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Abstract: The paper presents an agent-based framework for modeling and simulating power exchanges, the Genoa Ar-
tificial Power Exchange (GAPEX). The framework is implemented in MATLAB using the OOP paradigm,
which allows one to define classes using a Java/C++ like syntax. GAPEX allows creation of artificial power
exchanges where what-if analysis can be performed. GAPEX also reproduces exactly the market clearing
procedure (e.g. by calculating Locational Marginal Prices based on the Italian high-voltage transmission net-
work with its zonal subdivision) and the generation plants modeled are in direct correspondence with the real
ones. Moreover, the presence of affine total cost functions for the generation plants results in payoff either
positive, negative and null. This has major implications as negative reward are not generally considered by re-
inforcement learning algorithms. In order to overcome such limitation, an enhanced version of the Roth-Erev
algorithm (i.e., that takes into account also negative payoffs) is presented and discussed. Results point out
effectiveness of the proposed enhanced learning algorithm. Moreover, computational experiments performed
within GAPEX point out a close agreement with historical real market data during both peak- and off-peak
load hours thus confirming the direct applicability of GAPEX to model and to simulate power exchanges.

1 INTRODUCTION

In the last decade, large efforts have been dedicated in
developing theoretical and computational approaches
for modeling deregulated electricity markets. Several
papers have appeared in the agent-based computa-
tional economics (hereafter ACE) literature on whole-
sale electricity markets and ACE has become a ref-
erence paradigm for researchers working on electric-
ity market topics (see as reference examples (Nico-
laisen et al., 2001), (Bower and Bunn, 2001), (Bunn
and Oliveira, 2001), (Bagnall and Smith, 2005), (Cin-
cotti et al., 2005), and (Sun and Tesfatsion, 2007)).
Generally speaking, these papers adopt a computer-
based modeling approach for studying the electric-
ity markets as result of the interactions between het-
erogenous market participants. In particular, the
AMES model (Agent-based Modeling of Electricity
Systems, (Sun and Tesfatsion, 2007)) comprised a
two-settlement system consisting of a day-ahead mar-
ket and a real-time one which are both cleared by
means of Locational Marginal Pricing. (Ruperez Mi-
cola et al., 2008) presented a model that consists of
three sequential oligopolistic energy markets repre-
senting a wholesale gas market, a wholesale elec-
tricity market and a retail electricity market. (Wei-

dlich and Veit, 2006) simulated two markets that are
cleared sequentially, a day-ahead electricity market
and a market for balancing power. (Cau and Ander-
son, 2002) developed a wholesale electricity market
model similar to the Australian National Electricity
Market. Detailed reviews on agent-based models ap-
plied to wholesale electricity markets can be found in
(Weidlich and Veit, 2008b) and (Guerci et al., 2010).

In this paper, we present the Genoa Artificial
Power Exchange (GAPEX), an agent-based frame-
work for modeling and simulating electricity mar-
kets. In particular, the general GAPEX framework
is presented that allows us to generalize the models
and to overcome some limitations and simplifications
that characterized preliminary version of the frame-
work ((Cincotti et al., 2005), (Guerci et al., 2007)
and (Rastegar et al., 2009)). In this paper, attention
is devoted to model design and developing within
GAPEX. This has direct implication on the features
of the intelligent agents (i.e. Gencos) as well as on
the mechanism of the power exchange. In particu-
lar, in order to properly model the decision process
of the economic agents, an enhanced version of the
classical Roth-Erev reinforcement learning algorithm
(Roth and Erev, 1995) is described so to apply rein-
forcement learning in case of negative payoffs. Fur-
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thermore, due to its complex high-voltage transmis-
sion network, the Italian power exchange (IPEX) is
taken as case of study.

Results point out that GAPEX is an adequate
framework to model and to simulate power ex-
changes. In particular, the agent-based model of the
Italian Electricity Market is able to replicate market
historical results during both peak- and off-peak load
hours as well as to give insights on Genco behav-
iors. Moreover the proposed enhanced version of the
classical Roth-Erev reinforcement learning algorithm
points out effective learning properties with respect to
existent variants in the literature.

Agent Class

Electricity Market Class

Learning Algorithms

Interfaces

Offline Analysis 

Module

Heap Memory Class

Session Management Class

Figure 1: GAPEX Class Architecture.

The structure of the paper is as follows. In the
next Section, the computational design and architec-
ture of the GAPEX framework is presented. In Sec-
tion 3 the Italian Electricity Day-Ahead Market agent-
based model is described. In Section 4 the enhanced
Roth-Erev reinforcement learning algorithm is pre-
sented and studied. In Section 5 we present main re-
sults of the agent-based model of the Italian Power
exchange, while Section 6 summarizes main results
and remarks.

