
BOCHICA: A MODEL-DRIVEN FRAMEWORK FOR
ENGINEERING MULTIAGENT SYSTEMS

Stefan Warwas, Klaus Fischer, Matthias Klusch and Philipp Slusallek
German Research Center for Artificial Intelligence (DFKI), Campus D3.2, 66123, Saarbrücken, Germany

Keywords: Agent-oriented software engineering, Modeling framework.

Abstract: Modeling real world agent-based systems is a complex endeavour. An ideal domain specific agent modeling
language would be tailored to a certain application domain (e.g. virtual worlds) as well as to the target execu-
tion environment (e.g. a legacy virtual reality platform). This includes the use of specialized domain concepts,
information models, software languages (e.g. query languages for reasoning about an agent’s knowledge),
as well as custom views and diagrams for designing the system. At the same time it is desirable to reuse
application domain independent model artifacts such as interaction protocols (e.g. auction protocols) or goal/-
plan decompositions of a certain problem domain that already proved their use in similar scenarios. Current
agent modeling languages cover the core concepts of multiagent systems but are neither thought to be cus-
tomized for a certain application domain nor to be extended by external researchers with new or alternative
AI and agent concepts. In this paper we propose a model-driven framework for engineering multiagent sys-
tems, called BOCHICA, which is based on a platform independent core modeling language and can be tailored
through several extension interfaces to the user’s needs. The framework leverages the reuse of existing design
patterns and reduces development time and costs for creating application domain specific modeling solutions.
We evaluated our approach on a distributed semantic web based execution platform for virtual worlds.

1 INTRODUCTION

The research field of Agent-oriented Software Engi-
neering (AOSE) is concerned with investigating how
algorithms and methods developed in the wide area of
Artificial Intelligence (AI) can be used for engineer-
ing intelligent software agents in a systematic way.
AOSE should not be seen in isolation: As it gets in-
creasingly applied in main stream software engineer-
ing it is confronted (of course) with typical problems
of today’s software development such as (i) an in-
creasing number of software frameworks, program-
ming languages, and execution platforms, (ii) shorter
development cycles, and (iii) heterogeneous and dis-
tributed IT environments. A key to tackle the rapidly
growing complexity in software development is ab-
straction. Higher-level software languages are re-
quired to hide the complexity and focus on the de-
sign of IT systems. Model-driven Software Devel-
opment (MDSD) is driven by industry needs to deal
with complex software systems. The underlying idea
of MDSD is to model the System Under Consider-
ations (SUC) on different levels of abstractions and
use model transformations to gradually refine them
until concrete code can be generated. Several core

aspects of MDSD were standardized by the Object
Management Group (OMG) as Model-driven Archi-
tecture (MDA).

During the recent years, several approaches for
modeling agent-based systems have been proposed
(Sterling and Taveter, 2009). Although we think that
the developed modeling languages are a step into
the right direction, they have problems with fulfill-
ing a user’s need to efficiently model a certain appli-
cation domain. An ideal modeling language would
contain, beside the core concepts of Multiagent Sys-
tems (MAS), specific concepts, software languages,
graphical representations, etc. for a certain target en-
vironment. Moreover, it is desirable to extend the
modeling language with new concepts from AI and
agent research (e.g. new ways of modeling behav-
iors). In this paper we propose a model-driven frame-
work for engineering agent-based systems to over-
come the mentioned limitations. Our framework,
called BOCHICA1, is based on a core Domain Spe-
cific Language (DSL) which covers the main aspects

1Bochica was a semi-god of the Muisca culture who
brought them living skills and showed them how to orga-
nize their lives.

109Warwas S., Fischer K., Klusch M. and Slusallek P..
BOCHICA: A MODEL-DRIVEN FRAMEWORK FOR ENGINEERING MULTIAGENT SYSTEMS.
DOI: 10.5220/0003741901090118
In Proceedings of the 4th International Conference on Agents and Artificial Intelligence (ICAART-2012), pages 109-118
ISBN: 978-989-8425-95-9
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

of MAS (see Figure 1). The framework provides sev-
eral interfaces for new concepts, methods, and 3rd
party software languages. We envision BOCHICA as a
bridge between agent research and software develop-
ment. The customizations allow the user to define the
right level of abstraction for his application domain
without loosing the integration into a larger frame-
work which enables the exchange of model artifacts
such as goal hierarchies and interaction protocols.

!"#$%&' ($"%)*

+,"-#
+).$/#".#0)"

+112/.3#/%-
4%53/-

+,"-#67%)"
489

:
%
.
$
/.
3
6;
)3
5
"
<
%
)=

Figure 1: The BOCHICA framework for AOSE is based on
a platform independent core DSL and is able to integrate
research results, methods, and application domains.

The first part of this paper provides background
on previous work (Section 2), introduces the general
idea of the BOCHICA framework (Section 3), and pro-
vides on overview of the extension interfaces (Sec-
tion 4). The second part shows how to customize the
framework for creating an application domain specific
agent development environment for semantic virtual
worlds (Section 5). Finally, Section 6 discusses the
related work and Section 7 concludes this paper.

