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Abstract: Knowledge representation and reasoning in real-world applications often require to integrate multiple aspects
of space. In this paper, we focus our attention on the so-called Rectangular Cardinal Direction calculus for
qualitative spatial reasoning on cardinal relations between rectangles whose sides are aligned to the axes of the
plane. We first show how to extend a tractable fragment of such a calculus with metric constraints preserving
tractability. Then, we illustrate how the resulting formalism makes it possible to represent available knowledge
on directional relations between rectangles and to derive additional information about them, as well as to
deal with metric constraints on the height/width of a rectangle or on the vertical/horizontal distance between
rectangles.

1 INTRODUCTION

Qualitative spatial representation and reasoning play
an important role in various areas of computer sci-
ence such as, for instance, geographic information
systems, spatial databases, document analysis, lay-
out design, and image retrieval. Different aspects of
space, such as direction, topology, size, and distance,
which must be dealt with in a coherent way in many
real-world applications, have been modeled by differ-
ent formal systems (Broxvall, 2002; Condotta, 2000;
Gerevini and Renz, 2002; Liu et al., 2009) (see (Cohn
and Hazarika, 2001) for a survey). For practical rea-
sons, a bidimensional space is commonly assumed,
and spatial entities are represented by points, boxes,
or polygons with a variety of shapes, depending on
the required level of detail.
Information about spatial configurations is usually
specified by constraint networks describing the al-
lowed binary relations between pairs of spatial vari-
ables. The central problem in qualitative reasoning is
consistency checking, which is the problem of decid-
ing whether or not a network has a solution, that is,
the problem of establishing whether or not there ex-
ists an assignment of domain values to variables that
satisfies all constraints.

Cardinal relations are directional relationships
that allow one to specify how spatial objects are

placed relative to one another either by making use
of a fixed reference system, e.g., to say that an object
is to the “north” or “southwest” of another one in a ge-
ographic space, or, alternatively, by exploiting direc-
tions as “above” or “below and left” in a local space.
Cardinal relations are of particular interest for geo-
graphic information systems, spatial databases, and
image databases (Frank, 1996; Goyal, 2000; Papadias
and Theodoridis, 1997; Skiadopoulos et al., 2005).
The most expressive formalism with cardinal rela-
tions between extended spatial objects is theCardi-
nal Direction calculus, CD-calculusfor short (Goyal
and Egenhofer, 2000; Liu et al., 2010; Skiadopou-
los and Koubarakis, 2005). The consistency problem
for the CD-calculus is NP-complete, and no tractable
fragment of it has been identified so far, with the
only exception of the fragment obtained by forbidding
disjunctive relations (Skiadopoulos and Koubarakis,
2005). Such a restriction is a serious limitation when
we have to deal with incomplete or indefinite infor-
mation in spatial applications.

In (Navarrete and Sciavicco, 2006), the au-
thors introduce a restricted version of the CD-
calculus calledRectangular Cardinal Direction cal-
culus (RCD-calculus), where cardinal relations are
defined only between rectangles whose sides are par-
allel to the axes of the Euclidean plane. Rectangles
of this type (boxes) can be seen as minimum bound-
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ing rectangles (MBRs) that enclose plane regions (the
actual spatial objects). MBRs have been widely used
in spatial databases (El-Geresy and Abdelmoty, 2001;
Papadias and Theodoridis, 1997), in web-document
analysis (Gatterbauer and Bohunsky, 2006), and in
2D-layout design, e.g., in architecture (Baykan and
Fox, 1997). On the one hand, approximating regions
by rectangles implies a loss of accuracy in the rep-
resentation of the relative direction between regions;
on the other hand, reasoning tasks become more effi-
cient.
The RCD-calculus has a strong connection with the
Rectangle Algebra(RA) (Balbiani et al., 1998), which
can be viewed as a bidimensional extension ofInter-
val Algebra(IA), the well-known temporal formalism
for dealing with qualitative binary relations between
time intervals (Allen, 1983). A tractable fragment
of the RCD-calculus, namedconvex RCD-calculus,
has been identified by Navarrete et al. in (Navarrete
et al., 2011). It includes all basic relations and a large
number of disjunctive relations, making it possible to
represent and reason about indefinite information ef-
ficiently.

This paper aims at adding metric features to for-
malisms for qualitative spatial reasoning. Metric con-
straints between points over a dense linear order have
been dealt with by the Temporal Constraint Satis-
faction Problem formalism (TCSP) (Dechter et al.,
1991). In such a formalism, one can constrain the dis-
tance between a pair of points to belong to a given set
of intervals. If each constraint consists of one inter-
val only, we get a tractable fragment of TCSP, called
Simple Temporal Problem formalism (STP).
In the following, we propose a metric extension to
the convex RCD-calculus that allows one to repre-
sent available knowledge on directional relations be-
tween rectangles and to derive additional informa-
tion about them, as well as to deal with metric con-
straints on the height/width of a rectangle or on the
vertical/horizontal distance between rectangles. We
will show that the resulting formalism is expressive
enough to capture various scenarios of practical inter-
est and still computationally affordable.