2 GAPEX FRAMEWORK
OVERVIEW

GAPEX is an agent-based framework developed in
MATLAB that is suitable for studying the dynamic
performances of many electricity markets. The sim-
ulator is implemented using OOP programming ca-
pabilities of MATLAB, which allows one to define
classes using a Java/C++ like syntax thus creating a
flexible and extensible ABM framework which can
run local simulation and also exploit the Parallel
Computing Toolbox provided with MATLAB.

Detailed computational models of the power

techno-socio economic systems can be realistically
simulated by means of the agent-based modeling
(hereafter ABM) approach. Agents can range from
entities with no cognitive function (e.g., transmission
grids) to sophisticated decision makers capable of
communication and learning (e.g., electricity traders).
According to this research paradigm, we designed
and implemented a versatile software framework for
studying electricity markets. Indeed, the philosophy
of the project and the modularity of its implementa-
tion provide a valuable computational framework for
easily implementing other critical infrastructure sys-
tems relevant to energy markets, e.g., a natural gas
market.

In order to properly address the agent behaviors
in different economic environments, we have used a
multi-agent learning (MAL) approach so to define ap-
propriate algorithms able to implement sophisticated
decision-making rules. This represents one of the
standards in the ACE literature and some common
features characterize the learning models.

The framework is composed by three main
classes:

• a heap class;

• a statistical off-line analysis module;

• several algorithms and market mechanisms li-
braries.

Figure 1 shows the GAPEX class architecture.
The Agent class is an abstract class which is extended
by all agents present in GAPEX Framework. It is
worth noting that the Agent class is directly extended
in order to define any new types of Electricity Market
Agents (e.g., Wholesalers, Energy Management Divi-
sions, etc).

As concerning the learning algorithms, they are
modeled as interfaces implemented by Gencos. Cur-
rent version of GAPEX is characterized by a library
of the main solutions for learning algorithms pro-
posed in the literature (e.g., Roth-Erev algorithm, Q-
Learning algorithm, Marimon-McGrattan algorithm,
EWA learning and GiGa WoLF algorithm). In partic-
ular, these algorithms have been extended so to con-
sider reward both positive, negative and null, and the
features of the enhanced Roth-Erev algorithm are dis-
cussed in Section 4.

The Electricity Market class allows one to define
the market clearing algorithms and it is based on the
Agent class. Currently, the GAPEX allows one to
simulate the Italian Day Ahead Market, the EEX spot
market linking DCOPFJ Package (Sun and Tesfatsion,
2007) and the Spanish Day Ahead Market. It is worth
nothing that all these algorithms are interfaces as well.

The Session class has a two-fold purposes. On the
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one hand, it acts as a clearing house and allows one
to run several iteration of a particular simulation and
to call the statistical off-line module at the end of the
simulation. On the other hand, it stores all market
and agent information, thus acting as a repository for
all data related to energy prices and quantities both
at market and at agent level (e.g. choices, propen-
sities, etc). This feature is of crucial importance for
economics application as it allows the GAPEX frame-
work to be used as an artificial world where compu-
tational experiments can be performed. Indeed, such
computational experiments are mandatory so to eval-
uate reproducibility of stylized facts as well as statis-
tical properties of the self-adaptive complex system
under investigation (see (Ball, 2010)). Moveover, in
order to model the clearing house feature and charac-
teristics, the mechanism of Heap memory access has
been simulated and recreated into a MATLAB class.
This allows one to have an online repository both for
economic agents and for the electricity market agent.
Thus, at the end of every simulation run, the Clear-
ing House recall the Offline Statistical Module which
carry out statistical analysis as well as visualization of
the computational experiment results.

Finally, it is worth remarking that GAPEX allows
direct generalization, as it is possible to create differ-
ent types of agents, thus allowing the design of ex-
tremely realistic agent-based models.

3 AGENT-BASED MODELING OF
THE ITALIAN ELECTRICITY
DAY-AHEAD MARKET

As discussed in previous Section, GAPEX is designed
as a powerful and extensible agent-based framework
for electricity market modeling and simulation. Cur-
rent version of GAPEX allows one to simulate differ-
ent power exchange protocols, but due to its complex
structure, in this paper attention is dedicated to the
Italian power exchange.