2 BACKGROUND

Raising the level of abstraction in software develop-
ment was always an important driver in computer sci-
ence research. The level of abstraction of a software
language can be defined as the distance between the
computer hardware and the concepts of that language
(Kleppe, 2008). Since the invention of computer sys-
tems, the level of abstraction was steadily increased
from opcodes, assembler languages, procedural lan-
guages, up to object-oriented languages. The ques-
tion that arises is how the next higher level of abstrac-
tion looks like. According to (Kleppe, 2008), “The
challenge for language engineers is that the software
languages that we need to create must be at a higher
level of abstraction, a level we are not yet familiar
with. They must be well designed, and software de-
velopers must be able to intermix the use of multiple
languages. Here too, we are facing a new, unknown,
and uncertain task.” In the agent community, AOSE
has been seen as a natural successor of OOSE for a
long time. Several articles discuss why AOSE has

not arrived yet in mainstream software engineering
(Belecheanu et al., 2006)(Jennings and Wooldridge,
2000)(McKean et al., 2008). Three of the identified
main problems are (i) misunderstandings or wrong
assumptions by non-agent experts, (ii) agent-oriented
standards and methods are not yet sufficient for in-
dustry needs, (iii) lack of powerful tools. However,
regarding the level of abstraction (Belecheanu et al.,
2006) concludes: “With concepts such as roles and
responsibilities, agent-oriented approaches to prob-
lem and system description are much closer to the
ways in which managers conceive of business do-
mains than are traditional software engineering de-
scriptions.” This matches the requirements stated by
Kleppe. Our research hypothesis is that agent tech-
nology can embody concepts like goals, roles, and
organizational structures in order to build modeling
languages of the next higher level of abstraction.

The model-driven framework presented in this pa-
per is based on the Domain Specific Modeling Lan-
guage for Multiagent Systems (DSML4MAS) (Hahn
et al., 2009). DSML4MAS is a platform indepen-
dent graphical modeling language and covers the
core aspects of MAS, such as agents and organi-
zations, interaction protocols, goals, behaviors, de-
ployment aspects, etc. Its abstract syntax is de-
fined by the Platform Independent Metamodel for
Agents (PIM4AGENTS). Object Constraint Lan-
guage2 (OCL)-based constraints are used for validat-
ing PIM4AGENTS models. Model validation on a
platform independent level already prevents many er-
rors in early phases of a project. DSML4MAS is plat-
form independent but it inherently possesses different
degrees of abstraction. The requirements layer is the
most abstract degree and covers abstract goals, roles,
interactions, and organizations. The system design de-
gree contains (i) agent types, (ii) behavior templates,
(iii) concrete goals, etc. The lowest degree is the de-
ployment layer which specifies concrete deployment
configurations (e.g. agent instances and resources).
The platform, domain, and methodology independent
nature of DSML4MAS makes it the perfect language
for building an extensible framework around it. For
this purpose, we introduce the overall idea behind
BOCHICA and present the made extensions.

3 FRAMEWORK OVERVIEW

Before we go into the technical details, we present
the overall vision of how we think that large scale
agent-based software should be developed using the

2http://www.omg.org/spec/OCL/2.0/PDF/

ICAART 2012 - International Conference on Agents and Artificial Intelligence

110

BOCHICA framework.

3.1 Stakeholders

The application of the BOCHICA framework requires
the interplay of different stakeholders. In the follow-
ing we characterize the involved parties and define
their tasks.
Agent Researcher. The research area of MAS is still
young and many concepts are still under research.
The task of the agent researcher is threefold: (i) new
concepts and methods have to be developed, (ii) re-
search results regarding properties or limitations of
model elements (such as interaction protocols) have
to be integrated into model repositories, and (iii) our
framework needs to be grounded in a theoretical agent
framework to bridge research and software develop-
ment.
Language Engineer. Since BOCHICA is based on a
DSL, the language engineer is responsible for extend-
ing it with new concepts. Detailed knowledge of the
core DSL is required to align new concepts to exist-
ing ones. We distinguish between language engineers
who further develop the core modeling language and
those who create 3rd party plug-ins. The language en-
gineer has to choose the right level of abstraction for
the conceptual extensions.
Tool Developer. The tool developer is responsible
for building the development environment based on
BOCHICA. This includes (i) writing model trans-
formations (ii) creating new or extended diagrams,
and (iii) providing further usability extensions such
as wizards and additional tools. He has to make sure
that the tools and transformations cover the (required)
functionality of the target platform.
Agent Engineer. The agent engineer is the end user
of the development environment. According to his
needs, he installs the required plug-ins and uses an
agent methodology to design a MAS for a certain sce-
nario. He uses a model repository to cooperate with
colleagues and reuses existing model artifacts. The
agent engineer is also responsible to refine the gener-
ated code where necessary.

3.2 Customization

In our opinion, the assumption that one metamodel or
DSL can cover the whole spectrum of agent-based ap-
plications is not realistic. The platform independent
core modeling language of our framework contains
generic concepts that are relevant for a wide area of
agent-based applications (interaction protocols, orga-
nizational structures, behaviors, etc.). However, for

many application domains it is desirable to specialize
these concepts in order to improve the expressiveness
of the models (e.g. for modeling agents for virtual
worlds, electronic business, or agent-based simula-
tion). It might also be the case that agent researchers
want to integrate their research results by providing
plug-ins that extend BOCHICA with new concepts
(e.g. commitments or new agent architectures). What
we want to prevent by the extension mechanism is that
the core DSL gets cluttered by concepts that are only
relevant for a small sub-set of applications. The ben-
efit of BOCHICA is that the mature core can be reused
in many application domains and only needs punctual
extensions. The same applies to model transforma-
tions which are used to produce executable code for a
certain execution environment. Existing transforma-
tions can be reused and only need to be extended for
the changed aspects. Our vision is that the core of
our framework will evolve over time in a community
process where other researchers can contribute their
ideas on how to develop MAS.