The rest of the paper is organized as follows.
In Section 2, we provide background knowledge on
qualitative calculi and we shortly recall Interval Al-
gebra and Rectangle Algebra. In Section 3, we intro-
duce RCD-calculus and its convex fragment. In Sec-
tion 4, we extend the convex RCD-calculus with met-
ric constraints, and we devise a sound and complete
polynomial algorithm for consistency checking. We
conclude the section with a simple application exam-
ple. Conclusions provide an assessment of the work
and outline future research directions.

Figure 1: Basic relations of the Interval Algebra.

2 PRELIMINARIES

In this section, we introduce basic notions and termi-
nology.

Temporal knowledge, as well as spatial knowl-
edge, is commonly represented in a qualitative cal-
culus by means of aqualitative networkconsisting
of a complete constraint-labeled digraphN = (V,C),
whereV = {v1, . . . ,vn} is a finite set of variables, in-
terpreted over an infinite domainD, and the labeled
edges inC specify the constraints describing qual-
itative spatial or temporal configurations. An edge
from vi to v j labeled withR corresponds to thecon-
straint vi Rvj , whereR denotes a binary relation over
D which restricts the possible values for the pair of
variables(vi ,v j). The full set of relations of the cal-
culus is usually taken as the powerset 2B , whereB
is a finite set ofbinary basic relationsthat forms a
partition of D×D. Thus, a relationRi j ∈ 2B is of
the form R= {r1, . . . , rm}, where eachr i is a basic
relation, andR represents the union of the basic rela-
tions it contains. Ifm= 1, we callR a basic relation;
otherwise, we call it adisjunctive relation. A special
case of disjunctive relation is theuniversal relation,
denoted by ‘?’, which contains all the basic relations.
A basic constraint vi{r}v j expresses definite knowl-
edge about the values that the two variablesvi ,v j can
take, while adisjunctive constraint vi{r1, . . . , rm}v j
expresses indefinite or imprecise knowledge about
these values. In particular, theuniversal constraint
vi ?v j states that the relation betweenvi an v j is to-
tally unknown. From a logical point of view, a dis-
junctive constraintvi{r1, . . . , rm}v j can be viewed as
the logical disjunctionvi {r1} v j ∨·· ·∨vi {rm} v j .

An instantiation (or interpretation) of the con-
straints of a qualitative networkN is a mappingι rep-
resenting an assignment of domain values to the vari-
ables ofN. A constraintvi Rvj is said to besatisfied
by an instantiationι if the pair (ι(vi), ι(v j )) belongs
to the binary relation represented byR. A consistent
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instantiation, or solution, of a network is an assign-
ment of domain values to variables satisfying all the
constraints. If such a solution exists, then the network
is consistent, otherwise it is inconsistent.

The main reasoning task in qualitative reasoning
is consistency checking, which amounts to deciding if
a network is consistent. If all relations are considered,
consistency checking is usually NP-hard. Hence,
finding subsets of 2B for which consistency check-
ing turns out to be polynomial (tractable subsets) is
an important issue to address. Another common task
in qualitative reasoning is computing the uniquemini-
mal networkequivalent to a given one by determining,
for each pair of variables, thestrongestrelation(min-
imal relation) entailed by the constraints of the net-
work. It can be easily shown that each basic relation
in a minimal network isfeasible, i.e., it participates in
some solution of the network.

To deal with these tasks, constraint propagation
techniques are usually exploited. The most promi-
nent method for constraint propagation is thepath-
consistency algorithm, PC-algorithm for short (Mack-
worth, 1977). Such an algorithm refines relations
by successively applying the operationRi j ← Ri j ∩
(Rik ◦Rk j) for every triple of variables(vi ,vk,v j), un-
til a stable network is reached, whereRi j ,Rik,Rk j
are the relations constraining the pair of variables
(vi ,v j ),(vi ,vk),(vk,v j), respectively (◦ stands for the
composition of relations). If the empty relation is ob-
tained during the process, then the input network is in-
consistent; otherwise, we can conclude that the output
network ispath consistent, which does not necessarily
imply that it is consistent. In some special cases, the
PC-algorithm can be used to decide the consistency
of a qualitative network and to get the minimal one.

2.1 Interval Algebra and Point Algebra

Allen’s Interval Algebra(IA) allows one to model
the relative position of two temporal intervals (Allen,
1983). An intervalI is usually interpreted as a closed
interval over the rational numbers[I−, I+], whose
endpoints I− andI+ satisfy the relationI− < I+. Let
B ia be the set of the thirteenbasic interval relations
capturing all possible ways to order the four end-
points of two intervals, usually denoted by the sym-
bols b,o,d,m,s, f ,e,bi,oi,di,mi,si, and f i. The se-
mantics of basic IA-relations is defined in terms of
ordering relations between the endpoints of the inter-
vals, as shown in Figure 1. Notice that, given a basic
relationr between two intervalsI andJ, the inverse
relationri is defined by simply exchanging the roles
of I andJ (see Figure 1). IA can be viewed as a con-
straint algebra defined by the power set 2B ia and the

operations of intersection, inverse (−1), and composi-
tion (◦) of relations.

