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Abstract: Weighted voting games are classic cooperative games which provide a compact representation for coalition
formation models in multiagent systems. We consider manipulation in weighted voting ganaes&iation
andmerging which involves an agent or some agents misrepresenting their identities in anticipation of gaining
more power at the expense of other agents in a game. We show that annexation and merging in weighted voting
games can be more serious than as presented in the previous work. Specifically, using similar assumptions as
employed in a previous work, we show that manipulators need to do only a polynomial amount of work
to find amuch improvecpower gain, and then present twearch-basegseudo-polynomial algorithms that
manipulators can use. We empirically evaluate our search-based method for annexation and merging. Our
method is shown to achieve significant improvement in benefits for manipulating agents in several numerical
experiments. While our search-based method achieves improvement in benefits of over 300% more than those
of the previous work in annexation, the improvement in benefits is 28% to 45% more than those of the previous
work in merging for all the weighted voting games we considered.

1 INTRODUCTION total weight meets or exceeds a specifibta is
called awinning coalition The weights of agentsin a
False-name manipulatiom weighted voting games game correspond to resources or skills available to the
(WVGs), which involves an agent or some agents agents, while the quota is the amount of resources or
misrepresenting their identities in anticipation of skills required for a task to be accomplished. For ex-
power increase, has been identified as a problem. Thisample, insearch and rescyeobotic agents put their
is because the anticipated power gain by manipulat- resources (i.e., weights) together in large natural dis-
ing agents is at the expense of other agents in theaster environments to reach the necessary levels (i.e.,
game. The menace can take different forms. Vith quota) to save life and property.
nexation an agent, termed, &annexertakes over the We are concerned with the ways in which agents
voting weights of some agents in a game. Power is notthat complete a task are compensated from their
shared with the annexed agents. Formingbiance jointly derived payoff, taking into account each
or merginginvolves voluntary merging of weights by  agent’s resource (weight) contribution. The relative
two or more agents to form a single bloc (Machover power of each agent reflects its significance in the
and Felsenthal, 2002; Aziz et al., 2011; Lasisi and Al- elicitation of a winning coalition. Although a larger
lan, 2011). Merged agents expect to be compensatedveight by an agent makes it more likely that an agent
with their share of the power gained by the bloc. The can affect the outcome of a WVG, the weight of an
agents whose voting weights are taken over or mergedagent in a game is not always proportional to its power
into a bloc are referred to assimilatecagents. When  (Aziz et al., 2011). A widely accepted method for
agents engage in these manipulations, it becomes dif-measuring such relative power in WVGs ugesver
ficult to establish or maintain trust, and more impor- indices The two best-known and most used indices
tantly it becomes difficult to assure fairness in such for measuring power in WVGs ar8hapley-Shubik
games. (Shapley and Shubik, 1954) af&nzhaf(Banzhaf,
WVGs are classic cooperative games which pro- 1965) power indices.
vide a compact representation for coalition formation WVGs can be viewed as a form of competi-
models in multiagent systems. Each agent in a WVG tion among agents to share the availdbted power
has an associated weight. A subset of agents whosevhose total value is always assumed to be 1. Agents
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may thus resort to a form of false-name manipula- the Shapley-Shubik and Banzhaf indices, results from
tion (annexation or merging) to improve their influ- our experiments suggest that manipulation via merg-
ence in anticipation of gaining more power. This pa- ing can behighly effective for manipulators. The sim-
per continues the work studied originally by (Ma- ple random approach to manipulation via annexation
chover and Felsenthal, 2002), (Aziz et al., 2011), and and merging seemsnintelligent thus, it is imprac-
(Lasisi and Allan, 2011) on annexation and merging tical that strategic agents would be keen in employ-
in WVGs. We extend the framework of (Lasisi and ing such method. In view of this, we modify the sim-
Allan, 2011) on susceptibility of power indices to an- ple random approach to select the best power gain or
nexation and merging in WVGs to considenmaich benefit from three random choices (which we refer to
improvedpower gain obenefitfor manipulators. asbest-of-threpand compare with our search-based

(Lasisi and Allan, 2011) for annexation and merging Vides higher average benefits to the manipulators than
is based on aandomapproach where some agents, those of the simple random approach.

say k < n, in the game are randomly selected to  he remainder of the paper is organized as fol-
tary bloc of manipulators in merging. This simple 3 demonstrates examples of annexation and merg-
random approach shows that on average, annexai"in WVGs. We present our search-based approach
tions can be effective for manipulators using both the [0 @nnexation and merging in Section 4. In Section
pute agents’ power. Their results also show that merg- {0 complement the performance of the search-based
manipulators using the Shapley-Shubik index, while €valuation of our search-based method. Section 7 dis-
it is typically non-beneficial (i.e., no power is gained) CUSSES related work. We conclude in Section 8.

for manipulators using the Banzhaf index. We note

that randomly selecting thHeagents to be assimilated

for both annexation and merging this way failsto con- 2. PRELIMINARIES

sider the benefits of a more strategic approach.

