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Abstract: We investigate semidefinite relaxations for solving a MIQP (Mixed-Integer Quadratic Program) formulation of
the scheduling of nuclear power plants outages, which is extremely hard to solve with CPLEX. Based on our
numerical experiments, results obtained with semidefinite relaxations improve those obtained with continuous
relaxation: the gap between the optimal solution and the continuous relaxation is on average equal to 1.80%
whereas the semidefinite relaxation yields an average gap of 1.56%. These bounds are then used to obtain a
feasible solution with a randomized rounding procedure.

1 INTRODUCTION

The French electrical production facilities is charac-
terized by a high number of nuclear power plants,
which have to be shut down regurlarly in order to pro-
ceed to refueling and maintenance operations. Opti-
mizing the scheduling of these outages is therefore a
key factor for an efficient economic performance.

This mid-term management problem consists in
determining, on the five years ahead i) the dates for
outages to refuel nuclear power plants, ii) the amount
of supplied fuel and iii) the nuclear power plants pro-
duction planning which satisfy the demand at minimal
cost, while respecting numerous technical constraints.

This real-life problem is far too difficult to be
tackled exactly, due to its huge size, its non-linear
constraints, and because uncertainties affecting both
production and demand. Finally, modelling the on-
line/offline state of the plants requires the introduction
of binary variables, which make the problem combi-
natorial.

Many approaches for this problem have been in-
vestigated (Khemmoudj et al., 2006), (Porcheron
et al., 2009). In this paper, we deal with a determin-
istic version of the problem and emphasize its com-
binatorial nature in order to investigate efficiency of
semidefinite relaxations.

It is organized as follows. In Section 2, we derive
our model for the problem. In section 3, we outline
the semidefinite relaxations we use. We report some
numerical results in section 4 before concluding and
giving prospects for future work.

2 MODELING THE NUCLEAR
OUTAGES SCHEDULING
PROBLEM

We will consider in this paper a deterministic version
of the problem where only the most significant tech-
nical constraints are taken into account.

2.1 Key Operating Features of Nuclear
Power Plants and Modeling

The nuclear park is composed of several sites, where
each site is a set of 2, 4 or 6 nuclear power plants. The
operation life of a nuclear power plant is decomposed
into cycles, each cycle being made up of a phase of
production, calledproduction campaign, followed by
an outage.

Let’s introduce some convenient notations: in
what follows,x andy will denote respectively the bi-
nary and continuous variables.(i, j) refers to thej-th
cycle of the planti. The index of the first and last cy-
cle of each plant are respectively 1 andJi . {1, · · · ,Ns}
and{1, · · · ,Nν} are the set of sites and plants of the
nuclear park. IfP is a set of nuclear plants,(i, j) ∈ P
denotes the whole cycles of the plants of this set. We
denotei ∈ k the fact that a plant belongs to thek-th
site and(i, j) ∈ k the cycles of the plants of this site.
Finally, a time stept corresponds to a week and the
horizon time is composed ofNt weeks.
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2.1.1 Phase I - Campaign

During this phase, the nuclear power plant produces
either in standardmode (at full power) or inmod-
ulation mode (at lower level). The standard mode,
that is producing at maximal powerWi (expressed in
MW), is the best operating level for the plants. On the
contrary, when a nuclear plant doesn’t produce at full
power, it is said to ”modulate”. This mode of produc-
tion may alter the state of the plant, which requires
more maintenance afterwards. That is why the quan-
tity of modulation, which is measured as the amount
of ”non-produced” energy, is limited. Letyµ

i, j be the
continuous variable that represents the modulation of
the cycle(i, j):

∀(i, j) ∈ Nν, yµ
i, j ∈ [0,Mi, j ] (1)