IA subsumesPoint Algebra, PA for short (Vi-
lain and Kautz, 1986), a simpler qualitative calculus
whose binary relations specify the relative position of
pairs of time points. PA binary relations are<,>,=
(basic) and≤,≥, 6=,? (disjunctive), plus the empty re-
lation. The endpoint relations defining an IA-relation
(Figure 1) are basic relations of PA.

2.2 Rectangle Algebra

Rectangle Algebra (RA), proposed by Balbiani et
al. (1998), is an extension of IA to a bidimensional
space1. We assume here the domain of RA to consist
of the set of rational rectangles whose sides are paral-
lel to the axes of the Euclidean plane. To avoid a no-
tational overload, with an abuse of notation, hereafter
we will denote bya,b both rectangles in the domain
of RA and constraint (rectangle) variables. A rectan-
glea is completely characterized by a pair of intervals
(ax,ay), whereax anday are the projections ofa onto
thex- andy-axis, respectively. We callB ra the set of
basic relations of RA, which is obtained by consid-
ering all possible pairs of basic IA-relations. Hence,
a basic RA-relationr is denoted by a pairr = (t, t ′)
of basic IA-relations, representing the set of pairs of
rectangles(a,b) such thata(t, t ′)b holds if and only
if, by definition,ax t bx anday t ′by hold. Given a basic
RA-relationr = (t, t ′), let t = πx(r) andt ′ = πy(r) be
thex- andy-projection ofr, respectively.

Example 1. Figure 2 shows a spatial realization of
the basic RA-constraint a{(o,bi)}b. We have that
πx(o,bi) = o, πy(o,bi) = bi, ax overlaps bx, and ay is
after by. The left endpoints of the intervals assigned
to ax and ay (1 and 5.9, respectively) and their right
endpoints (4.6 and 8, respectively) are the coordinates
of the lower-left and upper-right vertices of the given
instantiation of a, respectively. The same for b. Thus,
the values assigned to the endpoints of the projections
of a and b represent an assignment for a and b that
satisfies the constraint a{(o,bi)}b.

In the case of an arbitrary RA-relationR∈ 2B ra ,
theprojections of Rare defined as follows:

πx(R) = {πx(r) | r ∈ R} πy(R) = {πy(r) | r ∈ R}.

Notice that, in general,πx(R)×πy(R) may be differ-
ent fromR or, equivalently, we may haveπx(R1) =
πx(R2) andπy(R1) = πy(R2) for someR1 6= R2.

The mappingsπx and πy can be generalized to
RA-networks. We define the projectionsπx and πy

1An extension of RA ton-dimensional spaces can be
found in (Balbiani et al., 2002).
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Figure 2: An instantiation of the RA-constrainta{(o,bi)}b.
The corresponding RCD-relation isa{NW:N}b

of an RA-networkN = (V,C) as the two IA-networks
πx(N) = (Vx,Cx) andπy(N) = (Vy,Cy), whereVx,Vy
are the sets of interval variables corresponding to the
rectangle variables inV and the set of IA-constrains
Cx (resp.,Cy) is obtained by replacing each relation
Ri j in C by πx(Ri j ) (resp., byπy(Ri j )).

2.3 Convex Subalgebras

The consistency problem for both IA and RA is
known to be NP-complete. Several tractable frag-
ments of both calculi have been identified in the liter-
ature. In this paper, we focus our attention on convex
tractable subsets of IA (van Beek and Cohen, 1990)
and RA (Balbiani et al., 1998), which consist of the
set of convex IA-relationsand convex RA-relations,
respectively. Convex relations are those relations that
can be equivalently expressed as a set of convex PA-
constraints (all PA-relations except6= are allowed)
between the endpoints of interval variables (convex
IA-relations) or between the endpoints of the projec-
tions of rectangle variables (convex RA-relations) It is
worth to mention that a convex RA-relation is equiv-
alently characterized as a RA-relation which can be
obtained as the Cartesian product of two convex IA-
relations. A PC-algorithm can be used to solve both
the consistency and the minimality problems in the
convex fragments of PA, IA, and RA inO(n3), where
n in the number of variables of the input network.