3.3 Collaboration

Our vision regarding the collaboration of agent engi-
neers is that model repositories will become available
for sharing design patterns and model artifacts such
as interaction protocols, organizational structures, ca-
pabilities, or behavior templates. For example, agent
engineers use organizational structures and and/or de-
composition trees for decomposing complex prob-
lems into sub-problems. Those patterns can be reused
as blue print for similar scenarios and execution plat-
forms. In (Warwas et al., 2011), an approach for mak-
ing the underlying design of concrete implemented
MAS was presented. Agent experts can use this ap-
proach for sharing new and validated artifacts to the
repositories which proved their use in practical appli-
cations. Currently, we are using a file-based approach
for sharing model artifacts but native model reposito-
ries are already becoming available (e.g. CDO3).

3.4 Theoretical Foundation

Wee see BOCHICA as a bridge between agent research
and concrete software development. Metamodels are
very well suited for discussing and aligning new con-
cepts from different research areas to each other. At
the same time, metamodels are the foundation for
MDSD. What would also be interesting is an align-
ment of BOCHICA to theoretical agent frameworks.
Research results (e.g. about the properties of a spe-
cific auction protocol) can be directly linked to model

3http://www.eclipse.org/cdo/

BOCHICA: A MODEL-DRIVEN FRAMEWORK FOR ENGINEERING MULTIAGENT SYSTEMS

111

artifacts in the model repository. This information
helps engineers in constructing MAS.

4 FRAMEWORK INTERFACES

In order to customize the BOCHICA framework it of-
fers various interfaces which can be extended through
external Eclipse-based plug-ins. The remainder of
this section provides an overview of those interfaces.
Examples will be given in Section 5.

4.1 Conceptual Extension

BOCHICA can be extended with new concepts for (i)
introducing new ways of modeling existing aspects
(e.g. behaviors), (ii) introducing completely new as-
pects (e.g. commitments), or (iii) specializations for
a certain application domain or execution environ-
ment. The extension is enabled by several interface
concepts such as Agent, Interaction, Resource,
or Task that can be specialized by external plug-
ins. The benefit of extending our framework in op-
posite to creating a completely new approach is that
large parts, which are common to most MAS, can be
reused. The core concepts will evolve over time and
will build a solid foundation for AOSE. As an exam-
ple of how the BOCHICA framework can be extended
is the approach for an alternative (declarative) way of
modeling interaction protocols with DSML4MAS pre-
sented in (Leon-Soto, 2009). The presented approach
extended the Interaction concept of DSML4MAS
and added custom diagrams. At the time of the
creation of the extension, BOCHICA was not avail-
able so that DSML4MAS had to be extended directly.
Now, BOCHICA provides interfaces for 3rd party de-
velopers for extending it with new concepts without
touching the core. At the same time, the extension
is integrated into the overall framework. End users
can choose which alternative to apply. Technically,
the extension mechanism is based on the Eclipse
OSGi4 framework and the Eclipse Modeling Frame-
work (EMF) (Steinberg et al., 2008).

4.2 Information Model

The information model interface of BOCHICA con-
sists of four parts (see Figure 2). The core of the in-
formation model has been separated from BOCHICA
and is based on the Ecore metamodel provided by
EMF (Steinberg et al., 2008). Ecore is used to model
classes and their attributes and relations among each

4http://eclipse.org/equinox/

other. The reuse of Ecore has several advantages: we
get (i) graphical modeling support (UML class dia-
gram style) and (ii) import from UML, XML schema
(including XML de-/serialization) and existing Java
code for free. Types defined in an Ecore-based infor-
mation model can be made available within BOCHICA
by the concept EType (see Figure 2). On top of the
Ecore metamodel, BOCHICA defines basic data struc-
tures such as Sequence, Set, or HashMap. The third
layer consists of special purpose data structures like
the concept ProtocolContext which is used to store
information for managing the execution of an interac-
tion protocol. It is used in plans to access the current
conversation context (e.g. the participants and the cur-
rent state of the conversation). So far, we described
the types which build the interface to the outside of
the agent system. The fourth layer of the informa-
tion model are internal types such as Agent, Event,
or Goal. These internal types are required for access-
ing model artifacts inside a plan (e.g. the parameters
of a goal). The information model of BOCHICA can
be extended by external plug-ins. One use case would
be to introduce specialized data structures similar to
the ProtocolContext (e.g. specialized result sets for
querying legacy knowledge bases). Technically, the
user defined data structures use the same extension
interfaces as in Section 4.1.

Figure 2: The four layers of the BOCHICA information
model interface: (1) basic Ecore types, (2) basic data struc-
tures, (3) specialized data structures, (4) internal types.

