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Abstract: Eukaryotic regulatory regions have been studied extensively due to their importance for gene regulation in 
higher eukaryotes. However, the understanding of their organization is clearly incomplete. In particular, we 
lack accurate in silico methods for their prediction. Here we present a new HMM-based method for the 
prediction of regulatory regions in eukaryotic genomes using position weight matrices of the relevant 
transcription factors. The method reveals and then utilizes the regulatory region structure (preferred binding 
site arrangements) to increase the quality of the prediction, as well as to provide a new knowledge of the 
regulatory region organization. We show that our method can be successfully used for the identification of 
regulatory regions in eukaryotic genomes with a quality higher than that of other methods. We also 
demonstrate the ability of our algorithm to reveal structural features of the regulatory regions, which could 
be helpful for the deciphering of the transcriptional regulation mechanisms in higher eukaryotes.

1 INTRODUCTION 

Transcription of genes is regulated mostly by special 
proteins – transcription factors (TFs) – which bind 
the DNA at specific binding sites (TFBSs) and thus 
influence the transcription. In eukaryotes, stage- and 
tissue-specific transcription of genes is achieved 
through the interaction of different TFs with each 
other and their co-factors, as well as through other 
mechanisms, such as the chromatine remodelling. 
Eukaryotic TFBSs are too short and degenerate to 
detect them accurately in silico. On the other hand 
eukaryotic TFBSs are often organized in groups, cis-
regulatory modules (CRMs). These modules seem to 
coordinate protein-protein interactions for proper 
regulation of gene expression. But despite a great 
interest in the regulatory modules, their organization 
is still not completely understood. Most researches 
pay attention to the close situation of TFBSs and 
their types. However, the structure of modules (the 
order of sites and the distances between them) were 

shown to be important in many cases (Makeev, 
2003); (Hallikas, 2006); (Papatsenko, 2009). 

One could suppose that if the structure of 
regulatory modules was really crucial for the 
transcriptional regulation, it would be conserved 
during the evolution. In this case, despite a 
considerable sequence divergence, regulatory 
regions of orthologous genes should possess a 
similar structure. 

On the other hand, regulatory regions of co-
regulated genes also seem to be similar. Thus, the 
analysis of the regulatory regions of orthologous 
and/or co-regulated genes could reveal some rules or 
preferences of site arrangements, which are common 
for most of genes, and which therefore could be 
important for a proper transciption regulation. 

Here, we present a method called CORECLUST, 
which uses a HMM-based technique to predict 
regulatory modules for a set of known position 
weight matrices (PWMs) for system-specific TFs. 
The algorithm constructs a model of the regulatory 
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regions that describes preferences of site 
arrangements; the preferences can be revealed from 
given regulatory sequences of co-regulated and/or 
orthologous genes. The model then can be used for 
searching for similar regulatory regions in the 
sequences of interest or genome-wide. 

2 ALGORITHM 

The main idea of the algorithm is to scan genomic a 
sequence and to search for segments that are much 
more likely to be generated by a probabilistic 
process that uses the model than by a random 
background process. The model (hidden Markov 
model) describes regulatory regions, the clusters of 
binding sites, which can prefer some specific 
relative arrangements (regulatory structure). We 
describe the structure as a set of characteristics, such 
as sites frequencies, sites order, and distance 
distributions between adjacent sites. The preferences 
of site arrangements, if any, can be obtained from 
given regulatory sequences by training of the model 
parameters. 

2.1 The Hidden Markov Model 

The hidden Markov model (HMM) presented here 
describes the probabilistic process that is assumed to 

generate a sequence with inclusions of cis-regulatory 
module(s). The generated sequence consists of 
segments (or subsequences) of three types:  
 background sequence; 
 TFBSs; 
 inter-site regions (spacers), that is the regions 
between two adjacent sites in one module. 

 

Each CRM begins and ends with a site; CRMs are 
surrounded by a background sequence. 

Our HMM is of a generalized type (Rabiner, 
1989), which means that each generative state emits 
a string of nucleotides, rather than a single symbol. 
This allows us to set any desirable distribution for 
the length of strings generated from every emitting 
state of the model. 

The HMM contains three main types of 
generative states, which correspond to the types of 
the sequence segments: inter-module background 
sequence, sites and spacers (Figure 1). The 
background sequence is generated according to the 
first order local Markov model. The length of the 
sequences emitted in the BACKGROUND state is 
geometrically distributed with a mean 1/ popen. (popen 
is a probability to start a CRM). 

Each SITE state emits a sequence according to 
the corresponding position weigh matrix (PWM) in 
one of the two orientations. In all SPACER states 
nucleotides are generated according to the same 
local Markov model as we use for the 

 

Figure 1: The HMM scheme for two types of sites (TYPE1 and TYPE2) and two types of SPACER states, which vary in 
their length distributions (D1 and D2). The emitting states are represented by rectangular boxes and the silent states are 
shown by oval shapes. Arrows represent allowed transitions between states. Probabilities of the transitions marked by 
dashed lines are updated during the Baum-Welch training. 
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BACKGROUND state. The length distribution 
varies between the SPACER states of different 
types, which will be described later. 