2.1.2 Phase II - Outage

A nuclear power plant shall be stopped regularly for
refueling and maintenance operations. The duration
of the outage of the cycle(i, j) is denoted by the num-
ber of weeksδi, j . The scheduling of the outages re-
quires to define a binary variable for each possible be-
ginning date of each outage:∀t ∈ Ei, j , xν

i, j ,t ∈ {0,1}
whereEi, j is the set of possible beginning dates for
the outage of the cycle(i, j). Among the variables
xν

i, j ,t of the cycle(i, j), only the one for whicht is the
actual beginning date of the outage shall be equal to
1. Consequently, we impose the so-calleduniqueness
constraint:

∀(i, j < Ji) ∈ Nν, ∑
t∈Ei, j

xν
i, j ,t = 1 (2)

With this modeling, the beginning date of the out-
age(i, j) can be easily computed using the formula
∑t∈Ei, j

txν
i, j ,t and the state of the planti at weekt, i.e.

1 if the plant is online, 0 otherwise, can be expressed
as follows: 1−∑Ji

j=1 ∑t
t′=t−δi, j+1xν

i, j ,t′ . Note that for
the sake of simplicity, we sometimes drop the nota-
tion t ∈ Ei, j for xν

i, j ,t and consider it implicitly.
It comes that the maximal capacity of production

of the nuclear parkyκ
t at weekt, a state variable, can

be computed as:

∀t = 1, · · · ,Nt ,

yκ
t = ∑

i∈Nν
Wi(1−

Ji

∑
j=1

t
∑

t′=t−δi, j+1
xν

i, j ,t′)
(3)

Refueling and Final Stock of Energy. For safety
reasons, the stock of energy that remains in the reactor
of a nuclear plant at the beginning of an outage(i, j),

denotedyσ
i, j , must lie within the interval[F i, j ,F i, j ],

except for the last cycle, for which only the lower
bound is required since the outage is not attained:

∀(i, j < Ji) ∈ Nν, F i, j ≤ yσ
i, j ≤ F i, j

∀i ∈ Nν, F i,Ji
≤ yσ

i,Ji

(4)

For the sake of concision, let’s just say thatyσ
i, j can

be computed as a affine combination of the previous
final stockyσ

i, j−1, of the outages binary variablesxν
i, j ,t

and of the variableyµ
i, j andyρ

i, j denoting the modula-
tion and the amount of the reload carried out during
outages respectively. Without detailing the particular
case of the first and last cycles, we have the following
formula for the final stock:

∀(i, 1< j < Ji) ∈ Nν,

yσ
i, j = Wiδi, j−1+βiyσ

i, j−1+ yρ
i, j−1+ yµ

i, j

−Wi( ∑
t∈Ei, j

txν
i, j ,t − ∑

t∈Ei, j−1

txν
i, j−1,t)

(5)

Besides, for each cycle(i, j < Ji), the variableyρ
i, j

shall respect a maximal valuēRi, j , corresponding to
the maximal capacity of the reactors:

∀(i, j < Ji) ∈ Nν, yρ
i, j ∈ [0, R̄i, j ] (6)

Managing Resources for Outages.On a nuclear site,
in order to manage the limited resources required for
the refueling and maintenance operations, we impose
a maximal number of parallel outages at each time
step and a maximal lapping between outages.

Let Npar
k be the maximum authorized number of

outages in parallel on sitek. Then, the related con-
straint can be written:

∀k= 1, · · · ,Ns, ∀t = 1, · · · ,Nt ,

∑
(i, j)∈k

t
∑

t′=t−δi, j+1
xi, j ,t′ ≤ Npar

k
(7)

Let Nlap
k be the maximum authorized lapping be-

tween the outages of sitek. A negative value repre-
sents a minimum space. Then, for each concerned
pair (i, j),(i′, j ′), there are two possibilities: either
(i, j) starts before(i′, j ′), or it doesn’t. The computa-
tion of the lapping depends of the effective configura-
tion: let ∆i, j ,i′, j ′ denotes the space between beginning
of outages, the lapping might be:

δi, j +∆i, j ,i′, j ′ or δi′, j ′ −∆i, j ,i′, j ′ (8)