We show that manipulation via annexation and 2.1 Weighted Voting Games
merging can be more serious than as presented in
the previous work. Specifically, we show, using sim- [et| = {1,---,n} be a set of agents and the cor-
ilar assumptions for annexation and meging as em-responding positive weights of the agents \we=
ployed in the simple random simulation of (Lasisi {wy,---,wn}. Let a coalitionSC | be a non-empty
and Allan, 2011), that manipulators needto doonly a subset of agents. A W& with guota qinvo|\/ing
polynomialamount of work to find a much improved  agentd is represented &3 = [Wi, - ,Wn;q]. Denote
power gain during manipulation. Given that the prob- by w(S), the weight of a coalitionS, derived as the
lem of computing the Shapley-Shubik and Banzhaf summation of the weights of agentsi.e.,w(S) =
power indices of agents is already NP-hard, and only Y jesW;. A coalition, S, wins in gameG if w(S) > g,
pseudo-polynomiabr approximation algorithms are  otherwise it loses. WVGs belong to the classiofiple
available to compute agents’ power, we then presentyoting gamesin simple voting games, each coalition,
two search-base@seudo-polynomialtime algorithms g has an associated functienS— {0,1}. The value
that manipulators can use to find a much improved 1 implies a win forSand 0 implies a loss. Se(9 =1
power gain. Furthermore, for reasons of efficiency, we if w(S) > qand 0 otherwise.
do not implement the two algorithms exactly. Rather,
we employinformed heuristic search strategi¢e 2.2 Power Indices
complement the performance of the algorithms, while
taking into consideration the two power indices in the \we provide brief descriptions of the two power
design of the heuristics. indices we use in computing agents’ power in

We empirically evaluate our search-based method WVGs. For further discussion, we refer the reader to
for annexation and merging. Our method is shown (Felsenthal and Machover, 1998; Laruelle, 1999).
to achieve significant improvement in benefits over
previous work for manipulating agents in several nu- Shapley-Shubik Power Index
merical experiments. Thus, unlike the simple random
simulation of (Lasisi and Allan, 2011) where merging The Shapley-Shubik index quantifies the marginal
has little or no benefits for manipulators using both contribution of an agent to thgrand coalition(i.e.,
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a coalition of all the agents). Each permutation (or or-

{i})). We say that® is susceptible to manipula-

dering) of the agents is considered. We term an agenttion via annexation if there exists a new gaGé

to bepivotalin a permutation if the agents preceding
it do not form a winning coalition, but by including
this agent, a winning coalition is formed. Shapley-

Shubik index assigns power to each agent based on

the proportion of times it is pivotal in all permuta-
tions. We specify the computation of the power in-
dex using notation of (Bachrach et al., 2010). Denote
by ma permutation of the agents, 8o {1,...,n} —
{1,...,n}, and byl the set of all possible permuta-
tions. Denote bySy(i) the predecessors of agerin
mi.e,Sy(i)={j:1(j) < m(i)}. The Shapley-Shubik
index,$;(G), for each agentin a WVG G is

. > MS0) U i}) ~ V(i)

=
n! o

i (G) (1)

Banzhaf Power Index

such that®g (g iy)(G') > ®i(G); the annexation is
termed advantageousThe factor of incrementby
Pe (s (G)
AT
D¢ (5,4i1) (G') < ®i(G), then the annexation disad-
vantageous

which the annexer gains is given

Definition 2. (Manipulation by Merging).