It is worth remarking that a power exchange
strongly differs from a stock market from both struc-
tural and behavioral point of view. From a structural
point of view, the power exchange mechanism is a
uniform double auction whereas the stock market one
is continuous time limit order book. Furthermore, en-
ergy is not a storable good (i.e.,buy&holdstrategy are
not even possible) whose consumption is contempo-
rary to the production and is characterized by strong
seasonality (i.e., daily, weekly and yearly). Moreover,
from a behavioral point of view, the electricity sec-
tor is characterized by strong oligopoly (i.e., a lim-

ited and basically time-invariant number of market
traders) that repeat the same game on a daily based.
Theoretically speaking, such economic system seems
perfect for an analytical solution based on game the-
ory, but the dimension of the game is so high that it
practically impossible to study equilibria by means
of traditional game theory. Despite a first glance
on analytical solutions, all these elements lead to an
economic system that can be effectively studied by
means of a computational approach based on learning
agent, thus motivating the development of GAPEX
framework for the implementation of the model of the
wholesale Italian Electricity Market.

Making use of preliminary versions of GAPEX,
(Cincotti et al., 2005) described and implemented an
agent-based model of power exchange with a uniform
price auction mechanism and a learning mechanism
for the Gencos. Moreover, (Guerci et al., 2007) pro-
vided the first version of the Genoa Artificial Power
Exchange and compared the discriminatory and the
uniform price auction mechanism with heterogenous
agents. Finally, (Rastegar et al., 2009) firstly at-
tempted to create an agent-based model of the Italian
Electricity Market, with a reduced transmission net-
work grid and a simplified description of GenCos.

It is worth remarking that version presented and
discussed in this paper of both the GAPEX and the
agent-based model of the Italian electricity day-ahead
market are characterized by significant extensions.
Firstly, agent-based model incorporates now the ex-
act procedure employed by theGestore Mercati Ener-
getici S.p.A.(hereafter GME) (Gestore et al., 2010b)
thus overcoming the limitation of previously adopted
formulation that resulted a constrained ill posed op-
timization procedure. Furthermore, the cognitive
agents in the GAPEX mke use of the Enhanced Roth-
Erev reinforcement learning algorithm (presented and
discussed in Section 4), developed so to take into ac-
count payoff of any sign. There are crucial features
that allowed us to calculate the energy prices based
on scenarios that correctly emulate real power plants,
real transmission limits and real bids.

In this Section we present the agent-based model
of the Italian Electricity Day-Ahead Market (here-
after ABM IPEX Model). The Italian power exchange
(IPEX) started on 1st April 2004 and is currently ad-
ministrated by the Gestore Mercati Energetici S.p.A.,
the Italian market operator. IPEX market structure is
characterized by several subsequent market sessions
for both trading energy and managing critical ser-
vices (e.g., reserves and real-time balancing). These
are the Day-Ahead Market session - DAM, (Mer-
cato del Giorno Prima - MGP), the Adjustment Mar-
ket sessions and the Ancillary Services Market. The
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most important (i.e., liquid) session is the Day-Ahead
Market which is organized as a non-discriminatory
double-auction market where approximately 60 per-
cent of national production is traded. The main fea-
ture of the Italian Day-Ahead Market is related to the
complex high-voltage transmission network and re-
sults in a zonal splitting with both location and na-
tional energy prices.

L Zonal Loads

LL

Figure 2: ABM IPEX simulation flow-diagram.

The ABM IPEX simulation flow-diagram (i.e.,
static representation of the objects and their interac-
tions) is shown in Figure 2. It is worth remarking that
the ABM IPEX Model consists of three main building
blocks, i.e.:

• the agent-based representation of the Italian Elec-
tricity Market and the clearing mechanism regard-
ing the Day-Ahead Market;

• the representation of the Italian Electricity Net-
work;

• the agent-based representation of traders in the
Italian Electricity Market, i.e. Gencos.

These building blocks are discussed in the follow-
ing sub-sections.

3.1 Day-Ahead Market Model

GAPEX simulates Gencos bidding strategies through
a daily market session in the Italian Electricity DAM.
The exact market clearing procedure performed by
Italian Market Operator has been implemented (see
(Gestore et al., 2010a) for a detailed discussion). Fur-
thermore, the following agents are currently repre-
sented in the model:

• Gencos: They are the economic actors at the sup-
ply side of the electricity market. They submit
supply bids to the GME Market Operator and
(after the market clearing procedure) they access
the GME clearing house in order to retrieve mar-
ket results and to update their strategic decisions.
They extend GAPEX Agent class;

• Loads: They are aggregations of zonal loads and
represent the demand side of the electricity market
as inelastic;

• GME Market Operator: It clears the market and
sends information on awarded prices and quan-
tities to the GME clearing house. It extends
GAPEX Electricity Market class;

• GME Clearing House: It computes all payoffs
for the Gencos, updates their market accounts and
stores all market information. It extends GAPEX
Session class.