This disjonction requires the introduction of new
binary variable:xλ

i, j ,i′, j ′ that codes 0 in the first case

and 1 otherwise. Let̃M be a sufficiently large number.
Then both following constraints must be respected:
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δi, j +∆i, j ,i′, j ′ −M̃xλ
i, j ,i′, j ′ ≤ Nlap

k

δi′, j ′ −∆i, j ,i′, j ′ −M̃(1− xλ
i, j ,i′, j ′) ≤ Nlap

k

(9)

2.2 Constraints Related to Demand
Satisfaction

In our problem, the production portfolio made up
of Nν nuclear power plants andNθ fossil-fuel power
plants has to satisfy the electrical demand on the two
following periods of each time step (e.g. a week):

• A peakperiod when the demand is high and can
not be satisfied by nuclear production (fossil-fuel
production is needed) ;

• An off-peakperiod when the demand is low (for
example, during the night) and can be satisfied by
nuclear production only.

2.2.1 Peak Demand

At peak time, the whole capacity of production of the
park yκ

t + ∑
i∈Nθ

Ui,t , whereUi,t is the capacity of pro-

duction of the fossil-fuel power planti at time stept,
should satisfy the peak demandD+

t :

∀t = 1, · · · ,Nt , ∑
(i, j)∈Nν

yκ
t ≥ D+

t − ∑
i∈Nθ

Ui,t (10)

2.2.2 Off-Peak Demand

At off-peak time, the demand constraint comes to lim-
iting the whole modulation of the park at each time
step. Here, we make a reasonable simplification con-
sisting in respecting the sum of these constraints on
the time horizon. This allows us to gather the modu-
lation throughout the cycles, so the constraint can be
written:

∑
(i, j)∈Nν

yµ
i, j ≤ D− (11)

2.3 The Objective Function

Our aim is to minimize the global cost of production
which is the sum of the nuclear production cost and
the fossil-fuel production cost. The first one is pro-
portional to the amount of reloads and the fossil-fuel
production, which is computed as the difference be-
tween the peak demand and the nuclear production,
has a quadratic cost, so the global cost function is:

∑
(i, j)∈Nν

γi, jy
ρ
i, j − ∑

i∈Nν

γi,Ji−1yσ
i,Ji

+
Nt

∑
t=1

γθ
t [D

+
t − yκ

t ]
2

(12)

3 RESOLUTION

Finally, gathering equations (1), (2), (3), (4), (5), (6),
(7), (9),(10), (11), (12) and introducing matrix formu-
lation leads to the compact form:

(P)















minx,y xtQx+ ptx+qty
subject to Ax+By≤ c

y≤ ȳ

x∈ {0,1}Nx, y∈R
Ny
+

(13)

Our problem is therefore a mixed quadratic opti-
mization problem with linear constraints, where the
quadratic terms of the objective function involve only
binary variables. This kind of problem is difficult to
solve, even with a powerful commercial solver like
CPLEX. For this reason, we investigate semidefinite
relaxations in the view of obtaining better bounds of
the solution than we can obtain when using continu-
ous relaxations.

3.1 Semidefinite Relaxations

Semidefinite programming (SDP) is a subfield of con-
vex optimization which deals with the optimization of
a linear function over an affine subspace of the cone
of the semidefinite matrices. WithA•B denoting the
Frobenius inner product, it has the following form:

(SDP)







minX∈Sn A0•X
subject to Ai •X = bi , i = 1, · · · ,m

X < 0
(14)

This area of mathematical programming has un-
dergone a rapid development in the last decades,
spurred by the development of efficient resolution al-
gorithms (see (Helmberg et al., 1996), (Helmberg and
Rendl, 2000)) and by the discovery of widespread ap-
plications, in particular to relaxation of combinatorial
problems. For further reading on the subject, see for
example the surveys of Boyd and Vandenberghe (Van-
denberghe and Boyd, 1994) and Todd (Todd, 2001) or
the corresponding handbook (Wolkowicz et al., ). See
also the survey of Laurent ((Laurent et al., 2005)) on
the related relaxation of combinatorial problems.