Let a manipulators’ coalitionS, alter G by merging
into a bloc &S. We say thatb is susceptible to ma-
nipulation via merging if there exists a new game
G" such that®gs(G') > ¥jesPj(G); the merging
is termedadvantageousThe factor of increment by

. o . . G
which the manipulators gain is given % If
Ds(G) < Yjes®j(G), then the merging islisad-
vantageousThe agents in a bloc formed by merging
are assumed to be working cooperatively and have

transferable utility. For the sake of simplicity in our

The Banzhaf power index bases power on an agentanaWSiS, we also refer to the factor of increment as

being able to turn a losing coalition-into a winning
coalition by its vote. An agerite Sis referred to as
beingcritical in a winning coalition,S, if w(S) > q
andw(S\{i}) < g. The Banzhaf power index compu-
tation for an agenitis the proportion of timesis crit-

ical compared to the total number of times any agent

in the game is critical. The Banzhaf indg%(G), for
each agentin a WVG G is given by

o~ hi(G)
hG)= Yicnj(G)

wheren;(G) is the number of coalitions for which
agenti is critical inG.

2

2.3 Annexation and Merging

Let G be a WVG. Letd be any of Shapley-Shubik or

Banzhaf power indices. We denote the power index of

an agent in G by @;(G). Also, consider a coalition
SC 1, we denote by & a bloc of assimilated voters
formed by agents irs. We say that a power index
@ is susceptibleo manipulation whenever a WVG
G is altered by an agent (in the case of annexation

power gain or benefit.

3 EXAMPLES OF ANNEXATION
& MERGING IN WVGs

We provide examples to illustrate annexation and
merging in WVGs. We have used Banzhaf power in-
dex as a reference for these examples. The annexer
and assimilated agents are all shown in bold.

Example 1. (Manipulation by Annexation).

Let G = [12,16,1819,23,26,43,46,50;193 be a
WVG. The power index of agent 1 with weight 12
is B1(G) = 0.026. Suppose the agent annexes agents
3 and 4 with weights 18 and 19. An assimilated
bloc of weight 49 is formed in the new gan@ =
[49,16,23,26,43 46,50;195. The new power index

of the annexefs1(G') = 0.177> B1(G). The agent
gains from the annexation and increases its power in-
dex by a factor o371 = 6.81.

Example 2. (Manipulation by Merging).

or some agents in the case of merging) and such thatLet G = [12,16,18,19,23,26,33,40,45,155 be a

there exists a new gan@ where®; (G') > @;(G). In
other words,® is susceptible to manipulation when
the power index of the agent in the altered game is
more than its power index in the original game.

Definition 1. (Manipulation by Annexation).

Let agenti alter gameG by annexing a coalitiors
(i assimilates the agents Bito form a bloc &SuU
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WVG. The last four agents in the game are des-
ignated as would-be manipulators. The Banzhaf
power indices of these agents af(G) = 0.116,

B7(G) = 0.142, Bg(G) = 0.174, and Be(G) =

0.200. So,5?_sBj(G) = 0.632. Suppose the agents
decide to merge their weights. A merged bloc of
weight 144 is formed in the new gamé&’
[12,16,18,19,23 144 155. The power index of the
blocBs(G’) = 0.861> 0.632. The manipulators gain
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from the merging and increase their power indices by 4.2 Manipulation Algorithm for
a factor of%g; =1.36. Merging

There exist examples where the two forms of ma-
nipulation may not be beneficial using the two power
indices. However, (Machover and Felsenthal, 2002)
have shown that, in the case of annexation,alvgays
beneficial for an annexer to assimilate other agents us-

ing Shapley-Shubik power index.

The brute force approach to determine a coalition
that yields the most improved benefit in merging in
a WVG is to simply enumerate all the possible coali-
tions of agents in the game and compute for each of
these coalitions its benefit. We can then output the
coalition with the highest value. Unfortunately, enu-
merating all the possible coalitions is exponential in
4 SEARCH-BASED APPROACH the number of agents. Also, computing the power in-
TO ANNEXATION & MERGING dices (to determine the factor of increment of each
coalition) naively from their definitions means that we
have two exponential time problems to solve. We pro-
vide an alternative approach.
Let procedurePowerindexG,i) be a pseudo-
- polynomial algorithm for computing the power in-
dex of an agent in a WVG G of n agents for any
of Shapley-Shubik and Banzhaf power indices ac-
cording to (Matsui and Matsui, 2000). We first use
PowerlndexG,i) as a subroutine in the construc-
tion of a procedureGetMergeBenefiG,S). Proce-
dure GetMergeBenefiG, S) accepts a WVGG and
a would-be manipulators’ coalitior§. It first com-
putes the sum of the individual power index of the
assimilated agents fBusingPowerlndexG,i). Then,
it alters G by replacing the sum of the weights of
the assimilated agents i@ with a single weight in
a new gameG’ before computing the power of the
bloc &Sin G'. Finally, GetMergeBenefiG, S) returns
the factor of increment of the merged bloS&Let
A(G) be the pseudo-polynomial running timeRgw-

