
A GENERALIZATION OF NEGATIVE NORM MODELS IN THE
DISCRETE SETTING

Application to Stripe Denoising
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Abstract: Starting with a book of Y.Meyer in 2001, negative norm models attracted the attention of the imaging commu-
nity in the last decade. Despite numerous works, these norms seem to have provided only luckwarm results
in practical applications. In this work, we propose a framework and an algorithm to remove stationary noise
from images. This algorithm has numerous practical applications and we show it on 3D data from a newborn
microscope called SPIM. We also show that this model generalizes Meyer’s model and its successors in the
discrete setting and allows to interpret them in a Bayesian framework. It sheds a new light on these models
and allows to pick them according to some a priori knowledge on the texture statistics. Further results are
available on our webpage at http://www.math.univ-toulouse.fr/∼weiss/PagePublications.html.

1 INTRODUCTION

The purpose of this article is to provide variational
models and algorithms in order to removestationary
noisefrom images. The models that are proposed here
turn out to be a generalization of the discretized neg-
ative norm models. This allows to analyse them in a
Bayesian framework. Bystationary noise, we mean
that the noise is generated by convolving white noise
with a given kernel. The noise thus appears as ”struc-
tured” in the sense that some pattern might be visible,
see Figure 3(b),(c),(d).

This work was primarily motivated by the recent
development of a microscope called Selective Plane
Illumination Microscope (SPIM). The SPIM is a fluo-
rescence microscope which allows to perform optical
sectioning of a specimen, see (Huisken et al., 2004).
One difference with conventional microscopy is that
the fluorescence light is detected at an angle of 90 de-
grees with the illumination axis. This procedure tends
to degrade the images with stripes aligned with the il-
lumination axis, see Figure 5(a). This kind of noise is
well described by a stationary process. The first con-
tribution of this paper is to provide effective denoising
algorithms dedicated to this imaging modality.

It appears that our models generalize the negative
norms models proposed by Y. Meyer (Meyer, 2001).

This work initiated numerous research in the domain
of texture+cartoon decomposition methods (Vese and
Osher, 2003; Osher et al., 2003; Aujol et al., 2006;
Garnett et al., 2007). Meyer’s idea is to decompose an
image into a piecewise smooth component and an os-
cillatory component. The use of a negative norm‖·‖N
to capture oscillating patterns is motivated by the fact
that if (vn) converges weakly to 0 then‖vn‖N → 0.
This interpretation is however not really informative
on what kind of textures are well captured by nega-
tive norms. The second contribution of this paper is to
propose a Bayesian interpretation of these models in
the discrete setting. This allows a better understand-
ing of the decomposition models:

• We can associate a probability density functions
(p.d.f.) to the negative norms. This allows
to choose a model depending on some a priori
knowledge on the texture.

• We can synthetize textures which are adapted to
these negative norms.

• The Bayesian interpretation suggests a new
broader and more versatile class of translation in-
variant models used e.g. for SPIM imaging.

Connection to Previous Works. This work shares
flavors with some previous works. In (Aujol et al.,

337
Fehrenbach J., Weiss P. and Lorenzo C. (2012).
A GENERALIZATION OF NEGATIVE NORM MODELS IN THE DISCRETE SETTING - Application to Stripe Denoising.
In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods, pages 337-342
DOI: 10.5220/0003742603370342
Copyright c SciTePress



2006) the authors present algorithms and results using
similar approaches. However, they do not propose a
Bayesian interpretation and consider a narrower class
of models. An alternative way of decomposing im-
ages was proposed in (Starck et al., 2005). The idea is
to seek components that are sparse in given dictionar-
ies. Different choices for the elementary atoms com-
posing the dictionary will allow to recover different
kind of textures. See (Fadili et al., 2010) for a review
of these methods and a generalization to the decom-
position into an arbitrary number of components.

The main novelties of the present work are:

1. We do not restrict to sparse components, but allow
for a more general class of random processes.

2. Similarly to (Fadili et al., 2010), the texture is de-
scribed through a dictionary. In the present work
each dictionary is composed of a single pattern
shifted in space, ensuring translation invariance.

3. A Bayesian approach takes into account the sta-
tistical nature of textures more precisely.

4. The decomposition problem is recast into a con-
vex optimization problem that is solved with a
recent algorithm (Chambolle and Pock, 2011) al-
lowing to obtain results in an interactive time.