It is worth remarking that the aim of the proposed
model is to represent and to study the strategic behav-
ior of Gencos in the power exchange. Accordingly,
the Gencos are characterized by sophisticated deci-
sion process (i.e., the Enhanced Roth-Erev reinforce-
ment learning algorithm presented and discussed in
Section 4)) that accounts for the effect of a repeated
game. Furthermore, according to the hypothesis of
a competitive electricity market, the Gencos commu-
nicate directly only with the GME Market Operator
and GME Clearing House so to accounts that every
Genco is only aware of its own strategies and payoffs.
Finally, all the other agents in the model are passive
entities and they are not endowed with any cognitive
capability.

Figure 3 shows the UML class diagram for the
agents modeled in the ABM IPEX:

<<abstract>>

 @agent

 <<interface>>

IPEX solver

 @Electricity Market

 @Genco

 <<interface>>

Roth-Erev Agent

 <<interface>>

Extended Roth-Erev Agent

 <<interface>>

Variant Roth-Erev Agent

 @Load

 @GME Clearing House

 @GME DAM Market

<<abstract>>

 @session

Figure 3: UML class diagram of agents in ABM IPEX.
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At each iteration step, eachith generator (i =
1,2, ...,N) submits to the DAM a bidding curve shown
in Figure 4. The curve is described by the triple ofPi
([e/MWh]), Q−

i ([MWh]),Q+
i ([MWh]), i.e., the bid-

ding price, the minimum and the maximum produc-
tion power forith generator, respectively.

��

��
� ��

�

�

�

Figure 4: Reference bidding curve for a Genco.

After receiving all generators’ bids, the DAM
clears the market by performing a social welfare max-
imization subject to the constraints on the zonal en-
ergy balance (Kirchhoff’s laws) and on inter-zonal
transmission limits (see (Gestore et al., 2010a) for de-
tails). The objective function takes into account only
the supply side of the market as the demand is as-
sumed to be price-inelastic.

The zonal splitting clearing mechanism (i.e., DC
optimal power flow procedure) allows one to deter-
mine both the unit commitment for each generator
and the Locational Marginal Price (LMP) for each
zone. To this aim, a graph representation of the
transmission grid (that defines the area with relevant
transmission constraints) is provided as input to the
GAPEX (see Section 3.2). However, with respect
to classical literature on power systems, the Italian
market introduces two modifications. Firstly, sellers
are paid at the zonal prices, i.e., Location Marginal
Price (LMP), whereas buyers pay a unique national
price (Prezzo Unico Nazionale - PUN) common for
the whole market and computed as a weighted aver-
age of the zonal prices with respect to the zonal loads.
Secondly, transmission power-flow constraints differ
according to the flow direction which results in dou-
bling the number of constraints related to the inter-
zonal transmission limits. According to the specific
features of the Italian market, the results of the power
exchange auction consist of a set of the active pow-
ersQ∗

i and of a set of Locational Accepted Marginal
PricesLMPk for each zonek∈ {1,2, ...,K}.

3.2 Transmission Grid Model

The market clearing procedure described in Section
3.1 requires the definition of a transmission network.
The grid structure adopted in this paper is shown in

Figure 5 and reproduces the exact zonal market struc-
ture and the relative maximum transmission capac-
ities between neighboring zones of the Italian grid
model as indicated by Terna S.p.A. the Italian trans-
mission system operator. The relevant areas of the
network correspond to physical geographic areas (e.g.
Northern Italy, Sicily, Sardinia, etc.) in which loads
and generators, virtual production areas (i.e. foreign
neighboring countries) or limited production areas
(e.g. Priolo Gargallo) are present. It is worth remark-
ing that each zone is represented as a bus to whom
generators and loads are connected. Furthermore,
the arches linking the zone represent the transmission
connections and account for the constraints in trans-
missions for the power flow. Finally, transmission
power-flow constraints differ according to the flow
direction, e.g., power flowing from Central-South to
Central-North is subject to a transmission limit that
is different from the one relates to the power flowing
from Central-North to Central-South. A detailed dis-
cussion of the Italian transmission grid can be found
in (TERNA S.p.A., 2008).
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Figure 5: The Italian grid model.

3.3 Genco Model

The supply side of the market is composed by Gen-
cos submitting bids for each of their power plants.
In this paper attention is focussed on thermal power
plants strategic behavior, as the remaining national
production (i.e., hydro, geothermal, solar, wind) and
imported production can be generally modeled as bids
at zero price (Migliavacca, 2007).