4.3 Language Interfaces

There exists a large number of software languages
that are relevant for developing agent-based systems
such as (i) knowledge representation languages (e.g.
OWL), (ii) query languages (e.g. SPARQL), (iii) rule
languages (e.g. SWRL, PROLOG), (iv) communi-
cation languages (e.g. KIF, FIPA ACL), (v) pro-
gramming languages (e.g. Java). A software lan-
guage is always developed with a certain purpose in
mind. Thus, it depends on the concrete use case

ICAART 2012 - International Conference on Agents and Artificial Intelligence

112

which one to use. BOCHICA provides abstract lan-
guage interfaces which can be extended by external
language plug-ins (see Figure 3). The main concept
is Expression. There exist several specialized ex-
pression types such as BooleanExpression, Rule, or
ContextCondition. The abstract expression types
are used throughout the framework. For example,
an AchieveGoal has a target and failure condition
of type BooleanExpression and a Plan has a con-
text condition of type ContextCondition. External
plug-ins can specialize the abstract expression types
with concrete languages. We assume that an exter-
nal language is also based on Ecore. This is not a
hard restriction since more and more software lan-
guages, such as SPARQL or Java, are becoming avail-
able in public metamodel zoos (e.g. EMFText con-
crete syntax zoo5, Atlantic metamodel zoo6). We use
a reflection-based approach for parsing user defined
expression strings into a language specific expression
model (interface concept EObject) and assign it to
the Expression object’s object attribute (see Fig-
ure 3). This approach can be used (i) for check-
ing the syntactical correctness of an expression, (ii)
for checking whether variable symbols inside the lan-
guage model are bound in the surrounding scope, and
(iii) to process the expression models in model trans-
formations. The benefit of our approach is that tech-
nical details, such as the integration of the knowledge
base and SPARQL into the concrete agent execution
platform, are hidden on the modeling level. At the
same time, models can be tailored to a certain target
environment. Of course, the integration at the plat-
form level has to be done at some point (we discuss it
later) but the agent engineer has a consistent view and
can concentrate on the design of the overall system.

4.4 Methodologies

During the recent years, several agent-oriented
methodologies have been proposed (Sterling and
Taveter, 2009). Most of the developed approaches
are supported by a graphical modeling language (see
discussion in Section 6). The focus of our approach
was always on developing an expressive platform in-
dependent agent modeling language that can be used
for model-driven development of agent-based sys-
tems and less on the methodology part. Since both
aspects are complementary, our idea is to use method-
ology plug-ins for extending the BOCHICA frame-
work. In the same way as BOCHICA can be extended
with new agent concepts, methodology providers can
contribute plug-ins with new views and methodol-

5http://www.emftext.org/
6http://www.emn.fr/z-info/atlanmod/index.php/Atlantic

ogy concepts. For example, the Prometheus method-
ology (Padgham et al., 2004) collects in the sys-
tem specification phase abstract functionalities and
goals of a SUC. In the architectural design phase
the functionalities and goals are grouped to agents.
A Prometheus plug-in for BOCHICA could extend it
with the missing concepts for collecting abstract func-
tionalities in the system specification phase (since it
is not covered by the core DSL). The architectural
design phase could be based on existing concepts of
the core DSL. As interface, BOCHICA provides the
concept MethodologyArtifact. Instead of having a
separate modeling language and tool for each method-
ology, most of the methodologies could be integrated
into one framework and share a common core. This
would join the efforts of the involved parties and
would ease the maintenance of the tool chain.

Figure 3: Expression interface of BOCHICA.

4.5 Transformations

Model transformations in MDSD are used to gradu-
ally refine a model of a SUC until executable code is
generated. We assume that there exist base transfor-
mations from BOCHICA to agent execution platforms
such as Jack or Jadex. A base transformation maps the
concepts of the core DSL to executable artifacts of an
agent platform. As BOCHICA gets extended with new
concepts, an existing base transformation is no longer
complete regarding the covered concepts. Thus, an
extension transformation is required which extends
an existing base transformation for the new concepts
(if the target platform shall be enabled for the ex-
tension). We see three possibilities how this can be
achieved. Some model transformation languages (e.g.
QVT7) allow to write a new transformation which in-
herits from an existing one. Thus, an existing map-
ping rule can be overloaded by a new and extended
one. Other transformation languages like XPand8 use
an aspect-orientated approach for hooking into an ex-
isting transformation and extending it. A further pos-
sibility is to chain transformations, where the first one
is a base transformation and the succeeding one sup-

7http://www.omg.org/spec/QVT/1.0/
8http://www.eclipse.org/modeling/m2t/

BOCHICA: A MODEL-DRIVEN FRAMEWORK FOR ENGINEERING MULTIAGENT SYSTEMS

113

plements the result of the proceeding one. Thus, an
external plug-in for BOCHICA usually exists of (i)
conceptual extensions and (ii) an extension transfor-
mation for the required target environment (assuming
that the base transformation already exists). Main-
taining the tool chain is one of the main problems in
MDSD. Reusing existing model transformations re-
duces development costs and time and increases code
quality by using well established design patterns.

4.6 Custom Views and Tools

Views are used in graphical modeling languages to
visualize the relations of model artifacts of a cer-
tain sub-aspect of a system. BOCHICA provides stan-
dard views for agent types and organizational struc-
tures, protocols, goal hierarchies, deployment config-
urations, etc. 3rd party developers can use the exten-
sion interface for customizing BOCHICA to a certain
application domain or introduce new ways of viewing
existing aspects. Views can also help to adapt the de-
velopment environment to certain user groups. Tech-
nically, diagrams and tools can be plugged into the
framework by using the extension point mechanism
of the Eclipse OSGi framework and GMF9.