3 RECTANGULAR CARDINAL
DIRECTION CALCULUS

The Rectangular Cardinal Direction calculus (RCD-
calculus, for short) (Navarrete and Sciavicco, 2006;
Navarrete et al., 2011) deals with cardinal direction
relations between rectangles. Hence, its domain is
the same as that of RA. Letb be a referencerect-
angle. We denote byb−x andb+x (resp.,b−y andb+y )
the left and the right endpoint of the projection of
b onto thex-axis (resp.,y-axis), respectively. The

b
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Figure 3: (a) Cardinal tiles with respect to rectangleb. (b) A
possible instantiation of the RCD-constraintaB:N:NE:E b.

straight linesx = b−x , x = b+x , y = b−y , y = b+y di-
vide the plane into nine tilesτi(b), with 1≤ i ≤ 9, as
shown in Figure 3-(a), whereτi is a tile symbolfrom
the setTS= {B,S,SW,W,NW,N,NE,E,SE}, denot-
ing the cardinal directions in the Bounds of, to the
South of, to the SouthWest of, to the West of, to the
NorthWest of, to the North of, to the NorthEast of, to
the East of, and to the SouthEast of, respectively.

Definition 1. A basic rectangular cardinal relation
(basic RCD-relation) is denoted by atile string
τ1:τ2: . . . :τk, whereτi ∈ TS, for1≤ i ≤ k, such that
aτ1:τ2: . . . :τk b holds iff for all τi ∈ {τ1,τ2, . . . ,τk},
a◦ ∩ τi(b) 6= ∅, and for all τi ∈ TS\ {τ1,τ2, . . . ,τk},
a◦∩ τi(b) =∅, where a◦ is the interior of a. Arectan-
gular cardinal relation(RCD-relation) is represented
by a set R= {r1, . . . , rm}, where each ri is a basic
RCD-relation.

As usual, ifR is a singleton, then it is a basic RCD-
relation; otherwise, it is a disjunctive one.

The setB rcd of basic RCD-relations consists of 36
elements (see Figure 4). Qualitative networks with
labels in 2B rcd , as well as the consistency problem for
such networks, are defined in the standard way.

The RCD-calculus can be viewed as a restricted
version of the CD-calculus over the domain of reg-
ular regions (Goyal and Egenhofer, 2000; Liu et al.,
2010; Skiadopoulos and Koubarakis, 2005), which
includes all rectangles aligned to the axes. Leta,b
denote regions. A cardinal relation is defined by con-
sidering the exact shape of a primary regiona and
theminimum bounding rectangle(MBR) of the refer-
ence regionb, whereMBR(b) is the smallest rectangle
aligned to the axes of the plane that enclosesb. There
are 218 CD-relations over connected regions, that be-
come 512 if we allow disconnected regions. Cardinal
relationships between regions may be approximated
by RCD-relations between theirMBRs, with a possi-
ble loss of accuracy when the regions are non-convex
or diagonal. The advantage of the RCD-calculus over
the CD-calculus is its simplicity (only 36 basic rela-
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tions), which leads to a better computational behavior,
also when disjunctive relations are considered.

Example 2. Figure 3-(b) shows a possible instan-
tiation of the CD-constraint aB:N:E b. We in-
deed have that a lies partly in the bounds, partly
to the north, and partly to the east ofMBR(b).
Alternatively, the pair(MBR(a),MBR(b)) in Fig-
ure 3-(b) can be viewed as an instantiation of
the RCD-constraint aB:N:NE:E,b, as it holds that
MBR(a)B:N:NE:E MBR(a). Notice that while the
CD-constraint exactly specifies the direction of re-
gion a with respect to the minimum bounding rectan-
gle of region b, the direction expressed by the RCD-
constraint is just approximated, since a does not in-
tersect the tile NE(b) (= NE(MBR(b))), that is, a
does not lie partly to the northeast ofMBR(b). No-
tice also that, in general, a basic CD-constraint aRb
alone does not provide definite information about the
relative direction of pairs of regions. For that pur-
pose, both aRb and bR′a must be specified.

3.1 RCD and RA

The relationships between RCD and RA have
been systematically investigated in (Navarrete et al.,
2011). For instance, consider the RCD-constraint
a{NW:N}b. A possible instantiation of such a con-
straint is depicted in Figure 2. The very same
pair of rectangles can be viewed as an instance
of the RA-constrainta{(o,bi)}b as well. How-
ever, there exists another possible instantiation of
the constrainta{NW:N}b that satisfies the RA-
constrainta{(o,mi)}b. In general, for a given RCD-
constraint there exist more than one corresponding
RA-constraints, while for a given RA-constraint there
exists exactly one corresponding RCD-constraint.
This is due to the coarseness of RCD-relations with
respect to RA-relations. As an example, RCD does
not allow one to precisely state that two given rectan-
gles are externally connected or strictly disconnected,
or to constrain their sides to be (or to be not) ver-
tically (resp., horizontally) aligned. As a general
rule, given an RCD-relation, we can always deter-
mine the strongest RA-relation it implies. As an ex-
ample, the strongest RA-relation implied byNW:N is
{ f i,o}× {mi,bi}. Notice that such an RA-relation,
which is entailed by a basic RCD-relation, is not a
basic RA-relation.