Here we apply SDP to the relaxation of the pre-
viously described MIQP (13). For this, we introduce
the following symmetric matrix:

X =



















*
xxt x

x 1

∗ Diag(y)



















(15)
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where Diag(y) stands for the diagonal matrix made
up with vectory and ∗ means that any value can
be taken. Let’s note that the first submatrix include
the vectorx and the associated quadratic matrixxxT .
Then, by defining the appropriate matricesCi , we can
express the objective quadratic function (because the
quadratic terms involve onlyx) and the linear con-
straints asCi •X.

About the binary constraints, we define the ma-
trices Di such thatx2

i − xi = 0 ⇔ Di • X = 0. Fur-
thermore, a matrixE is used to impose that the last
component of the first submatrix be equal to 1.
So, we have the following equivalent formulation for
our problem:

(Q)



















min C0 •X
s.t. Ci •X ≤ 0, i = 1, · · · ,M

Di •X = 0, i = 1, · · · ,Nx
E •X = 1
Xi, j = Xi,Nx+1Xj ,Nx+1, i, j = 1, · · · ,Nx

The last constraint comes to impose to X the specific
form described at (15). This constraint, which is nei-
ther linear or convex, is what makes the problem NP-
hard. Such as matrix is necessarily semidefinite pos-
itive, so the semidefinite relaxation is obtained by re-
placing this constraint by a constraint on its semidef-
initeness, which is convex. Consequently, the associ-
ated SDP is:

(SDP)



















min C0•X
s.t. Ci •X ≤ 0, i = 1, · · · ,M

Di •X = 0, i = 1, · · · ,Nx
E •X = 1
X < 0

This relaxation gives rise to a lower bound of
the optimal solutionp∗ of the initial problem, which
can be used either within an exact search, typically a
Branch & Bound procedure, or to compute an ap-
proximate solution of the problem, for example via a
randomized rounding scheme. It is the latter alterna-
tive we are using here. We will compare the approx-
imate solution obtained by applying this procedure
(described in the paragraph below) to the solution of
the Quadratic Program obtained by relaxing the in-
tegrality constraint (denoted here continuous relax-
ation). This program can be solved with CPLEX since
the objective function is convex. In a second step, we
will try to improve the SDP bound by adding some
cuts based on the Sherali-Adams approach (Sherali
and Adams, 1990).

3.2 Randomized Rounding Procedure

Randomization has proved to be a powerful resource
to yield a feasible binary solution from a fractional

one. The basic idea is to interpret the fractional value
as the probability of the variable to take the value 1.
Then the values of the binary variables are drawn ac-
cording to this law and this process is iterated until
the solution satisfies the constraints.

Here, we slightly change this principle, in order
to find more easily a feasible solution: instead of de-
ciding successively if a binary variable is 0 or 1, for
each cycle, we choose one date among the possible
beginning date for the associate outage, by using the
fractional value as probabilily, since their sum is equal
to one from the uniqueness constraint. Then, the val-
ues of the lapping variablesxλ follow. About the con-
tinuous variables, for the modulationxµ, we keep the
value of the relaxation and for the reloadxρ, we take
the minimal values that respects the final stock con-
straint.

3.3 Tightening Semidefinite Relaxation
with Quadratic Cuts

Adding some valid appropriate equalities or inequal-
ities may improve the bound of the semidefinite re-
laxation. Here, we apply the Sherali-Adams (Sherali
and Adams, 1990) principle: letAx= b be a set of
linear constraints andxi a binary variable, the con-
straintsAxxi = bxi is valid. We apply this idea to the
uniqueness constraint (2), with all the variablesxi that
appear in the constraint. By usingx2

i = xi it comes:

∀(i, j < Ji) ∈ Nν, ∀t ∈ Ei, j ,

∑
t′∈Ei, j , t′ 6=t

xν
i, j ,tx

ν
i, j ,t′ = 0 (16)

4 NUMERICAL EXPERIMENTS

Numerical experiments have been performed on a
three years time horizon (156 weeks), with one out-
age per year for each plant and two nuclear parks (re-
spectively 10 and 20 nuclear power plants for the data
set 1 to 12, and 13 to 24). Each park is declined into
two versions which differ from the maximum amount
of reload (R̄i, j ) and modulation (Mi, j ).