5 VIRTUAL REALITY DEVELOP-
MENT ENVIRONMENT

After we introduced the overall framework, we now
want to show how to apply BOCHICA to a large scale
real world scenario. Today, intelligent behavior of
avatars in virtual worlds is usually simulated by trig-
gered script sequences which create the illusion of
intelligent behavior for the user. However, the flex-
ibility of those avatars is, due to their static nature,
very limited. In the research project Intelligent Simu-
lated Realities (ISReal) our research group developed
the first simulation platform based on semantic web
technology for bringing intelligent behavior into vir-
tual worlds (Kapahnke et al., 2010). The basic idea of
ISReal was to use semantic web technology to extend
purely geometric objects with ontological information
(OWL-based; e.g. concept door links two rooms and
can be open or closed) and specify their functionality
by semantic service descriptions (OWL-S-based; e.g.
open and close door services), called object services.
Intelligent agents perceive this information, store it
in their knowledge base, and use it for reasoning and
planning. An object service is grounded in a service
implementation which invokes according animations

9http://www.eclipse.org/gmf

or simulation modules. The platform consists of var-
ious simulation components which can be distributed
in a network. Before we show how we extended the
BOCHICA framework for developing ISReal agents
on the Jadex BDI platform, we introduce the main
components of the ISReal platform.
Global Semantic Environment. The Global Seman-
tic Environment (GSE) maintains the global ontolog-
ical facts of the virtual world. It is responsible for
(i) executing object services (e.g. checking the pre-
condition and invoking the service grounding), (ii)
updating facts (e.g. when a door gets closed), and
(iii) handling queries (e.g. SPARQL).
Agent Environment. The ISReal agent environment
defines interfaces for connecting 3rd party agent exe-
cution platforms to the ISReal platform (we currently
use Jack, Jadex, and the Xaitment10 game AI engine).
Every ISReal agent is equipped with a Local Semantic
Environment (LSE) which is an agent’s local knowl-
edge base. The LSE stores the perceived information
and enables the agent to reason about it. Moreover,
the LSE is equipped with an AI planner.
Graphics Environment. The user interface of the
ISReal platform is realized by an XML3D11-enabled
standard web browser. The 3D scene graph is part
of the browser’s Document Object Model (DOM) and
can be manipulated using Java Script. It also contains
RDFa12-based semantic annotations of the 3D-objects
such as the concept URI, the object URI, and the se-
mantic object service URIs. Moreover, we extended
the browser with an agent sensor which allows agents
to perceive the annotated 3D objects.

An intelligent ISReal avatar consists of (i) the ge-
ometrical shape (body) and animations, (ii) a percep-
tion component, (iii) semantic annotations, and (iv)
an agent that processes the perceived information and
controls the body. Artifacts such as the geometrical
shape, animations, or ontologies are developed us-
ing specialized 3rd party tools. We decided to base
the development environment for ISReal agents on
BOCHICA and use Jadex as the target agent platform.
This has several advantages: (i) BOCHICA already
provides the core concepts, diagrams, etc. for model-
ing agent systems, (ii) we can reuse the existing base
transformation to Jadex, (iii) we only need to cus-
tomize the missing aspects of BOCHICA for creating
an individual development environment for agents in
semantic virtual worlds, and (iv) it enables the reuse
of existing model artifacts (e.g. interaction protocols).
Figure 4 depicts the big picture of how we think that

10http://www.xaitment.com/
11http://www.xml3d.org
12http://www.w3.org/TR/xhtml-rdfa-primer/

ICAART 2012 - International Conference on Agents and Artificial Intelligence

114

!"#$%&'(%#)*+

(%,-."&%+$

!!"#$%&
!!'(&)*+,)!-#+$&!.-/
!!01)%*+,)2#1&
!!3*4+125+)2#1&

/.--01.20$).+

"#$% "#$%

6*#)#,#$

-

-
7

-
8

-

3-0+#
4.0-#

!!9#1,*%)%!-#+$&!.-/
!!'4%1)!:;<%&
!!=%>+?2#*&
!!9#$$+(#*+)2#1&
!!9+<+(2$2)2%&

!!01&)+1,%&
!!9#1@24A*+)2#1&
!!"%&#A*,%&

5%67)2%&%+$#

3*4+125+)2#1

B
%
)>
#
C
&

8*%+$'9:%;7$).+'3-0$<.2& 420,=);#'9+>)2.+&%+$4-.10-'!%&0+$);'9+>)2.+&%+$

?1@%;$
!%2>);%#:*2<$%!D)#*%

?+$.-.*)%#

!
.;
A%
$'/
.
++
%;
$).
+

!
.;
A%
$'/
.
++
%;
$).
+

5%0#.+%2
B!9 B!9

C!5%0-'8*%+$#

D,%1%
-*+<>

!%+#.2

8++.0).+#

6
$+
)@#
*E
!F !G

#
E
+
21

=
3
9
H
09
'
!I
*+
E
%
J
#
*K

Figure 4: The bottom layer depicts the components of the ISReal platform. The upper central part shows the inherent degrees
of abstraction of BOCHICA. The left an right hand side represent the interfaces for extending the framework.

intelligent agents for the ISReal platform should be
developed. For a detailed introduction to the ISReal
platform we refer to (Kapahnke et al., 2010). The re-
mainder of this section discusses the extensions of the
BOCHICA framework for developing ISReal agents.