The weaker expressive power of RCD with respect
RA is not necessarily a problem. As an example, if
an application is interested in pure cardinal informa-
tion only, the expressiveness of RCD-relations suf-
fices. Moreover, the constraint language of the RCD-
calculus is closer to the natural language than the one

of the RA. For example, stating that “rectanglea lies
partly to the northwest and partly to the north ofb”
(a{NW:N}b) is much more natural than stating that
“the x-projection ofa is overlapping or finished by
thex-projection ofb, and they-projection ofb is . . . ”
(a{ f i,o}×{mi,bi}b).

Figure 4: Translation from basic RCD-relations to RA-
relations viatoRAmapping.

Figure 4 describes a translation function, called
toRA, to map a basic RCD-relation into the strongest
entailedRA-relation. This mapping can be extended
to translate arbitrary relations, constraints, and net-
works of RCD-calculus to their counterparts in RA,
preserving consistency. More precisely, given a dis-
junctive relationR, toRA(R) is obtained as the union
of the translation of the basic relations inR, while,
given an RCD-networkN = (V,C), the corresponding
RA-network toRA(N) is obtained by replacing each
relationRi j in C by toRA(Ri j ). As the following the-
orem states, to decide the consistency of an RCD-
networkN, one can compute the corresponding RA-
network toRA(N) and then apply any algorithm for
deciding the consistency of RA-networks (Navarrete
et al., 2011).

Theorem 1. An RCD-network N is consistent if and
only if the RA-network toRA(N) is consistent.

3.2 The Convex Fragment of RCD

In (Navarrete and Sciavicco, 2006), the authors prove
that the consistency problem for the RCD-calculus is
NP-complete, and they identify a tractable subset of
RCD-relations. A larger tractable fragment of RCD-
calculus, calledconvex RCD-calculus, has been iden-
tified in (Navarrete et al., 2011). Such a fragment
consists of all and only the RCD-relationsR whose
translationtoRA(R) is a convex RA-relation (convex
RCD-relations). It is possible to show that there exist
400 such relations.

As we already pointed out, the convex subclasses
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Algorithm 3.1: the algorithmcon-cRCD.

Require: a convex RCD-networkN
1: Nr ← toRA(N);
2: Nx← πx(Nr); Ny← πy(Nr);
3: NP

x ← toPA(Nx); NP
y ← toPA(Ny);

4: If CSPAN(NP
x ) or CSPAN(NP

y ) returns an empty
network, then return ‘inconsistent’; otherwise, re-
turn ‘consistent’.

of IA, PA, and RA are tractable and PC-algorithms
can be used to decide their consistency. In particu-
lar, the following result holds for RA (Balbiani et al.,
1998):

Theorem 2. Let N be a convex RA-network. N is
path-consistent (resp., consistent) iff its projections
πx(N) and πy(N) are path-consistent (resp., consis-
tent). Moreover, if N is path consistent, then it is con-
sistent.

Making use of the above results, polynomial-time
algorithms to solve the consistency and the minimal-
ity problems for convex RCD-networks have been
proposed in (Navarrete et al., 2011). In the follow-
ing, we will exploit one of these algorithms, called
con-cRCD, that solves the two PA-networks corre-
sponding to a convex RCD-network. Such an algo-
rithm can be summarized as follows. LetN be a con-
vex RCD-network. First, it applies the mappingtoRA
to get the convex RA-networkNr corresponding toN.
Then, it computes the projectionsNx and Ny of Nr .
Next, it applies the mappingtoPAto translate the con-
vex IA-networksNx andNy into two equivalent PA-
networksNP

x andNP
y with convex relations between

intervals endpoints. Such a mapping is based on the
list of the convex IA-relations and of their transla-
tions to PA given in (van Beek and Cohen, 1990).
Finally, the algorithmCSPAN (van Beek, 1992) is
applied to decide the consistency of the two convex
PA-networks inO(n2) (we assume that this algorithm
returns an empty network in case the input network
is inconsistent). It can be easily shown that such an
algorithm runs inO(n2). Algorithm 3.1 provides a
pseudocode encoding ofcon-cRCD.

4 CONVEX-METRIC RCD

In this section, we propose a tractable metric ex-
tension of the convex RCD-calculus, calledconvex-
metric RCD, to represent and to reason with both
qualitative cardinal constraints between rectangles
and metric constraints on the distance between the
endpoints of their projections.

4.1 STP

The main tool we use to deal with metric information
in convex-metric RCD is the STP formalism, which
was introduced in (Dechter et al., 1991) to process
metric information about time points. More precisely,
we use STP to elaborate information on the endpoints
of MBR projections onto the Cartesian axes.