A set of thermal power plants consisting of N =
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175 generating units is considered. These comprise
five different technologies (i.e., Coal-Fired (CF), Oil-
Fired (OF), Combined Cycle (CC), Turbogas (TG)
and Repower (RP)) and in the model a learning agent
is associated to each generating unit.

The constant marginal costs of theith generator is
assumed to be given by:

MCi = πi [e/MWh] (1)

The coefficientsπi has been selected using an
econometric analysis on real historical bids. The total
cost function ofith generator is assumed to be given
by:

TCi(Qi) = ai ·Qi +bi [e/h] (2)

The coefficientsai ([e/MWh]) andbi ([e/h]) are
assumed constants.ai depends mainly on the class of
efficiency and on the technology of the power plant,
whereasbi (which is specific for each power plant) ac-
counts for investment and other quasi-fixed costs that
must be recovered and that are not negligible for cap-
ital intensive industry such as the electricity one. As
a consequence, the coefficientsai have been evalu-
ated on the basis ofMCi(Qi) with fuel costs, technol-
ogy and efficiency as exogenous variables, whereas
the coefficientsbi have been determined by the liter-
ature on technological business cases (Kirschen and
Strbac, 2004).

Stated the cost functions of the Gencos, it is nec-
essary to define the decision process that drives the
bidding strategy. In this respect, we assume that the
bidding pricePi of the ith generator (see Section 3.1)
is a mark-upµi applied to the marginal costMCi in
equation 1, i.e.,

Pi = (1+µi) ·MCi (3)

As a consequence, the decision variable of theith

generator is the mark-upµi and the learning process
should individuate a profitable value forµi as results
of the interaction (through the energy market) with the
other Gencos. In particular, the profitRi(h) depends
on the market clearing at hourh. Assuming that the
ith Genco belongs to zonek, Ri(h) is given by

Ri(h) = LMPk(h) ·Q
∗
i (h)−TCi(Q

∗
i (h)) [e/h] (4)

whereTCi is ith Genco total-cost,LMPk(h) is the
Location Marginal Price of zonek at hourh andQ∗

i (h)
is the awarded quantity to theith Genco at hourh.

Finally, it is worth remarking that the marginal
cost is the reference parameter for the bids (see equa-
tion 3), whereas the total costs are crucial in order to
evaluate the real profitability of the bids (see equation
4).

4 ENHANCED ROTH-EREV
REINFORCEMENT LEARNING
ALGORITHM

Electricity markets are characterized by inherent
complexity and repeated games that requires adequate
modeling of strategic behavior of traders. This is usu-
ally achieved by endowing the Gencos with learning
capability. The literature on agent-based electricity
market models points out three major kind of learn-
ing algorithms: zero-intelligencealgorithms (Gode
and Sunder, 1993),(Gode and Sunder, 2004),rein-
forcement and belief-basedmodels (Camerer and Ho,
1999) andevolutionaryapproach (Nicolaisen et al.,
2000).

In this paper, the strategic agent behavior is mod-
eled by means of a reinforcement learning approach.
It is worth remarking that the solutions proposed in
the literature generally account for positive and null
payoffs (e.g., (Nicolaisen et al., 2000) represented a
first modification of the original work proposed by
Roth and Erev (Roth and Erev, 1995) so to account for
null payoffs). Unfortunately, this is a severe limitation
in order to determine profitable strategy for economic
agents in real a economic context. Indeed, the pres-
ence of fixed-costs in the cost function (see equation
2) together with market awarded quantityQ∗

i (h) ≥ 0
for the ith Genco at hourh leads to payoffs that are
either positive, negative or null. This opens a ques-
tion for a reinforcement learning approach that is able
to cope with payoffs of any sign and to this aim we
have developed an enhanced version of the Roth and
Erev algorithm that is able to cope with both positive,
negative and null payoffs.

The original Roth and Erev learning model (here-
after referred to as RE algorithm) considers three psy-
chological aspects of human learning:

• the power law of practice, i.e., learning curves
are initially steep and tend to progressively flatten
out;

• the recency (or forgetting) effect, i.e., players re-
cent experience plays a larger role than past expe-
rience in determining his behavior;

• the experimentation effect, i.e., not only experi-
mented strategy but also similar strategies are re-
inforced.