5.1 Conceptual Extension

Figure 5 depicts some of the conceptual extensions
for ISReal. The upper row shows interface concepts
of BOCHICA. The OMSConfig concept is the root of
a metamodel which is used in the ISReal platform for
configuring the LSE with concrete ontologies, object
services, etc. The imported OMSConfig concept of
the ISReal platform is reused by the extension plug-
in. The middle row depicts the actual conceptual ex-
tensions. The ISRealAgent specializes the concept
Agent and has an URI which defines an agent’s on-
tological type, an ISRealRaySensor (resolution, up-
date rate), a LSE, and a (not visualized) reference to
an existing graphical avatar (the agent’s body). Some
concepts of BOCHICA change their technical mean-
ing when they are transformed to the ISReal plat-
form. For example, ISReal agents use their plans to
orchestrate object services. BOCHICA already pro-
vides support for orchestrating web services by plans.
Since ISReal object services are very similar to web
services, the existing concepts can be reused with-
out modification. Figure 6 depicts a very simple plan
that is triggered by the MoveNearGoal and invokes
the MoveNearService with the according parame-

Figure 5: A part of the ISReal extension of BOCHICA.

Figure 6: Agent-based orchestration of ISReal object ser-
vices (behavior diagram).

ters. The MoveNearService is used for in-room nav-
igation (no path finding across rooms). The plan’s
context condition checks whether the target object is
located in the same room. The ISReal model transfor-
mation generates code for invoking an ISReal object
service instead of code for invoking an ordinary web
service (see Section 5.3).

5.2 Language Extension

In order to make rational decisions, it is essential for

BOCHICA: A MODEL-DRIVEN FRAMEWORK FOR ENGINEERING MULTIAGENT SYSTEMS

115

agents to reason about the perceived information.
The interface to a knowledge base is usually de-
fined by a query language. As ISReal agents are
based on semantic web technology, we decided to
use SPARQL queries to access the LSE. Two of
the application scenarios are (i) to use SPARQL-
Ask queries to define the target condition of achieve
goals and (ii) to specify the context condition of
plans with SPARQL-Select queries. As explained
in Section 4.3, BOCHICA defines language interface
concepts such as BooleanExpression that are used
throughout the framework. We reused an Ecore-based
SPARQL DSL which is provided by the EMFText
concrete syntax zoo to extend BOCHICA (see Sec-
tion 4.3). The BooleanExpression was extended
with SPARQL-Ask and the ContextCondition with
SPARQL-Select. We also reused the automatically
generated parser of EMFText for parsing SPARQL
text queries into SPARQL models that are plugged
into the BOCHICA extension slot. Figure 7 depicts an
example AchieveGoal for walking to an object. The
target condition nearAt(self, object) is validated
in the agent’s LSE. The predicate is perceived by the
agent through its sensor after it has been computed by
the graphics environment and the GSE.

Figure 7: AchieveGoal with SPARQL target condition.

5.3 Transformations

A Jadex application consists of XML-based config-
uration files for applications, agents, and capabili-
ties. Behaviors are encoded in Java-based plans. The
base transformation from BOCHICA to Jadex consists
of the four modules Application, Agent, Capability,
and Behavior (see Figure 8). The first three mod-
ules map concepts from BOCHICA to the Jadex Plat-
form Specific Metamodel (PSM) (green arrows) using
QVT model-to-model transformations. The generated
Jadex model is automatically serialized to valid Jadex
XML files by EMF. We decided not to create a sep-
arate Jadex metamodel for plans. This decision was
made due to experiences with previous transforma-
tions to Jack and Jade (to avoid overhead and sim-
plify extensions). The model-to-text transformation
is done using XPand. The separation of the trans-
formation into separate modules leverages extensibil-
ity and eases maintenance. As explained in Section

!"#$%#& '()*&+ ',-"."/*+

0
1
1
+%#
&
2%
"
,

0
3
*
,
2

4
&
1
&
5
%+%
26

7&/*89:(. !
*
$
&
;
%"
<

=.> 7&;&

(*<%&+%?&2%",

@
5
A*
#
2B

7&;&=.>

4
"
,
-C
9.
"
/
*
+B

'()*&+9:(.

(*<%&+%?&2%",

! !

ISReal Agent Modeling Framework

ISReal Agent Execution Platform (Jadex)

'()*&+
>%5<&<6

D
8
2C

Figure 8: ISReal (Jadex) transformation overview.

4.5, the information model is based on Ecore and we
rely on the capability of EMF to automatically se-
rialize types to Java code (white arrow). Since we
want to focus on the overall approach, the details of
the transformations and the Jadex PSM will not be
discussed in this paper. The blue parts in Figure 8
depict (i) the ISReal extension of BOCHICA, (ii) the
ISReal extension to the Jadex QVT and XPand base
transformations, (iii) the generation of configuration
files for the ISReal agent component, and (iv) an ad-
ditional ISReal library that enables Jadex for the IS-
Real platform. The ISReal library implements the in-
terfaces of the ISReal agent environment for passing
incoming perception events and user queries to the
agents running in the Jadex platform. Moreover, it
includes Jadex into the start-up procedure of the dis-
tributed ISReal platform and provides an ISReal capa-
bility which makes a Jadex agent to an ISReal agent.
For example, it equips an agent with a LSE. Figure 9
depicts a XPand-based aspect-oriented mapping rule
which replaces the original mapping rule of the Jadex
base transformation for invoking a standard web ser-
vice by the invocation of an ISReal object service.
The first part sets the variable bindings of the object
service and the second part does the actual invocation
through a helper class provided by the ISReal library.