Finally, six instances have been tested for each
data set, varying by the size of the search spaces asso-
ciated to the outages dates variables (7 to 17 possibles
dates).
All the computations have been made on an Intel(R)
Core(TM) i7 processor with a clock speed of 2.13
GHz. In order to compare the solutions in the same
conditions, the CPLEX results are obtained without
activating the preprocessing. For each data set we
computed:
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Table 1: Results of exact search, relaxations and randomized rounding.

Data Nb of Opt RelaxQP RelaxSDP RelaxSDP-Q
set bin. var. Obj Time Gap Time RR Gap Time RR Gap Time RR
D-1 215 3 343 1 0.73 0.02 2.35 0.54 12 2.35 0.26 12 0.70
D-2 278 3 254 21 0.80 0.00 3.88 0.64 19 1.49 0.46 21 1.70
D-3 341 3 174 183 0.94 0.02 4.86 0.82 31 2.43 0.65 36 3.25
D-4 406 3 110 1 286 1.10 0.02 4.23 0.97 44 5.04 0.83 54 5.14
D-5 469 3 051 7 200 1.18 0.02 11.70 1.08 63 3.72 0.96 79 4.04
D-6 530 2 994 5 780 1.17 0.03 14.56 1.09 81 3.35 1.00 108 4.73
D-7 215 3 297 2 1.24 0.02 3.31 1.03 5 2.82 0.68 6 0.82
D-8 278 3 223 8 1.89 0.03 10.28 1.72 8 7.15 1.38 11 3.35
D-9 341 3 176 39 2.94 0.08 11.31 2.81 15 9.95 2.49 64 2.11
D-10 406 3 133 169 3.91 0.13 14.69 3.80 26 11.94 3.52 98 8.98
D-11 469 3 070 76 3.87 0.18 13.56 3.78 38 13.81 3.53 147 11.79
D-12 530 3 024 232 4.25 0.20 14.47 4.17 53 17.98 3.95 236 16.20
D-13 539 12 580 7 200 0.85 0.05 3.16 0.77 154 3.28 0.61 171 2.08
D-14 698 12 431 7 200 0.95 0.10 3.47 0.89 252 3.76 0.76 286 4.06
D-15 852 12 290 7 200 1.13 0.14 5.78 1.08 373 4.58 0.99 436 4.83
D-16 1 011 12 156 7 200 1.14 0.14 6.16 1.09 578 5.19 1.02 750 5.29
D-17 1 170 12 034 7 200 1.15 0.22 5.72 1.12 791 5.77 1.08 1008 6.36
D-18 1 322 11 939 7 200 1.35 0.27 6.47 1.32 1030 5.67 1.30 1308 7.00
D-19 537 12 679 7 200 1.21 0.16 2.80 1.16 68 2.95 1.07 310 4.48
D-20 695 12 464 7 200 1.57 0.54 5.96 1.52 137 6.56 1.44 447 6.31
D-21 853 12 289 7 200 1.98 0.94 9.28 1.94 242 8.91 1.85 805 6.74
D-22 1 008 12 159 7 200 2.37 1.90 9.15 2.33 382 7.47 2.27 1113 8.80
D-23 1 165 12 034 7 200 2.65 2.95 7.87 2.62 628 7.70 2.58 2106 6.86
D-24 1 316 11 915 7 200 2.87 3.65 10.93 2.84 823 9.89 2.80 2231 8.52
Av. 651.83 7700.85 4224.91 1.80 0.49 7.75 1.71 243.88 6.41 1.56 493.46 5.59