5. Codes are provided on our
webpage http://www.math.univ-
toulouse.fr/∼weiss/PageCodes.html.

Notation: Let u be a gray-scale image. It is com-
posed ofn= nx×ny pixels, andu(x) denotes the in-
tensity at pixelx. The convolution product betweenu
andv isu∗v. The discrete gradient operator is denoted
∇. Let ϕ : Rn → R be a convex closed function (see
(Rockafellar, 1970)).∂ϕ denotes its sub-differential.
The Fenchel conjugate ofϕ is denotedϕ⋆, and its re-
solvent is defined by:

(Id + ∂ϕ)−1(u) = argmin
v∈Rn

ϕ(v)+
1
2
‖v−u‖2

2,

2 NOISE MODEL

Our objective can be formulated as follows: we want
to recover an original imageu, given an observed im-
ageu0 = u + b, whereb is a sample of some random
process.

The most standard denoising techniques explicitly
or implicitly assume that the noise is the realization of
a random process that is pixelwise independent and
identically distributed (i.e. a white noise). Under
this assumption, the maximum a posteriori (MAP) ap-
proach leads to optimization problems of kind:

Findu∈ argmin
u∈Rn

J(u)+∑
x

φ(u(x)−u0(x)),

where

1. exp(−φ) is proportional to the p.d.f. of the noise
at each pixel,

2. J(u) is an image prior.

The assumption that the noise is i.i.d. appears too
restrictive in some situations, and is not adapted to
structured noise (see Figures 2 and 3).

The general model of noise considered in this
work is the following:

b=
m

∑
i=1

λi ∗ψi, (1)

where {ψi}
m
i=1 are filters that describe patterns of

noise, and{λi}
m
i=1 are samples of white noise pro-

cesses{Λi}
m
i=1. Each processΛi is a set ofn i.i.d.

random variables with a p.d.f. exp(−φi).
In short, the convolution that appears in the right-

hand side of (1) states that the noiseb is composed of
a certain number of patternsψ1, . . . ,ψm that are repli-
cated in space. The noiseb in (1) is a wide sense sta-
tionary noise (Shiryaev, 1996). Examples of noises
that can be generated using this model are shown in
Figure 3.

1. example (b) is a Gaussian white noise. It is
the convolution of a Gaussian white noise with a
Dirac delta function.

2. example (c) is a sine function in thex direction.
It is a sample of a uniform white noise in[−1,1]
convolved with the filter that is constant equal to
1/ny in the first column and zero otherwise.

3. example (d) is composed of a single pattern that is
located at random places. It is the convolution of a
sample of a Bernoulli process with the elementary
pattern.

3 RESTORATION ALGORITHM

The Bayesian approach requires a p.d.f. on the space
of images. We assume that the probability of an im-
ageu readsp(u) ∝ exp(−J(u)). In this work we will
consider priors of the form:

J(u) = α‖∇u‖1,ε,

whereα > 0 is a fixed parameter and ifq= (q1,q2) ∈

R
n×2, ‖q‖1,ε = ∑

x
fε

(

√

q1(x)2+q2(x)2

)

, with

fε(t) =

{

|t| if |t| ≥ ε
|t|2/2ε+ ε/2 otherwise.
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Note that lim
ε→0

‖∇u‖1,ε = TV(u) is the discrete total

variation ofu, and that lim
ε→+∞

ε‖∇u‖1,ε =
1
2
‖∇u‖2

2 up

to an additive constant. This model thus includes TV
andH1 regularizations as limit cases.

The maximum a posteriori approach in a Bayesian
framework leads to retrieve the imageu and the
weights{λi}

m
i=1 that maximize the conditional proba-

bility

p(u,λ1, ...,λm|u0) =
p(u0|u,λ1, ...,λm)p(u,λ1, ...,λm)

p(u0)
.

By assuming that the imageu and the noise
componentsλi are samples of independent pro-
cesses, standard arguments show that maximizing
p(u,λ1, ...,λm|u0) amounts to solving the following
minimization problem:

Find{λ⋆
i }

m
i=1 ∈ argmin

{λi}
m
i=1

m

∑
i=1

φi(λi)+F(∇(
m

∑
i=1

λi ∗ψi)),

(2)
where

F(q) = α‖∇u0−q‖1,ε.

The denoised imageu⋆ is thenu⋆ = u0−∑m
i=1 λ⋆

i ∗ψi.
We propose in this work to solve problem (2) with

a primal-dual algorithm developed in (Chambolle and
Pock, 2011). LetA be the following linear operator:

A : R
m×n → R

n×2

λ 7→ ∇(∑m
i=1 λi ∗ψi) .