5.4 ISReal View

The technical details explained so far are (in the ideal
case) not visible to the end user. He is guided by a
methodology and uses graphical diagrams to design
a MAS for a certain use case. The graphical front
end abstracts from technical details such as (i) the in-
tegration of Jadex into the ISReal platform, (ii) the
invocation of ISReal object services in Jadex, or (iii)
the evaluation of SPARQL queries in the LSE. Figure
10 depicts the ISReal agent diagram which contains,
in addition to the standard BOCHICA agent diagram

ICAART 2012 - International Conference on Agents and Artificial Intelligence

116

!"#$%&'()*+,-.)*//01234*567839*(:$#(,0+;.<*1)6//=1234*>?@
((56%A0(B(C!)D06E6*A208*F19G301)@H!)D06E3,*A.)031&.+*@CI
(J56K01901<6B(1*5(K01901<L06)=+,-MNI
(J!:$#F"OP()D06E0183+01<G.A.+*)*A6("?(0Q@
(JJ(J56K01901<6E.99G.0AMC!)D06E6*A208*F19G301)@H!0E1.+*@CR
(((((!A*63-2*S135-*9<*T.-U*FV,A*66031M0E2.-U*E)A0+MNR(0R()D06N@NI
(J!F&':$#F"OPQ@

(J$?=1238.)031(5(B(1*5($?=1238.)031MM=?#*.-"<*1)N()D06
(J((E<*)K*-0*WX.6*MNE<*)K*-0*WMC06A*.-"<*1)CNE<*):.8)MNR(56%A0R
(JJ(((56K01901<6R(M-31<N(!)D06E)0+*3U)(Y(Z[[[@NI
(J)D06E5.0):3AFV)*A1.-O3190)031M5NI
(J56#*6(B(5E<*)#*6U-)MNI
(J0WM\56#*6N()D06EW.0-MNI
!F&'"#$%&'@

Figure 9: This mapping rule replaces the original web ser-
vice invocation by an ISReal object service invocation.

Figure 10: The customized ISReal agent diagram.

artifacts, the ISReal sensor and the LSE. Placing an
ISReal agent implies, compared to a plain agent, the
generation of an ISReal agent component which inte-
grates into the ISReal platform, the LSE, sensor inter-
faces, different service execution semantics, etc.

We evaluated the ISReal extension in a virtual pro-
duction line scenario. The current MAS model en-
compasses about 20 goals and plans which cover ba-
sic navigation and object interaction (e.g. for operat-
ing a virtual machine). Code for simple plans such
as the one shown in Figure 6 can be completely gen-
erated and do not need further manual refinements at
code level. Our experience with modeling the demo
scenario shows that the extension mechanism fulfills
the requirements of real world applications. The ex-
tensions focus on single isolated aspects and integrate
into the core DSL and the Jadex base transformation.
Sometimes we experienced limitations of the current
interfaces. For example, it is currently not possi-
ble to have mixed target conditions in goals (e.g. a
combined SPARQL-Ask query plus a boolean Java
expression). This issue could be solved by expres-
sion containers which allow to combine different soft-
ware languages. However, we will further develop
the interfaces as we gain experiences with applying
BOCHICA to other execution environments. The ex-
isting extensions clearly simplify the development of
ISReal agents.

6 RELATED WORK

During the recent years, several agent-oriented mod-

eling languages have been proposed. The majority of
the modeling languages were created in order to sup-
port a certain agent methodology (Henderson-Sellers
and Giorgini, 2005)(Sterling and Taveter, 2009). One
problem of existing methodology-oriented modeling
approaches that we see is that they do not clearly
distinguish between (i) the agent platform, (ii) the
methodology, and (iii) the modeling language. Two
indicators which support our perception are (i) the de-
velopment of the modeling languages is not decou-
pled from the methodologies and (ii) none of the lan-
guages has an own name (only the tools have names).
However, we think the development of modeling lan-
guages is orthogonal to the development of agent
methodologies and tools. Of course, a methodology
can (and most likely will) have certain requirements
to a modeling language (e.g. own methodology ar-
tifacts and views). For this purpose, BOCHICA can
be extended with methodology artifacts. However,
the core of the agent modeling language is indepen-
dent of a certain methodology. Unfortunately, the ma-
jority of the developed modeling tools are only par-
tially based on standardized technology for model-
driven development13 which hampers the benefits of
MDSD. For example, the Prometheus Design Tool14

(Prometheus methodology) has no explicit underly-
ing metamodel. AgentTool III15 (O-MaSE), INGE-
NIAS Development Kit16 (INGENIAS), Taom4e17

(Tropos), and REBEL18 (ROADMAP) are based on
Ecore metamodels but use legacy or non-MDA-based
model transformations. To the best of our knowl-
edge, the mentioned approaches are not thought to
be extended or customized by 3rd party plug-ins.
Beside the methodology-based modeling languages,
there exist also approaches for extending the Unified
Modeling Language (UML) with agent concepts (e.g.
Object Management Group’s (OMG) Agent Meta-
model and Profile19 (AMP) or FIPA Agent UML20).
Those approaches promise to reuse the ecosystem
built around UML – including the large user group.
However, modeling agents is fundamentally different
from modeling objects. Agents possess an internal
cognitive model and require different methods and
design patterns. Moreover, our experiences in AMP
showed that it is hard to extend UML since the under-
lying Meta Object Facility (MOF) metamodel is com-