4.1 Overview

As noted in the introduction, randomly selecting
agents to be assimilated in annexation, or to form
voluntary bloc in merging fails to consider the ben-
efits of a more strategic approach to false-name ma-
nipulation. In this section, we extend the simple ran-
dom simulation of (Lasisi and Allan, 2011) for annex-
ation and merging in WVGs. We propose a search-
based approach for the two forms of manipulation
(annexation and merging) using the Shapley-Shubik
and Banzhaf indices to compute agents’ powetr.

In considering our search-based approach to an-
nexation and merging, we have implemented two
pseudo-polynomial manipulation algorithms, one for
each form of manipulation. To begin with, we recall
that the problem of calculating the Shapley-Shubik in-
dices and Banzhaf indices for WVGs is NP-hard, and
both admit pseudo-polynomial algorithms using dy- . :
namic programming (Matsui and Matsui, 2000; Mat- erindexG,i). Now, since|§ < |I| =n, proce_dure
sui and Matsui, 2001) or generating functions (Brams Ge_tMe_rgeBeneﬁG, S) take_s at mosD(n-A(G)) time
and Affuso, 1976; Bilbao et al., 2000) assuming the which is pseudo-polynomial.

weights of agents in the games are polynomial in the W& now useGetMergeBene(iG, S) to construct
number of agents. an algorithm that manipulators can use to determine

Given that computing the two power indices is a coalition that yield_s a good benefit in merging_._We
already NP-hard, and only pseudo-polynomial or first argue that manipulators tend to prefer coalitions
approximation algorithms are available to compute Which are small in size because they are easier to form
agents’ power, it is reasonable that the manipulation @d manage. Also, intra-coalition coordination, com-
algorithms we propose are also pseudo-polynomial munication, and other overhea_ds_lncrease Wlth coali-
since we necessarily need to use these power in-UoN Sizé. Thus, we suggest a limit on the size of the
dices in computing agents’ benefits during manipu- manipulators’ coalitions since it is unrealistic and im-
lation. (Aziz et al., 2011) have also shown that deter- Practical thaall agents in a WVG will belong to the
mining if there exists a beneficial merge is NP-hard manipulators’ coalition. This is also consistent with
using either the Shapley-Shubik or Banzhaf power in- the assumptions of the previous work on annexation

dices. The same is true for determining the existence @1d merging (Aziz et al., 2011; Lasisi and Allan,
of beneficial annexation using the Banzhaf index. ~ 2011). We note, however, that limiting the manipu-
lators’ coalitions size this way does not change the

complexity class of the problem as finding the coali-
tion that yields the most improved benefit remains
NP-hard even with such limitation.

Consider a WVG of agents. Suppose the manip-
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ulators’ coalitions have a limitg < n, on the size of  original gameG. The annexer examines a polynomial
the members of the coalitions, i.e., the manipulators’ number of coalitions of the agents assuming a limit
coalitions,S, are bounded as2 |§ < k. In this case, k < non the size of each coalition. Since any of the
the number of coalitions that the manipulators need agents can be an annexer and the annexer will belong
to examine is at mogp(nk) which is polynomial in to any of the coalitions it annexes, the total number of

n. Specifically, the total number of these coalitions is: coalitions examined by all the annexers is:

(3)+(5) e+ (R)=5(5) @ (D))o ()

SOLWZ:a\Se £ n(n-1)--(n—j+1) - ( ’{):Z( nIl ) “

JZZ J JZZ I Bounding this equation using similar approach as

K ni in Equation 3 shows that Equation 4@n¥). Thus,

< J_' as before, the manipulation algorithm for annexation
I=2 7 also runs in pseudo-polynomial time, with a total run-
kK ni ning time ofO(nk- A(G)).

< 2 oI 1
n? n nk

= Dt et I = o). 5 INFORMED HEURISTIC
2 SEARCH STRATEGIES

Running GetMergeBenefiG, S) while updating

the most improved benefit found so far from each o further improve the performance of the manipu-

of these coalitions requires a total running time of |5iion algorithms, we use heuristics. In this section,

O(n- A(G)) which is pseudo-polynomial time, and e provide descriptions of search infrastrutures and

thus becomes reasonable to compute. enhancements to complement the performance of the
. . ) manipulation algorithms.