For each strategya j ∈ A j (i = 1, ..,M), at every
roundt, propensitiesSj ,t−1(a j) are updated according
to:

Sj ,t(a j) = (1− r) ·Sj ,t−1(a j)+E j ,t(a j) (5)

wherer ∈ [0,1] is the recency parameters which
contributes to decrease exponentially the effect of past
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α+1

γ

1

Figure 6: Functions involved in ERE. The red line shows
F [x], the blue oneG[x].

results. The second term of equation 5 is called the
experimentation function and is given by:

E j ,t(a j) =

{

Π j ,t(â j) · (1−e) a j = â j

Π j ,t(â j) ·
e

M−1
a j 6= â j

(6)

wheree∈ [0,1] is the experimentation parameter
which assigns different weights between the played
strategy and the non-played strategies andΠ j ,t(â j) is
the reward obtained by playing strategy(â j) at round
t.

Propensities are then normalized so to deter-
mine the probability for the strategy selection policy
π j ,t+1(a j) for the next auction round as:

π j ,t+1(a j) =
Sj ,t(a j)

∑a j
Sj ,t(a j)

(7)

The modified Roth and Erev learning model (here-
after referred to as MRE algorithm) by (Nicolaisen
et al., 2000) proposed a solution for the case of zero
payoffs by modifying the experimentation function in
equation 6 according to:

E j ,t(a j) =

{

Π j ,t(â j) · (1−e) a j = â j

Sj ,t−1(a j) ·
e

M−1
a j 6= â j

(8)

It is worth remarking that MRE and RE are iden-
tical for a positive rewardΠ j ,t(â j), whereas for null
payoff MRE introduces an implicitpremiumfor non-
played strategies with respect to the ineffective (i.e.
with negativeΠ j ,t(â j)) played strategy. MRE repre-
sents a first but not final extension of the Roth and
Erev algorithm as neither MRE algorithm nor the
later VRE algorithm proposed by (Sun and Tesfatsion,
2007) are able to cope with negative payoffs.

In order to overcome such limitation of the Roth-
Erev algortihm, we propose to extend the MRE algo-
rithm by enhancing the experimentation mechanism
for non-played strategies according to:

E j ,t(a j) =

{

G[Π j ,t(â j)] · (1−e) a j = â j

F[Π j ,t(â j)] ·Sj ,t−1(a j) ·
e

M−1
a j 6= â j

(9)

where

G[x] =

{

−γ · tanh( x
2) x≥ 0

0 x≤ 0
(10)

and

F [x] =

{

α · tanh( x
2)+1 x≤ 0

1 x≥ 0
(11)

Figure 6 shows functionsG[...] and F[...]. It is
worth noting that the proposed enhanced version rep-
resents an extension of the MRE. In particular, in the
case of negative payoff, the experimentation function
for the played strategies is calculated as in MRE pro-
posed by (Nicolaisen et al., 2001) for the case of null
payoffs, whereas the experimentation function of the
non-played strategies is enhanced by a larger amplifi-
cation the more negative is the payoffΠ j ,t(â j). This
leads to an Enhanced Roth and Erev algorithm (here-
after referred to as ERE algorithm).

In the simulations discussed hereafter, we have
adopted the values of 0.12 and 0.20 for the parame-
terse andr, respectively. Moreover, the value of 3.0
and 10.0 have been chosen for the parametersα and
γ, respectively. It is worth noting that the values for
e, r, α, adγ have been chosen so to guaranty stabil-
ity of the difference equations involved in the learning
process (i.e., equations 5 and 9).
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Figure 7: Convergence time-path for the different groups of
interacting agents in ABM IPEX.

In order to understand effectiveness of the pro-
posed Enhanced Roth and Erev algorithm and the
interrelation between learning convergence and eco-
nomic results, we firstly studied the behavior and the
convergence of the learning in the power exchange
model. We have assumed the initial (i.e., att = 0)
propensitiesSj ,t(a j in equation 5 to be uniformly dis-
tributed among the possible strategies in the strategy
space. Furthermore, as discussed in Section 3.3, the
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strategy space is related to the mark-up variables. In
all computational experiments discussed hereafter we
have considered a uniformly spaced grid forµi in the
range [0.8, 2.3] with step 0.05. This results in a set of
31 possible strategies for each of the N = 175 genera-
tors.

Stated this simulation contest, the evolution of
the strategy probabilities pointed out three groups of
agents:

• those whose bids are lower than clearing prices
and are always accepted by the market. We denote
them as price-takers agents and are characterized
by a convergence of the strategy probabilities;

• those whose bids are higher than clearing prices
and are always rejected by the market. We denote
them as out-of-the-market agents and are gener-
ally characterized by randomly chosen strategies,
as they do not participate to the market price for-
mation and accordingly receive always negative
payoffs;

• those whose bids are able to set the Locational
Marginal Price. We denote them as price-maker
agents and are characterized by the faster conver-
gence time in the learning process.