13We analyzed the publicly available software.
14http://www.cs.rmit.edu.au/agents/pdt/
15http://agenttool.cis.ksu.edu/
16http://ingenias.sourceforge.net/
17http://selab.fbk.eu/taom/
18http://www.agentlab.unimelb.edu.au/software.html
19http://www.omg.org/cgi-bin/doc?ad/08-09-05.pdf
20http://www.auml.org/

BOCHICA: A MODEL-DRIVEN FRAMEWORK FOR ENGINEERING MULTIAGENT SYSTEMS

117

plex and extensions of existing elements have many
not desired and non-obvious implications. Thus, we
are sceptical that extending UML in its current form
suffices the needs of AOSE. UML, which is a gen-
eral purpose modeling language, offers two exten-
sion mechanisms: (i) heavy weight metamodel ex-
tensions and (ii) light weight profiles. Metamodel
extensions of UML underlie the standardization pro-
cess of OMG and are not for the normal end user.
Profile-based extensions can be created by end users
and allow a limited customization. An alternative
to our approach would be the creation of a plat-
form specific modeling language (e.g. for the ISReal-
enabled Jadex platform). This would mean to rein-
vent many things that are already part of BOCHICA.
In (Kardas et al., 2009) two platform specific mod-
eling languages for the agent platforms SEAGENT
(Dikenelli, 2008) and Jadex were presented. The pos-
sibility to customize the language if the agent plat-
form (e.g. Jadex) is integrated into a larger platform
is not discussed. Our approach is especially suited for
large scale applications or target environments with
many end-users (e.g. the ISReal platform) where cus-
tomizations pay off. Small applications can be real-
ized with the functionality provided by the core mod-
eling language and the base transformations (similar
to existing approaches). We see BOCHICA comple-
mentary to existing approaches as it provides a clean
conceptual framework and interfaces for integration.

7 CONCLUSIONS

In this paper we presented a novel model-driven
framework for AOSE which integrates the experi-
ences we gained during the recent years with model-
ing MAS. The BOCHICA framework goes beyond the
state of the art in AOSE as it is not created for a cer-
tain execution platform, methodology, or application
domain. Instead, it is based on a platform independent
agent core modeling language and provides generic
extension interfaces for integrating results from agent
research as well as for customizing it regarding user-
specific application domains, new methods, and plat-
forms. After we presented our vision on how to apply
our framework in Section 3, the extension interfaces
were introduced in Section 4. Based on BOCHICA,
we showed how to create a model-driven development
environment for semantic virtual worlds. We see our
approach as a contribution to the unification of the
diverse field of agent-oriented modeling and to bridge
agent research and concrete software development. In
the future we want to integrate existing agent method-
ologies and work on collaborative modeling of agent-

based systems. 21

REFERENCES

Belecheanu, R. A. et al. (2006). Commercial applications of
agents: Lessons, experiences and challenges. 5th Int.
joint Conf. on Autonomous Agents and Multi-Agent
Systems., pages 1549—1555.

Dikenelli, O. (2008). SEAGENT MAS platform develop-
ment environment. In Proc. of the 7th Int. joint Conf.
on Autonomous agents and multiagent systems: demo
papers, AAMAS ’08, pages 1671–1672. IFAAMAS.

Hahn, C. et al. (2009). A platform-independent meta-
model for multiagent systems. Autonomous Agents
and Multi-Agent Systems, 18:239–266.

Henderson-Sellers, B. and Giorgini, P. (2005). Agent-
Oriented Methodologies. Igi Global.

Jennings, N. R. and Wooldridge, M. (2000). Agent-
Oriented Software Engineering. Artificial Intelli-
gence, 117:277—296.

Kapahnke, P. et al. (2010). ISReal: an open platform for
semantic-based 3D simulations in the 3D internet. In
Proc. of the 9th Int. Semantic Web Conference on the
Semantic Web (ISWC’10), page 161–176. Springer.

Kardas, G., Ekinci, E. E., Afsar, B., Dikenelli, O., and
Topaloglu, N. Y. (2009). Modeling tools for platform
specific design of Multi-Agent systems. In Proc. of the
8th German Conf. on Multiagent System Technologies
(MATES’10), volume 5774, pages 202–207. Springer.

Kleppe, A. (2008). Software Language Engineering: Cre-
ating Domain-Specific Languages Using Metamodels.
Addison-Wesley Longman, Amsterdam, 1 edition.

Leon-Soto, E. (2009). Modelling interaction protocols as
modular and reusable 1st class objects. In Agent-
Based Technologies and Applications for Enterprise
Interoperability, volume 25 of LNBIP, pages 174–
219. Springer.

McKean, J. et al. (2008). Technology diffusion: analysing
the diffusion of agent technologies. Autonomous
Agents and Multi-Agent Systems, 17(3):372–396.

Padgham, L. et al. (2004). Developing Intelligent Agent
Systems: A Practical Guide. John Wiley & Sons.

Steinberg, D. et al. (2008). EMF: Eclipse Modeling Frame-
work. Addison-Wesley, 2nd revised edition.

Sterling, L. and Taveter, K. (2009). The Art of Agent-
Oriented Modeling. The MIT Press.

Warwas, S. et al. (2011). Making multiagent system designs
reusable: A model-driven approach. In Proc. of the
Int. Conf. on Intelligent Agent Technology (IAT’11),
pages 101–108. IEEE.

21Please contact the first author if you need a backup of the ref-
erenced documents in the footnotes (14.10.2011).

ICAART 2012 - International Conference on Agents and Artificial Intelligence

118