4.3 Manipulation Algorithm for

Annexation 5.1 Merging Heuristics

Our pseudo-polynomial manipulation algorithm for The search space for the manipulation algorithm for
annexation provides a basic modification of the merge merging is the polynomial nhumber of coalitions of
algorithm above. Specifically, we first replace the size at mostk (see Equation 3) as described ear-
procedureGetMergeBenefi6, S) with another pro- lier. Itis importantto point out that the computation of
cedure GetAnnexationBengf®,i,S). The procedure  the power indices of the manipulators in the original
GetAnnexationBend(fs, i, S) accepts a WVGEG, an game and the power index of the bloc formed by these
annexeri, and a coalitiorsto be assimilated by The agents in a new game account for most of the compu-
procedure then returns the factor of increment or ben- tational time required by this algorithm. We also note
efit of the assimilated bloc &8U {i}). that it is unclear to the manipulators on how to deter-
Again, we useGetAnnexationBeng(®,i,S) to mine a coalition that is beneficial without having to
construct an algorithm that the annexer can use to de-compute and compare the power indices of the ma-
termine the coalition that yields the most improved nipulators in both games.
benefit in annexation. The method of construction of Since we seek to find the coalition with the most
the algorithm is the same as that of the previous ma- jmproved benefit among these coalitions, it is not dif-
nipulation algorithm for merging with the exception ficyt to see that the algorithm is prone to engaging in
that we add the weight of an annexéo the weight jrrelevant computation of power indices of agents in
of each coalitionS and compare the power index  he tywo games for coalitions whose merging are dis-
q’fa(SJ{i})(G) of the assimilated bloc in a new game 54y antageous. We define evaluation criteria that we
G’ to the power indexp;(G) of the annexer in the 56 1o prune away such coalitions without having to
mthe most improved benefit among@e*) compute the power indices of the bIQCS in _the new
polynomial coalitions and not from the originall zoali- ~ 9ames, thus gaining ample computational time. The

tions since we have restricted each manipulators’ coalitio basic idea of the evaluation criteria is to prune away
size to a constark < n. all coalitions having their factor of increment less than
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or equal to the estimated minimum possible factor of
increment in the altered WVGs. The criteria are de-
fined for both Shapley-Shubik and Banzhaf indices.

First, consider merging using the Shapley-Shubik
index. LetG be a WVG ofn agents. Let the Shapley-
Shubik power index of an agemtin a gameG be
$i(G). Consider a manipulators’ coalitidhC | with
k agents. Let agents, io, ..., ik be the distinguishek
manipulators irSthat want to merge into a single bloc
&S. LetMN,,_ be the set of all permutations of the re-
mainingn—kagents irG (i.e., notincluding th& ma-
nipulators). Consider a certain permutatiog My,
in which we insert all th& manipulators starting from
ther-th position intt (wherer is any arbitrary position
in 1), and such that one of the manipulators is pivotal
for . There arek! permutations inG for 1tin which
the members o6 occur together beginning at posi-
tionr. For example, consider a permutatioa: 1,2, 3
of other agents irG which excludes the three ma-
nipulatorsis,i», andis. The 3! permutations inG
for mtwhen all the manipulators appear together and
starting at the 3-rd position areg = 1,2,i4,i2,i3, 3,
Q= 1; 2; i17i3; i2;3! 3=, T = 1; 2; i37i27ila3'

Now, consider a permutatiof(tt) of agents in
the altered gam&’ obtained fromt by inserting the
bloc &S (formed by agents; € S) at ther-th posi-
tion in f(1). It is easy to see that tHe permutations
M, -+, Tk for 1in G when the manipulators appear
together from the-th position correspond to exactly
one permutatiorf (1)) in G'. Also, since one of the
manipulators is pivotal for each of the permutations
T, -+, T for min G, &Sis also pivotal for the corre-
spondingf (1) in G'. Observe that counting the num-
ber of distinct permutations € M,,_x in G in which
we insert all the manipulators at certain positions and
such that one of them is pivotal for eantprovides a
lower bound on the number of times the blocs formed
by these agents i@’ will be pivotal. That itis a lower
bound is clear as the manipulators may also be pivotal
in other cases when they do not all appear together.