• Opt: the best solution found within the time limit
(2 hours) by using CPLEX-Quadratic 12.1. The
time value 7200 means that the time limit has been
reached, so the obtained integer solution is not op-
timal ;

• RelaxQP: the continuous relaxation computed
with CPLEX-Quadratic 12.1;

• RelaxSDP: the SDP relaxation computed with the
SDP solver CSDP 6.1.1 (cf (Borchers, 1999));

• RelaxSDP-Q: the SDP relaxation computed with
CSDP 6.1.1 with quadratic cuts (cf 3.3) ;

For each data set, the table 1 reports the number of
binary variables, the value of the objective function
(in currency unit), the computational time in second
and, for each kind of relaxation, the associated gap
(Gap) and the relative gap of the randomized rouding
(RR), whose formula are given below. The last line
(Av.) gives the average of the previous lines.

Gap=
popt− prelax

prelax
RR=

pRR− popt

popt
(17)

Analysis of the Results

First we observe that CPLEX reaches the limited time
for relatively small instances (e.g. 469 binary vari-
ables). This is in line with our expectations that this

kind of problem is very hard for CPLEX, despite a
quite small gap attained with continuous relaxation.

This may be related to the fact that, due to the
demand constraint, the variable part of the objective
function is very small w.r.t the absolute value of the
cost. In other words, the optimal value is high, even
with a ”perfect” outages scheduling. Let’s denoteP
the best possible objective value for a given data set,
computed by considering the largest possible search
space, and let’s consider the variable part of the ob-
jective function, that isp−P, if p is the objective
value. Then, the gap would increase, as shown in the
following formula:

popt− prelax

prelax−P
>

popt− prelax

prelax
(18)

This illustrates the importance of considering the
relative improvement of the gap achieved by semidef-
inite relaxation, rather that its absolute value.

For example, on the data set D-1, the gap is almost
divided by three. Unfortunately, this ratio decreases
as the number of binary variables raises, whereas the
gap increases. This can be explained by the fact that
the ”exact solution” provided here is not optimal, con-
sidered that the computational time of CPLEX is lim-
ited. Let’s denotep′opt > popt this value: then the ra-
tio computed with this value is greater than the ratio
computed withp:
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popt− prelaxCPLEX

popt− prelaxSDP
>

p′opt− prelaxCPLEX

p′opt− prelaxSDP
(19)

On average, the gap improves from 1.80% to
1.71% with original SDP relaxation and 1.56% with
addition of valid equalitites. This latter improve-
ment is promising, even though it comes at high ad-
ditional computational cost, particularly on the larger
instances. This can be ascribed to the fact that SDP
solvers are only in their infancy, especially compared
to a commercial solver like CPLEX.

Finally, the randomized rounding yields satisfying
results: due to the random aspect of the procedure,
there are still some data set where the continuous re-
laxation gives better results than the semidefinite re-
laxation, but on average the loss of optimality reduces
from 7.75% to 6.41% and 5.59%, which is significant
when considering the huge amount at stake.

5 CONCLUSIONS AND
PROSPECTS

We investigated in this paper, semidefinite relaxations
for a MIQP (Mixed-Integer Quadratic Program) ver-
sion of the scheduling of nuclear power plants out-
ages. Comparison of the results obtained on signifi-
cant data sets shows the following main results. First,
our MIQP is extremely hard to solve with CPLEX.
Second, semidefinite relaxations provide a tighter
convex relaxation than the continuous relaxation. In
our experiments the gap between the optimal solu-
tion and the continuous relaxation is on average equal
to 1.80% whereas the semidefinite relaxation yields
an average gap of 1.56%. Third, the computational
time for computing these semidefinite relaxations is
reasonable. Exploiting those results in a randomized
rounding procedure instead of the result of the contin-
uous relaxation leads to a significant improvement of
the feasible solution.

In the view of these preliminary results, additional
investigations will concern i) introduction of more
valid inequalities, ii) evaluation of others SDP resolu-
tion techniques, for instanceConic Bundlefor facing
problems of huge size.
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