Formally, an STP is specified by a constraint net-
work S= (P,M), whereP is a set of point variables,
whose values range over a dense domain (we as-
sume it to beQ), and M is a set ofbinary metric
constraints overP. A metric constraintMi j = [q,q′]
(open and semi-open intervals can be used), with
q,q′ ∈ Q, on the distance between (the values of)
pi , p j ∈ P states thatp j − pi ∈ [q,q′], or, equivalently,
that q≤ p j − pi ≤ q′. Hence, the constraintMi j de-
fines the set of possible values for the distancep j− pi.
In the constraint graph associated toS, Mi j = [q,q′]
is represented by an edge frompi to p j labeled by
the rational interval[q,q′]. Unary metricconstraints
restricting the domain of a point variablepi can be
encoded as binary constraints betweenpi and a spe-
cial starting-point variable with a fixed value, e.g., 0.
The universal constraintis ]−∞,+∞[. The opera-
tions of composition (◦) and inverse (−1) of metric
constraints are computed by means of interval arith-
metic, that is,[q1,q2]◦ [q3,q4] = [q1+q3,q2+q4] and
[q1,q2]

−1 = [−q2,−q1]. Intersection of constraints
(intervals) is defined as usual.

Assuming such an interpretation of the operations
of composition, inverse, and intersection, Dechter et
al. (1991) showed that any PC-algorithm can be ex-
ploited to compute the minimal STP equivalent to
a given one, if any (if an inconsistency is detected,
the algorithm returns an empty network). In the fol-
lowing, we will denote such an algorithm byPCstp.
Making use of such a result, Meiri (1996) proposed
a formalism to combine qualitative constraints be-
tween points and intervals with (possibly disjunc-
tive) metric constraints between points (as in TCSP).
An easy special case arises when only convex PA-
constraints and STP-constraints are considered. Con-
vex PA-constraints can be encoded as STP-constraints
by means of thetoSTPtranslation function described
in Table 1. The following result can be found in
Meiri (1996):

Theorem 3. Let N be a network with convex PA-
constraints and STP-constraints. If N is path-
consistent, then N is also consistent and its metric
constraints are minimal.

PCstp can thus be used to decide the consistency
of a networkN satisfying the conditions of the above

A TRACTABLE FORMALISM FOR COMBINING RECTANGULAR CARDINAL RELATIONS WITH METRIC
CONSTRAINTS

159



theorem. To this end, it suffices to encode PA-
constraints into equivalent STP-constrains.

Table 1: Translation of convex PA-constraints to STP-
constraints via thetoSTPmapping.

Convex PA relation STP constraint
pi < p j p j − pi ∈ ]0,+∞[
pi ≤ p j p j − pi ∈ [0,+∞[
pi = p j p j − pi ∈ [0,0]
pi > p j p j − pi ∈ ]−∞,0[
pi ≥ p j p j − pi ∈ ]−∞,0]
pi ?p j p j − pi ∈ ]−∞,+∞[

4.2 Integrating Convex RCD with STP

Combining RCD with STP makes it possible to ex-
press both directional constraints and metric con-
straints in a uniform framework. As an example, the
resulting formalism allows one to constrain the posi-
tion of a rectangle in the plane and to impose mini-
mum and/or maximum values to the width/height of
a given rectangle, or on the vertical/horizontal dis-
tances between the sides of two rectangles. Obvi-
ously, RCD-constraints and STP-constraints are not
totally independent, that is, RCD-constraints entail
some metric constraints and vice versa.

Example 3. Let a and b be two rectangle. We can
use the metric constraint0 < a+x − a−x ≤ 7 to state
that the maximum width of a is7 and, similarly, we
can exploit the metric constraint2≤ a+y −a−y to state
that the minimum height of a is2 (leaving the max-
imum height unbounded). We can also express dis-
tance constraints between the boundaries of a and b.
We can constrain the horizontal distance between the
right side of a and the left side of b to be at least3
by means of the constraint3≤ b−x −a+x , and the ver-
tical distance between the upper side of a and the
bottom side of b to be greater than or equal to0
by means of the constraint0 ≤ b−y − a+y . The two
constraints together entail the basic RCD constraint
a{SW}b. Finally, some metric constraints can be
entailed by RCD ones. For instance, the convex re-
lation a{NW,N,NE,NW:N,NW:N:NE,N:NE}b im-
plies that0≤ a−y −b+y .

If we allow one to combine arbitrary RCD-
constraints with metric constrains, then checking the
consistency of the resulting set of constraints turns out
to be an NP-complete problem (the consistency prob-
lem for RCD-networks is already NP-complete). To
preserve tractability, we restrict our attention to the
combination ofconvexRCD-constraints with STP-
constraints to establish theconvex-metric RCDfor-
malism.

Given a convex RCD-networkNc = (V,C), we de-
note the sets of interval variables belonging to the pro-
jectionsπx(toRA(Nc)) and πy(toRA(Nc)) by Vx and
Vy, respectively. Moreover, we denote byP(Vx) and
P(Vy) the sets of point variables representing the end-
points of the interval variables inVx andVy, respec-
tively. A convex-metric RCD-network is formally de-
fined as follows.

Definition 2. A convex-metric RCD-network
(cmRCD-network) is an integrated qualitative and
metric constraint network N consisting of three
sub-networks(Nc,Sx,Sy), where Nc = (V,C) is a
convex RCD-network, andSx =

(

P(Vx),Mx
)

and
Sy =

(

P(Vy),My
)

are two STPs.