In our implementation, we first count the num-
ber of times each of the manipulators is pivotal when
they all follow one another irs. We then pick the
smallest among these numbers denoteffjy. Now,
if Smerges to form a bloc & then, the number of
agents in the new gan® is n—k+ 1. We estimate
the Shapley-Shubik power index of the blocGhas

% We compare the estimated power index of
the bloc inG’ to the sum of the Shapley-Shubik power

indices,Ycs0i(G), of the manipulators iG. Specif-
ically, if = | kjl, < Yiesti(G), we eliminate the ma-
nipulators’ coalltlonSas the coalition cannot possibly

be a candidate coalition that provides the most im-
proved benefit to the manipulators.

Second, consider merging using Banzhaf in-
dex. Letn;(G) be the number of coalitions for which
an agent is critical in G. Also, denote byBi(G)
the Banzhaf power index of ageinin G. As before,
we consider a manipulators’ coalitidhC | with k
agents. Let agenis, io,...,ix be the distinguishel
manipulators irSthat want to merge into a single bloc
&S. Letlh_k be the set of all losing coalitions of the
remainingn — k agents inG (i.e., not including the&
manipulators). Consider a certain coaliti®re I',_g
in which the inclusion of at least one of ageintg S
makesCU {ij} a winning coalition and such that at
least one of agents is critical forCU {i;}. There are
multiple such winning coalitions that can be formed
from the union ofC and the subsets & depending
on the quota of the game.

For example, leG = [23,20,10,11,15;5(0 be a
WVG of five agentsl = {1,2,3,4,5} in order. Let
S= {3,4,5} be a set of manipulators. Consider a los-
ing coalitionC = {1,2} which excludes the three ma-
nipulators. There are three winning coalitio@: =
CU{3},CY =Cu{4}, andC¥ = Cu {5} that can be
formed from the union o€ and the subsets &such
that at least one agent Biis critical in the resultant
set. Note that adding two members ®fo C would
yield coalitions in which no agent is critical.

Now, consider a winning coalitioh(C) of agents
in the altered gam&' obtained from the union of the
losing coalitionC in gameG and the bloc & (formed
by agents; € S). It is easy to see that all the winning
coalitionsCY',--- ,Ci (wherem € N) obtained fronC
in G correspond to exactly one winning coalitib(C)
in G'. Also, since at least one of the manipulators is
critical for each of the winning coalitior@}', - -- ,Cy,
the bloc &Sis also critical for the corresponding win-
ning coalitionf(C) in G'. Observe that counting the
number of distinct losing coalitior@ < I',_g in which
the inclusion of agent§ € SmakesCU {i;} a win-
ning coalition and such that at least one of agents
is critical forCU {i;} gives the number of times the
bloc formed by the manipulators @& is critical.

In our implementation, we compute the sum
YiesNi(G) of the number of times all the manipula-
tors are critical inG, and then compute the number
nes(G') of times the bloc formed by the manipula-
tors will be critical inG’ as described above. In or-
der to estimate the power of the blocS&n G’ we
need to know the number of times for which each of
the other agents i’ other than the bloc is also crit-
ical. These numbers are not available. Since we al-
ready know the number of times all agentsGrare
critical, we estimate the number of times for which
each agerit(other than &S) in gam&' would be crit-

ical asn;(G') = ”'( ), wheret is defined as a measure
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to scale down the number of times an agent is criti- the coalition with the most improved benefit using the
cal in G to G'. This is required since there are more n-1

agents in the original gam@ thanG’. The number of k—1
coalitions for which the non manipulating agents in such assimilated coalitions to be considered when the
G is critical is always more than the number of coali- nagents act as an annexer in turn.

tions for which they are critical i6’. More precisely,

we estimate the scaling factor between the two games

using the following ratia = % Wenowcom- 6 EXPERIMENTAL RESULTS

pute the estimated Banzhaf power index of the bloc in

G asPgs(G) = n&s(G’;]ige.l) m@y- We compare the  We have studied the performance of the two ma-
e nipulation algorithms. As noted in the introduction,

estimated power index of the bloc & to the sum . . . !
of the Banzhaf power indices,sBi(G), of the ma- the simple random approach to manipulation via an-