By denoting

G(λ) =
m

∑
i=1

φi(λi) (3)

problem (2) can be recast as the following convex-
concave saddle-point problem:

min
λ∈Rn×m

max
‖q‖∞≤1

〈Aλ,q〉−F∗(q)+G(λ). (4)

We denote∆(λ,q) the duality gap of this problem
(Rockafellar, 1970). This problem is solved using the
following algorithm (Chambolle and Pock, 2011): In
practice, for a correct choice of inner products and
parametersσ andτ, this algorithm requires around 50
low-cost iterations forε = 10−3. More details will be
provided in a forthcoming research report.

4 BAYESIAN INTERPRETATION
OF THE DISCRETIZED
NEGATIVE NORM MODELS

In the last decade, the texture+cartoon decomposition
models based on negative norms attracted the atten-
tion of the scientific community. These models often
take the following form:

Algorithm 1: Primal-Dual algorithm.

Input :
ε: the desired precision;
(λ0,q0): a starting point;
Output :
λε: an approximate solution to problem (4).
begin

n= 0; λ̄0 = λ0;
while ∆(λn,qn)> ε∆(λ0,q0) do

qn+1 = (Id+σ∂F∗)−1(qn+σAλ̄n);
λn+1 = (Id+ τ∂G)−1(λn− τA∗qn+1);
λ̄n+1 = λn+1+θ(λn+1−λn);
n= n+1;

end
end

inf
u∈BV(Ω),v∈V,u+v=u0

TV(u)+ ‖v‖N (5)

where:

• u0 is an image to decompose as the sum of a
texturev in V and a structureu in the space of
bounded variation functionsBV(Ω),

• V is a Sobolev space of negative index,

• ‖ · ‖N is an associated semi-norm.

Y. Meyer’s seminal model consists in takingV =
W−1,∞ and the following norm:

‖v‖N = ‖v‖−1,∞ = inf
g∈L∞(Ω)2,div(g)=v

‖g‖∞.

In the discrete setting the negative norm models
read:

Find (u,g) ∈ argmin ‖g‖p+α‖∇u‖1
subject to u0 = u+ v

v= ∇Tg

(6)

whereu0, u andv are inRn, g=

(

g1
g2

)

∈R
n×2 and

∇Tg= ∂T
1 g1+ ∂T

2 g2. The operators∂1 and∂2 denote
the discrete derivatives with respect to both space di-
rections. Ifp= ∞, we get the discrete Meyer model.
From an experimental point of view, the choicesp= 2
and p = 1 seem to provide better practical results
(Vese and Osher, 2003).

In order to show the equivalence of these models
with the ones proposed in Equation (2), we express
the differential operators as convolution products. As
the discrete derivative operators are usually transla-
tion invariant, this reads:

∇Tg= h1∗g1+h2∗g2.

where∗ denotes the convolution product andh1 and
h2 are derivative filters (typicallyh1 = (1,−1) and

h2 =

(

1
−1

)

).
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This simple remark leads to an interesting inter-
pretation ofg: it represents the coefficients of an im-
age v in a dictionary composed of the vectors h1 and
h2 translated in space.

The negative norms models can thus be inter-
preted as decomposition models in a very simple tex-
ture dictionary. Next, let us show that problem (5) can
be interpreted in a MAP formalism.

Let us define a probability density function:

Definition 1 (Negative Norm p.d.f.). Let Γ be a ran-
dom vector inRn and Θ be a random vector in
[0,2π]n. Let us assume thatp(Γ) ∝ exp(−‖Γ‖p) and
that Θ has a uniform distribution. These two random
vectors allow to define a third one:

G=

(

Γcos(Θ)
Γsin(Θ)

)

.

Now let us show that problem (6) actually corre-
sponds to a MAP decomposition. Let us assume that:

u0 = u+ v

with u andv realization of independant random vector
such thatp(u) ∝ exp(−α‖∇u‖1) andv= ∇Tg with g
a realization ofG. Then the classical Bayes reasoning
leads to the following equations:

argmax
u∈Rn,v∈Rn

p(u,v|u0)

= argmax
u∈Rn,v∈Rn

p(u0|u,v) ·p(u,v)
p(u0)

= argmax
u+v=u0,u∈Rn,v∈Rn

p(u,v)
p(u0)

= argmin
u+v=u0,u∈Rn,v∈Rn

− log(p(v))− log(p(u))