Figure 7 shows an example of reference conver-
gence time-path. For the sake of representativeness,
the strategy characterized by the largest final proba-
bility (i.e., the action most willing to be played ) of
three reference Gencos is considered and their proba-
bilities plotted as function of the simulation iterations.

Figure 7 points out that both price-taker and price-
maker are characterized by a learning process that se-
lect the preferred action strategy (i.e., the one whose
probability converge to 1). Conversely, it is worth not-
ing that only some of the out-of-the-market agents are
characterized by a convergence of the strategy proba-
bilities. Indeed, those agents whose bids are slightly
higher than the LMP tend to converge even if their
bids are always rejected by the market. This can be in-
terpreted as a result of an almost complete exploration
process of their strategy spaces that allows them to
conclude that the strategies played by the near com-
petitors (i.e., the price maker agents) were character-
ized by a bidding price lower enough to keep them out
of the market. In this exploration process, they are
characterized by the slower convergence time, thus
corroborating such conclusion.

5 COMPUTATIONAL
EXPERIMENTS

Learning algorithms and agent-based models should

stick to empirical criteria in order to demonstrate that
they are able to reproduce reality. In particular, at the
micro-level, learning algorithms should converge to-
ward a price during the experiments, whereas, at the
macro-level, practitioners should be able to observe
stylized facts and economic emergent behaviors.

Completed the learning convergence (see Section
4), we focussed our attention to a set of computa-
tional experiments in order to understand the ability
of the framework to reproduce the emergent proper-
ties shown by the IPEX DAM at macro-level.

Firstly, we have chosen a reference power ex-
change setting (i.e., Gencos and loads). In this re-
spect, the scenario has been based on a real off-peak
hour (i.e., hour 5 AM of Wednesday 16th Decem-
ber 2009) as during off-peak hour competition among
producers is generally limited and thus limiting the
impact on the level of prices. For the reference power
exchange setting, we have performed 100 computa-
tional experiments with different random seeds in or-
der to analyze the ensemble results of the same re-
peated game.
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Figure 8: Convergence time-path of PUN in ABM IPEX
with Enhanced Roth-Erev learning.

Both agent convergence and system convergence
have been observed. While the former has been dis-
cussed in Section 4 and used as a validation proof of
the enhanced Roth-Erev learning algorithm, we now
concentrate on the system convergence. This type of
convergence (or its lack) can be defined with respect
to the convergence of the PUN time path (i.e. the
clearing price converge to a value after a specific time
which depends only from the participating agents).
Indeed, the PUN is a weighted-average of the Loca-
tional Marginal Prices by means of the inelastic loads
and an adequate representative of the market clearing
and its convergence a good proxy that the system has
reached an equilibrium.
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Figure 8 shows a reference time-path for the PUN
and it points out a convergence at the aggregate. It is
worth remarking that due to the proportional update
mechanism of the strategy selection probability (see
Section 4), this is a real system convergence and not
a fictitious one induced by a cooling parameter. We
also observe that at the aggregate the learning pro-
cess achieves an equilibrium that corresponds to a lo-
cal optimum rather than to a global one, as the PUN
and LMP dependent both on profits (i.e. payoffs) and
on strategy spaces.

In order to assess the performance of the proposed
Enhanced Roth-Erev algorithm, we compared it with
major examples found in the literature. These are
summarized in Table 1.
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Figure 9: Convergence time-path of PUN in ABM IPEX
using the learning algorithms in Table 1.

Table 1: Roth and Erev reinforcement learning algorithms.

Authors Formulation
(Roth and Erev, 1995) RE
(Nicolaisen et al., 2000)
and (Weidlich and Veit,
2008a)

MRE

(Rastegar et al., 2009) VRE
Proposed Algorithm ERE

In this contest, we searched for the ”best perform-
ing” economic-learning algorithm, i.e. the selection
of the algorithm should have lead both to learning
convergence and to economic meanings.

Figure 9 shows the results. Beside the conver-
gence at the aggregate level of the proposed ERE al-
gorithm, results point out a convergence of the PUN
only in the cases of MRE. Moreover, while ERE
shows a smooth slope toward the convergence (see
Figure 8), MRE points out a typical ”freezed” con-
vergence. It is worth remarking that this is a quite

”artificial” convergence as probabilities are updated
using a simulated annealing technique. Similar ficti-
tious results have been already discussed for the Roth-
Erev algorithm in a simplified agent-based electric-
ity model (see (Jing et al., 2009)) as well as for Q-
Learning (see (Watkins and Dayan, 1992)). Further-
more, in the case of VRE learning algorithm the shape
of the curve suggests that although the probabilities of
strategy spaces of the agents have been updated dur-
ing the simulation, prices at the beginning of the sim-
ulation are the same as at the end. This directly points
out that agents have not learnt any preferred strategy
(i.e. there is no convergence) and leads to a ”random
noise shape” of the prices, as discussed in (Jing et al.,
2009).
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Figure 10: 24 hours GAPEX simulated PUNs vs. real GME
PUNs.