The convex-metric RCD formalism we propose sub-
sumes the STP formalism and the convex RCD-
calculus. Moreover, it also generalizes the convex
fragment of the RA, since convex RA-relations are
expressible as convex PA-relations and these relations
can be, in turn, encoded into an STP.

Now, we provide an algorithm to solve the consis-
tency problem for cmRCD that runs inO(n3)2. First,
we extend the translation mappingtoSTPof Table 1
to encode a convex PA-networkNP into an STPS
by replacing each relationRi j in the networkNP by
toSTP(Ri j ). By exploiting such a function, we can
generalize the algorithmcon-cRCD of Section 3.2
to deal with both RCD- and STP-constrains (Algo-
rithm con-cmRCD). First, con-cmRCD computes
the PA-networksNP

x and NP
y , and then, making use

of information about convex RCD-relations encoded
as PA-relations, it looks for possible inconsistencies
between these constraints and the STP-constrains on
the same variables given inSx andSy that can be de-
tected at this stage. To this end, it translates the PA-
networkNP

x (resp.,NP
y ) into an STP-network by ap-

plying the functiontoSTP, and then it uses the func-
tion intersectto compute the “intersection” between
toSTP(NP

x ) andSx (resp.,toSTP(NP
y ) andSy). This

function simply intersects the intervals / metric con-
strains associated with the same pairs of variables in
the two STPs. If an interval intersection produces an
empty interval, thenintersectreturns an empty net-
work, and we can conclude thatN is inconsistent.
Otherwise, we apply the path-consistency algorithm
to the two STPs computed at lines 4 and 5 independ-

2A similar combination of qualitative and quantitative
networks is given by preconvex-augmented rectangle net-
works by Condotta (2000), that subsumecmRCD-networks.
An O(n5) algorithm for checking the consistency of these
networks has been devised by Condotta (Condotta, 2000).
We exploit the trade-off between expressiveness and com-
plexity to obtain a more efficient consistency checking al-
gorithm.
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Algorithm 4.1: The algorithmcon-cmRCD.

Require: a cmRCD-networkN = (Nc,Sx,Sy)
1: Nr ← toRA(Nc);
2: Nx← πx(Nr), Ny← πy(Nr);
3: NP

x ← toPA(Nx), NP
y ← toPA(Ny);

4: xSTP← intersect(toSTP(NP
x ),Sx);

5: ySTP← intersect(toSTP(NP
y ),Sy);

6: if xSTPor ySTPis empty, then return ‘inconsis-
tent’;

7: xSTPmin← PCst p(xSTP);
8: ySTPmin← PCst p(ySTP);
9: If xSTPmin or ySTPmin is empty, then return ‘in-

consistent’; otherwise, return ‘consistent’.

ently. The following theorem proves that
con-cmRCD is sound and complete.

Theorem 4. Given a cmRCD-network N= (Nc,Sx,

Sy), the algorithmcon-cmRCD returns ‘consistent’
if and only if N is consistent.

Proof. We basically follow the steps of the algo-
rithm. By Theorem 1,Nc is consistent if and only
if Nr is consistent, and, by Theorem 2,Nr is con-
sistent if and only ifNx andNy are consistent (they
can be checked independently). Next,Nx and Ny
are consistent if and only ifNP

x and NP
y are consis-

tent, since there is no loss in information in the trans-
lations (van Beek and Cohen, 1990). The consis-
tency of NP

x and NP
y could be checked by comput-

ing the corresponding STPs and by applyingPCst p.
However, we cannot applyPCst p directly to the STPs
toSTP(NP

x ) and toSTP(NP
x ) since the metric con-

straints of Sx and Sy must be taken into account.
Hence, we computeintersect(toSTP(NP

x ),Sx) and
intersect(toSTP(NP

x ),Sy). If one of them returns an
empty network, thenN is inconsistent. Otherwise, we
independently applyPCst p to xSTPand ySTP. By
Theorem 3, if one of the two applications ofPCst p re-
turns an empty network, thenN is inconsistent; other-
wise, the path-consistent STPsxSTPmin andySTPmin

are consistent (and minimal), and thusN is consis-
tent.

Theorem 5. The complexity of the algorithm
con-cmRCD is O(Rn3), where n is the number of
variables and R is the maximum range of the network.

Proof. The translation viatoRA, the generation of a
projection of a network, the transformation of a IA-
network into a RA-network viatoPAand the last two
encodings viatoSTPrequireO(n2) steps, since there
areO(n2) constraints and each constraint can be trans-
lated in constant time. The functiontoPA introduces
two variables for each interval variable, soxSTPand
ySTPhaveO(n) variables each. Finally,PCst p runs

in O(Rn3) time, so the overall complexity isO(Rn3)
time, whereR is the maximum range of the network
(for more details about the complexity of achieving
path-consistency for combined networks see (Meiri,
1996)).

