablesY1, . . . ,Yk (we useY to avoid
confusion with fixpoint variables), and we admit for-

mulasφ(Y
~$1
1 , . . . ,Y

~$k
k ) containing the team variables

Y1, . . . ,Yk (in place of some of the teams) with the cor-
responding money endowments~$1, . . . ,~$k. We denote
by φ[Y1, . . . ,Yk/A1, . . . ,Ak] the formula in which each
team variableYi is replaced by the teamAi ⊆ AG . We
fix a priced game structureG, a locationq of G and
an initial global availability~m. The output is a triple
〈res,A∗,cost〉 where:
• res∈ {true, f alse} and res= true iff there is a

vector of teams〈A1, . . . ,Ak〉 such thatG,q,~m |=
φ[Y1, . . . ,Yk/A1, . . . ,Ak];
• if res= true, A∗ is a vector which minimizes the

cost (otherwiseA∗ is undefined);
• cost= Σk

i=1
~$i ·Ai is the cost of the vector of teams,

whereAi is the characteristic vector ofAi seen as
a subset ofAG , and· denotes scalar product be-
tween vectors.
We have the following result:

Theorem 5.1. In PRB-AMC, the OC problem is in
EXPTIME and it is PSPACE-hard.

Proof. We check the cost of all possible(2n)k vectors
of teams by calling each time the model checking al-
gorithm of the previous section. As we have seen, this
algorithm is inEXPTIME; so also theOCproblem is.

The PSPACE-hardness follows from hardness of
the decisional version, and hardness of the latter fol-
lows from the proof of Theorem 3.2 of (Della Monica
et al., 2011) (again because thePRB-ATL formulas
used there actually belong toPRB-AMC).

6 AN UNDECIDABILITY RESULT

In this section we show the following result:

Theorem 6.1. It is undecidable whether a formula of
PRB-AMC is satisfiable in a one point arena (i.e. an
arena where Q is a singleton).

To prove the theorem we reduce to our satisfiabil-
ity problem a well-known undecidable problem, the
solvability of equationsA(n) = B(n), wheren is a
vector of variables ranging overN andA andB are
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polynomials with coefficients inN, see (Matiyase-
vich, 1993). In this section we let the lettersm,n, p, . . .
range overN.

The first step of the reduction, which is standard,
is to start from an equationA(n) = B(n) and to ex-
press solvability of the equation via solvability of a
finite systemΣ(A,B) of equations of the formm= a
(with a∈ N) , m= n+ p andm= n× p. The second
step is the following lemma:

Lemma 6.1. Let Σ be a finite system of relations of
the form m= a (a∈ N), m= n+ p and m= n× p,
with a set X of unknown variables. Then one can find
effectively:
• a set RΣ of resources and a subset QΣ of RΣ
• a formula AΣ of PRB-AMC over RΣ satisfiable in

a one point arena
• a formula∆Σ ofPRB-AMC

such that in every one point model M of AΣ, Σ holds
in M if and only if M verifies∃QΣ∆Σ.

The proof of the lemma is omitted for lack of
space and will be provided in a future extended ver-
sion. Now, the theorem follows from the next Corol-
lary of Lemma 6.1.

Corollary 6.1. Let Σ be a finite system of equations
of the form m= a (a∈ N), m= n+ p and m= n× p.
Then one can find effectively:
• a set RΣ of resources
• a formula AΣ over RΣ
• a formula∆Σ ofPRB-AMC

such thatΣ is solvable if and only if AΣ∧∆Σ is satisfi-
able in a one point arena inPRB-AMC.

7 CONCLUSIONS

In this paper, we have presented an extension ofµ-
calculus, calledPRB-AMC, suitable for modeling
collective behavior of groups of agents acting in envi-
ronment where resource availability is limited.

The present work follows previous approaches in
that direction (Alechina et al., 2010; Bulling and
Farwer, 2010; Della Monica et al., 2011), the main
difference being the formalism underlying the logic,
namely, theµ-calculus instead of the Alternating-
time Temporal Logic. Even though our logic is
more expressive than logics introduced in previous
work, in particularPRB-ATL, the complexity of both
the model checking problem and the optimal coali-
tion problem is not harder than inPRB-ATL, i.e,
EXPTIME with PSPACE lower bound. The exact
complexity of both problems is conjectured to be
EXPTIME-complete. Additionally, we have explored
the satisfiability problem forPRB-AMC, proving its

undecidability in the particular case when the game
structure is an arena with only one state. The satis-
fiability problem in the general case is an interesting
open problem currently under study.
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