; ; P : ; tion and merging seems unintelligent. Thus, it

nipulators inG. Specifically, iffe.s(G') < TicsBi(G), NEMY . ;
we prune the manipulators’ coaliti@as thecoalition 1S impractical that strategic agents would employ
cannot possibly be a candidate coalition that provides SUch method. We make a simple modification to this
the most improved benefit to the manipulators. method which provides manipulators with higher av-
erage factor of increment. The modification involves

. | = the selection of the best factor of increment from three
5.2 Annexation Heuristic random choices (which we refer to as thest-of-three
method). We compare the results of our search-based
We recall the definition of annexation in Section 2 method with those of the simple random and best-of-
and from (Machover and Felsenthal, 2002; Aziz et al., three methods. However, for clarity of presentation,
2011), the power of the assimilated bloc in an altered We show our results compared with only those of the
WVG is compared to the power of the annexer in the best-of-three method.
original game. By this definition, intuition suggests ~ We randomly generate WVGs. The weights of
that annexation should always be advantageous. Thisagents in each game are randomly chosen so that
intuition is indeed true using the Shapley-Shubik in- all weights are integers and drawn from a uni-
dex to compute agents’ power. However, there exists form distribution over the rangfl, W], whereW ¢
situations where annexation is disadvantageous for{10,20,30,40,50}. We have chosen different weight
the annexer using the Banzhaf index. See (Machoverdistributions in order to provide some generalization
and Felsenthal, 2002; Aziz and Paterson, 2009; Aziz of the performance of the two methods under different
et al., 2011) for different examples of WVGs where conditions. We run two different set of tests in which
annexation is disadvantageous for the annexer usingthe number of agents, in each of the original WWGs
the Banzhaf index. This case where annexation resultsis either 10 or 20 while the number of assimilated
in power decrease for the annexer is refer to as theagentsk, is chosen to be either 5 or 10. When creat-
bloc paradox(Machover and Felsenthal, 2002). Fur- ing a new game, the quota,of the game is randomly
thermore, (Aziz et al., 2011) have also shown that de- generated such thgw(1) < q < w(l), wherew(l) is
termining whether a player can benefit from annexing the sum of the weights of all agents in the game.
a given coalition is NP-hard for the Banzhaf index. Using the manipulation algorithms, the simple
Recall again from Equation 4 that the annexer fandom and the best-of-three methods, the power in-
needs to examine on|y a po|yn0mia| number of as- dex of an assimilated bloc formed by annexation in
similated coalitions of size at mokt- 1 to find the ~ an altered game is compared to the power index of
most improved power gain. It is also known that in the annexer in the original game. Similarly, the power
computing agents’ power index in a WVG using both index of the assimilated bloc formed by merging is
the Shapley-Shubik and Banzhaf indices, the power compared to the sum of the original power indices of
index of an agent with a higher weight cannot be the agentsin the me.rged bloc. The factor of increment
less than the power index of an agent with a smaller (decrement) by which the annexer (or the merged
weight (Bachrach et al., 2010). In our case, since we bloc) gains (loses) in the annexation (or merging) is
are restricting the manipulators’ coalition sizeko  computed. We repeat each experiment 100 times and
the assimilated coalitions with maximal weights are compute the average factor of increment.
those of sizek — 1. Based on this observation and )
the fact due to the bloc paradox as discussed above6.1 Results for Merging
it is enough to check only the assimilated coalitions
of size exactlyk — 1 in order for an annexer to find Figure 1 shows the benefits from merging for both the

two power indices. There are onfy 2
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Figure 1: The average factor of increment for merging forsarch-based and best-of-three methods using differentslg
weights distributions. (a) = 10 andk =5 (b)n= 10 andk = 10 (c)n=20 andk =5 (d) n =20 andk = 10.

best-of-three method and our search-based approaclof increment found by the search-based approach for
for various values of, k, andW using the two power  the two power indices are higher than those of the
indices. Thex-axis indicates the weight distributions corresponding power indices using the best-of-three
of agents while thg-axis is the average factor of in- method. Specifically, we found from the data of Fig-
crement achieved by manipulating agents. The errorures 2(a)-(d) that the search-based method achieves
bars in this and the subsequent figure indicate 5% er-improvement in benefits of over 300% more than
ror amounts in the average factor of increment. those of the best-of-three method in annexation for
We found from the data of Figures 1(a)-(d) that various values of, k, andW, and for the two power
our search-based method achieves improvement inindices. Again, this percentage increment of the
benefits of 28% to 45% more than those of the best- search-based approach over the best-of-three method
of-three method in merging for various valuesok, can be achieved with only a polynomial amount of
andw, and for the two power indices. Since this per- work. Thus, we conclude that manipulation via merg-
centage increment of the search-based approach oveing and annexation is more serious than was presented
the best-of-three method can be achieved with only a in the simple random simulation of the previous work.
polynomial amount of work, then, manipulators are
more likely to seek a much improved power gain in