Once we have computed the path-consistent STPs
xSTPmin and ySTPmin with algorithmcon-cmRCD,
we can build asolution to the convex-metric RCD-
network N by computing a solution for the points
in xSTPand ySTP, since the assignment for point
variables defines a consistent assignment for rectan-
gle variables (see Example 1). To this end, the al-
gorithm STP-SOLUTION by Gerevini and Cristani
(1997) (Gerevini and Cristani, 1997) can be used.

To illustrate the expressive power of the convex-
metric RCD-calculus and its potential applications,
we show an example regarding the design of 2D-
layouts.

Example 4. Uncle Scrooge wants to buy a plot of
land (p) to build a new money bin (m), an office (o), a
house (h) and a swimming pool (s) for Huey, Dewey,
and Louie. The surfaces of the buildings are supposed
to be rectangular, with sides aligned to the sides of
the plot, which also has a rectangular shape. Dur-
ing the feasibility study of the project, the following
requirements arose: i) the vertical and horizontal dis-
tance between the boundaries of p and any building
it contains must be at least100m for reasons of pri-
vacy; ii) the surface area of m is70m×70m; iii) m
must lie somewhere between the northwest zone and
the northeast zone of h, and the same w.r.t. o; iv) the
vertical distance between m and h (resp., o) must be
at least100m because Uncle Scrooge does not want
to be disturbed too much by his employees; v) the sur-
face area of h is100m×50m, while the surface area
of o is30m×70m; vi) o must lie between the northeast
zone and east zone of h; vii) the horizontal distance
between o and h must be at least 60m and at most
80m so that Huey, Dewey, and Louie can play without
disturbing their uncle’s workers; viii) s is an olympic-
size swimming pool so its surface area has to be at
least50m×25m and at most100m×50m; ix) s must
be situated between the southwest zone and southeast
zone of h, and the same w.r.t. o; x) the vertical dis-
tance between s and h and between s and o must be at
least 50m.

Let us see how to represent the requirements of the
above example with a cmRCD-network. The qualita-
tive part of the network contains the following convex
RCD-contraints between variablesp, m, h, o, ands
representing the plot and the buildings:
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Figure 5: Graph representation of part ofxST Pand part ofySTPof Example 4. For clarity, constraints involvingp in ySTP
are omitted, as well as the universal constraint.

Implicit: “buildings must be inside the plot”:
oB p, hB p, mB p, sB p;

iii) m{NW,N,NW:N,NW:N:NE,N:NE,NE}h,
m{NW,N,NW:N,NW:N:NE,N:NE,NE}o;

vi) o{NE,NE:E,E}h;
ix) s{SW,S,SW:S,SW:S:SE,S:SE,SE}h,

s{SW,S,SW:S,SW:S:SE,S:SE,SE}o;

The quantitative part of the network contains the fol-
lowing metric constraints forming two STPs:

i) for all buildingsb:
b−x − p−x ≥ 100, p+x −b+x ≥ 100,
b−y − p−y ≥ 100, p+y −b+y ≥ 100

ii) m+
x −m−x = 70, m+

y −m−y = 70;
iv) m−y −h+y ≥ 100, m−y −o+y ≥ 100;
v) h+x −h−x = 100, h+y −h−y = 50,

o+x −o−x = 30, o+y −o−y = 70;
vii) 60≤ o−x −h+x ≤ 80;
viii) 50 ≤ s+x − s−x ≤ 100, 25≤ s+y − s−y ≤ 50

x) h−y − s+y ≥ 50, o−y − s+y ≥ 50.

By applying our consistency algorithm we can verify
that it is possible to realize the building project of the
example (the corresponding cmRCD-network is con-
sistent). We can also determine the minimum area
that the plot should have by using the minimal net-
worksxSTPmin andySTPmin: in our example the min-
imum area ofp is 390m×515m while the maximum
area is unbounded. The STPsxSTPandySTP, com-
puted by steps 4 and 5 of our algorithm, are sketched
in Figure 5, while a solution of the problem is illus-
trated by Figure 6, showing the minimum feasible val-
ues for the point variables. To simplify, we suppose
that the origin of the reference system is the lower-left
vertex of the plot, since the plot encloses all the build-

m
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Figure 6: A solution to the cmRCD-network corresponding
to Example 4.

ing and there is no constraint between the plot and the
space around it.

5 CONCLUSIONS

In this paper, we have proposed a quite expressive,
but tractable, metric extension of RCD (cmRCD),
that integrates STP-constraints with convex RCD-
constraints. cmRCD allows one to constrain the posi-
tion of a rectangle in the plane, its width/height, and
the vertical/horizontal distance between the sides of
two rectangles, as well as to represent cardinal rela-
tions between rectangles. We have devised anO(n3)
consistency-checking algorithm, and we have showed
how a spatial realization of a network can be built.

As for future work, we plan to extend cmRCD
with topological relations to improve its expressive-
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ness (similar results can be found in (Gerevini and
Renz, 2002; Liu et al., 2009)). The problem of identi-
fying maximal tractable subsets of RCD is still open.
It would be interesting to search for tractable classes
(strictly) including the convex fragment.
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