= argmin
u+v=u0,u∈Rn,v∈Rn

− log(p(v))+α‖∇u‖1

= argmin
u+v=u0,u∈Rn,v=∇Tg

‖g‖p+α‖∇u‖1

which is exactly problem (6). Also note that the
model above is equivalent to a slight variant of the
model defined in Equation (2) in the casem= 2:

argmin
u+v=u0,u∈Rn,v=∇Tg

‖g‖p+α‖∇u‖1

= argmin
g=(g1,g2)∈R2n

‖g‖p+α‖∇(u0−∇Tg)‖1

= argmin
(g1,g2)∈R2n

G(g1,g2)+F(∇(u0−h1∗g1−h2∗g2))

where

• G(g1,g2) =

(

∑
x
(g1(x)2+g2(x)2)p/2

)1/p

is a

mixed-norm variant of the functionG defined in
Equation (3) (Kowalski, 2009),

• F(q) = α‖q‖1,

• the filtersh1 andh2 are the discrete derivative fil-
ters defined above.

The same reasoning holds for most negative
norms models proposed lately (Meyer, 2001; Aujol
et al., 2006; Vese and Osher, 2003; Osher et al.,
2003; Garnett et al., 2007), and problem (2) actu-
ally generalizes all these models. To our knowledge,
the Chambolle-Pock implementation (Chambolle and
Pock, 2011) proposed here or the ADMM method (Ng
et al., 2010) (for strongly monotone problems) are the
most efficient numerical approaches.

5 NEGATIVE NORM TEXTURE
SYNTHESIS

The MAP approach to negative norm models de-
scribed above also sheds a new light on the kind of
texture appreciated by the negative norms. In order to
synthetize a texture with p.d.f. (1), it suffices to run
the following algorithm:

1. Generate a sample of a uniform random vectorθ∈
[0,2π]n.

2. Generate a sample of a random vectorγ with p.d.f.
proportional to exp(−‖γ‖p).

3. Generate two vectorsg1 = γcos(θ) and g2 =
γsin(θ).

4. Generate the texturev= ∇T

(

g1
g2

)

.

The results of this simple algorithm are presented
in Figure 1.

6 RESULTS OF THE DENOISING
ALGORITHM

6.1 Synthetic Image

The method was validated on a synthetic example,
where a ground truth is available. A synthetic im-
age was created by adding to a cartoon image (a disk)
the sum of 3 different stationary noises. The result-
ing synthetic image is shown in Figure 2. The cartoon
image and the 3 noise components are presented in
Figure 3(a,b,c,d). The first noise component is a sam-
ple of a Gaussian white noise. The second component
is a sine function in the horizontal direction. The third
component is the sum of elementary patterns, this is
a sample of a Bernoulli law with probability 5.10−4

convolved with an elementary filter.
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p= 2

p= 1

p= ∞

Figure 1: Left: standard noises. Right: different tex-
tures synthetized with the negative norm p.d.f. Note: we
synthetize the “Laplace” noise by approximating it with a
Bernoulli process.

Figure 2: Synthetic image used for the toy example.

The results of Algorithm 1 are presented in Figure
3(e,f,g,h). The decomposition is almost perfect. This
example is a good proof of concept.

6.2 Real SPIM Image

Algorithm 1 was applied to a zebrafish embryo image
obtained using the SPIM microscope. Two filtersψ1
andψ2 were used to denoise this image. The first filter
ψ1 is a Dirac (which allows the recovery of Gaussian

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 3: Toy example. Left column: real components;
right column: estimated components using our algorithm.
(a,e): cartoon component - (b,f): Gaussian noise, std 0.2 -
(c,g): Stripes component (sine)- (d,h): ’Poisson’ noise com-
ponent (poissonmeansfish in French).

Figure 4: A detailed view of filterψ2.

white noise), and the second filterψ2 is an anisotropic
Gabor filter with principal axis directed by the stripes
(this orientation was obtained by user). The filterψ2
is shown in Figure 4.
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(a) (d)

(b) (e)

(c) (f)

Figure 5: Top-Left: original image zebrafish embryo
Tg.SMYH1:GFP Slow myosin Chain I specific fibers - Top-
Right: TV-L2 denoising - Mid-Left:H1-Gabor restoration
- Mid-Right: TV-Gabor restoration - Bottom-Left: stripes
identified by our algorithm - Bottom-Right: white noise.

The original image is presented in Figure 5(a), and
the result of Algorithm 1 is presented in Figure 5(e).
We also present a comparison with two other algo-
rithms in Figures 5(d,b):

• a standard TV-L2 denoising algorithm. The algo-
rithm is unable to remove the stripes as the prior
is unadapted to the noise.

• an “H1-Gabor” algorithm which consists in set-
ting F(·) = 1

2‖ · ‖
2
2 in equation (2). The image

prior thus promotes smooth solutions and pro-
vides blurry results.
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