merging using the search-based approach. 7 RELATED WORK

6.2 Results for Annexation Weighted voting games and power indices are widely

studied (Brams, 1975; Felsenthal and Machover,

Figure 2 shows the average factor of increment from 1998; Laruelle, 1999). Prominent real-life situations
annexation for both the best-of-three method and thewhere WVGs have found applications include the
search-based approach for various values, &f and United Nations Security Council, the International
W using the two power indices. Monetary Fund (Leech, 2002; Alonso-Meijide and
It is clear from the figure that the average factor Bowles, 2005), the Council of Ministers, and the Eu-
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ropean Community (Felsenthal and Machover, 1998). also approximation algorithms (Fatima et al., 2007;
The need to compensate agents from jointly de- Bachrach et al., 2010) for computing the Shapley-
rived payoff in WVGs has also necessitated the as- Shubik and Banzhaf power indices in WVGs.
signment of power to players. A widely accepted We now consider false-name manipulation via
method for measuring power of agents in WVGs annexation and merging in WVGs. (Machover and
uses power indicedrairnessin the assignment of  Felsenthal, 2002) originally studied annexation and
power to players in a game is also a concern of most alliance (or merging) in WVGs. They consider when
of the power indices. The two most prominent and the blocs formed by annexation or merging are ad-
widely used power indices are Shapley-Shubik (Shap- vantageous or disadvantageous. They show that using
ley and Shubik, 1954) and Banzhaf (Banzhaf, 1965) the Shapley-Shubik power index, itis always advanta-
power indices. Other power indices found in the lit- geous for a player to annex some other players in the
erature include Deegan-Packel (Deegan and Packelgame. However, this is not true for Banzhaf power
1978), Johnsoton (Johnston, 1978), and Holler-Packelindex. Furthermore, they show that merging can be
(Holler and Packel, 1983) power indices. advantageous or disadvantageous for the two power

Computing the Shapley-Shubik and Banzhaf indices. In contrgstto ourwork_, they do_not consid_er
power indices of players in WVGs is NP-hard (Mat- the exte_nt to whlch_the agents mvolve_d in _annexatlon
sui and Matsui, 2001). The power indices of voters OF merging may gain, which we study in this paper.
using any of Shapley-Shubik and Banzhaf power in- (Aziz et al., 2011) have also considered the com-
dices can be computed in pseudo-polynomial time putational aspects of the problem of annexation and
using dynamic programming (Matsui and Matsui, merging in WVGs. They show that determining if
2000). Efficient exact algorithms using generating there exists a beneficial merge in a WVG is NP-hard
functions (Brams and Affuso, 1976; Bilbao et al., using both Shapley-Shubik and Banzhaf indices. The
2000) also exist for both the Shapley-Shubik and same is also true for determining the existence of ben-
Banzhaf power indices for WVGs where the weights eficial annexation using the Banzhaf index. Our work
of all agents are restricted to integers. There are differ from that of these authors as we provide a com-
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parison of the extent of power gain or benefits that are Aziz, H., Bachrach, Y., Elkind, E., and Paterson, M. (2011).
possible for manipulating agents in a restricted ver- False-name manipulations in weighted voting games.
sion of this problem using the two indices. Journal of Artificial Intelligence Research0:57—93.
Aziz, H. and Paterson, M. (2009). False-name manipula-
tions in weighted voting games: splitting, merging and
annexation. Ir8th Intl. Conf. of AAMASpages 409—
8 CONCLUSIONS 416, Budapest, Hungary.
Bachrach, Y., Markakis, E., Procaccia, A. D., Rosenschein,
J. S., and Saberi, A. (2010). Approximating power in-

We extend the simple random simulation of (Lasisi dices - theoretical and empirical analys#Asitonomous
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. dices ecientlyTOP: An official Journal of the Spanish
Allan, 2011), we show that manipulators need to do Society of St{;tistics and Oper. Reg(z);lgl_ﬂ%_

only a polynomial amount of work to find a much  grams s . (1975ame Theory and Politicgree Press,
improved benefit and then present two search-based New York.
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