It is worth remarking that these results further
point out effectiveness of the proposed Enhanced
Roth and Erev algorithm (with the respect to the other
state-of-the-art version proposed by the literature) and
its direct applicability to economic and financial con-
text characterized by positive, null and negative re-
wards.

Finally, the complete 24 hours PUNs of Wednes-
day 16th December 2009 have been simulated. Again,
we have performed 100 computational experiments
(each with a length of 5,000 steps) with different ran-
dom seeds in order to analyze the ensemble results of
the same repeated game. It is worth remarking, that
the energy market is characterized by a strong season-
ality (i.e., daily, weekly, and yearly). Thus, the strate-
gic behavior of Gencos can be properly studied on a
daily base, that is the basic component of the power
exchange results.

Figure 10 compares the GAPEX simulated PUNs
to the GME real PUNs. Figure 10 points out that the
simulated results are in good agreement throughout
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the whole 24 hours. Indeed, most of the GME real
PUNs fall within the 95 percent (i.e., 2*σ) confidence
band evaluated over the 100 computational experi-
ment whereas the outliers are howver quite close to
the limit of the 95 percent confidence band. This fur-
ther states the quality and importance of the proposed
methodology that is able to mostly replicate the ag-
gregate results by means of the strategic interactions
of the Gencos rather than of a black-box forecast.

It is worth remarking that these understanding the
origin of the market results is a crucial element from
an economics point of view as it allows us to deter-
mine the drivers and model of the power exchange.
Every policy measure, antitrust action and market de-
sign requires a clear understanding of these elements
in order to be effective. Furthermore, it is worth not-
ing that in the case of the computational experiments,
the generation universe is kept fixed with cost func-
tions unchanged for the whole 24 hours. This has
been assumed in order to evaluate the ability of the
learning algorithm for selecting the most profitable
strategy in different condition of demands. However,
such condition is not present in the real GME mar-
ket sessions as the generation plants are characterized
by outages. The absence of outages in the compu-
tational experiments can explain the small difference
between GAPEX simulated PUNs to the GME real
PUNs and it is worth noting that including outages
in the GAPEX is easily and direct. However, such
an interesting scenario for computer science results
of limited interest from an economics perspective. In-
deed, it is characterized by such a largeex−antein-
formation (the exact information of the hourly par-
ticipation of the Gencos to the power auction) that it
results practically irrelevant and for this reason it has
not been considered.

Finally, the good agreement between the GAPEX
simulated PUNs and the GME real PUNs achieved
by the strategic computational experiments remarks
the importance of including the fixed costs in the
decision-making process of Gencos. Indeed, results
point out a strong relationship between fixed-costs
and profits that the Enhanced Roth-Erev algorithm
was able to incorporate thus improving realism of the
model.

6 CONCLUSIONS

In this paper, an agent-based electricity market frame-
work has been presented. The framework has been
implemented in MATLAB using the OOP paradigm
and it allows creation of artificial power exchanges
characterized by real market mechanisms and by eco-

nomic agent with learning capability. In order to over-
come limitation in the sign of payoff typical of rein-
forcement learning algorithms proposed in the litera-
ture, an enhanced version of the Roth-Erev algorithm
(i.e., that takes into account positive, null and negative
payoffs) has been presented and discussed. Further-
more, due to its complex high-voltage transmission
network, the Italian power exchange (IPEX) has been
taken as case of study. This resulted in replicating the
exact market clearing procedure (i.e., by calculating
Locational Marginal Prices and National Price based
on the Italian high-voltage transmission network with
its zonal subdivision) and in considering generation
plants in direct correspondence with the real ones.

Results on the convergence of the enhanced Roth-
Erev learning algorithm pointed out effectiveness of
the proposed solution. In particular, the evolution of
the strategy probabilities pointed out different groups
of agents characterized by different convergence rates
that strongly depend on the role of the agent in the
market. This confirms the direct applicability of the
proposed Enhanced Roth-Erev learining algorithm for
economic and financial applications. Moreover, com-
putational experiments of the ABM IPEX model per-
formed within the GAPEX pointed out a close agree-
ment with historical data during both peak- and off-
peak load hours. Thus this confirm the direct applica-
bility of the GAPEX to model and to simulate power
exchanges in particular for what-if analysis and mar-
ket design.
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