The architecture of the model allows us to take 
into account preferences in site arrangement 
(regulatory structure), which include: 1) correlations 
between binding sites of certain types and 2) 
preferred distribution of the distance between 
adjacent TFBSs of certain types (i.e. the length of 
the spacer region). The correlation of TFBSs of 
certain types could mean that the corresponding TFs 
work together and their interaction is required for 
the CRM activity. And if two TFs interact with each 
other, the relative arrangement of their binding sites 
should be non-random, with some preferences in 
distance between the sites. 

The structure of regulatory regions is taken into 
account by introducing the set of SPACER states 
with different length distribution and the set of silent 
states that determine the choice of the next site type 
and the type of the spacer state. In this work, we use 
two types of SPACER state with length distributed 
according to either the geometric distribution, which 
reflects sites clustering without any distance 
specificity or the exponentially damped sinusoid 
with a period of 10.5 bp, which corresponds to the 
situation when interacting proteins are bound on the 
same side of the DNA strand (Figure 2). 

To reveal the regulatory structure from a given 
set of sequences, we train the parameters that 
determine the module structure (transitions marked 
with dashed lines in Figure 1) by using the Baum–
Welch algorithm (Baum, 1972).  

2.2 Search For Regulatory Modules 

To find regulatory modules in a given sequence we 
apply the trained model to the sequence and search 
for the best way to segment it in the background and 
CRM states (the latter are combinations of sites and 
spacer regions). It corresponds to a path in the HMM 
graph, which fits best our model. To find this path 
we use the posterior Viterbi decoding algorithm, 
described in (Fariselli, 2005), which was shown to 
have a better performance than the standard Viterbi 
or posterior decoding algorithms. 

The algorithm identifies some CRMs in a 
sequence, if any. To weight a module, we use the 
log-likelihood ratio, which reflects how likely it is 
that this sub-sequence was generated by the 
regulatory region model, as compared to being 
generated by the background model. It equals the 
log-ratio of the probabilities of two sub-paths in the 
HMM graph that emit the module and the 

background sequence, respectively; both sub-paths 
span from the beginning to the end of the module. 

 

Figure 2: Distributions of distance between adjacent sites 
in a module that are used in the model. 

3 TESTING 

3.1 Testing On The Vertebrate Muscle 
Dataset 

The muscle dataset, which initially was compiled by 
Wasserman and Fickett (Wasserman, 1998), now is 
widely used to assess the quality of the CRM 
prediction programs. We used this dataset to test the 
ability of CORECLUST to identify CRMs in a set of 
upstream regions of co-regulated and orthologous 
genes. The dataset consists of sequences with an 
average length of 850 bp, which contain known 
regulatory regions for 19 muscle genes from human, 
mouse, cow and chicken. The set of PWMs includes 
5 TFs, reported to be important in muscle regulation: 
Mef2, Myf, Sp1, Srf and Tef. The dataset as well as 
the assessment procedure were taken from (Klepper, 
2008). These authors developed a benchmarking 
framework for assessing programs' performance and 
used it to evaluate the performance of eight 
published module-discovery tools. We assessed the 
performance of CORECLUST and compared the 
results with other eight programs describer in the 
paper (CMA (Kel, 2006), CisModule (Zhou, 2004), 
ModuleSearcher (Aerts, 2003), Stubb (Sinha, 2003), 
MSCAN (Johansson, 2003), MCAST (Bailey, 
2003), Cister (Frith, 2001) and Cluster-Buster (Frith, 
2003)). 

To measure the prediction accuracy of the 
method with respect to module location, we used six 
measures described in (Klepper, 2008): 
 correlation coefficient (CC); 
 sensitivity (Sn); 
 specificity (Sp); 
 positive predictive value (PPV); 
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 performance coefficient (PC, phi-score); 
 average site performance (ASP). 

The sensitivity gives the fraction of nucleotides 
known to be in a CRM that are correctly identified 
as such. The specificity measures the proportion of 
background nucleotides, which are correctly 
identified. The positive predictive value gives the 
fraction of nucleotides predicted to be in a CRM that 
are known to be in one. The correlation coefficient, 
performance coefficient and average site 
performance are statistics that in some sense average 
these quantities. 

The results of the programs' performance 
assessment (Table 1) show that CORECLUST scored 
better than other programs for almost all measures. 
Losing a little in the sensitivity, the program scores 
highest of all for the CC measure, which captures 
the sensitivity and specificity values into a single 
score. 

3.2 Testing on the Drosophila Early 
Developmental System 

Genes of the Drosophila anterior-posterior axis 
specification process (AP) have rather long 
regulatory regions situated about 10-15 Kbp from 
the respective transcription start sites (TSS). 
Moreover there are twelve annotated genomes of the 
Drosophila genus available in public databases. All 
this allows us to use the upstream regions of genes 
from only one orthologous group as a training set 
without overfitting. 

We assessed the performance of CORECLUST 
using 17 AP genes from the D.melanogaster 
genome, shown to possess experimentally verified 
regulatory regions, bound by all or some of seven 
TFs: Bcd, Hb, Cad, Kr, Kni, Tll and Gt. The model 
training and CRM search were done for every gene 
separately with the use of all available orthologous 
sequences. As CRM predicting programs, used for 
the prediction comparison, search for CRMs in the 
same sequences they train the model on, we used the 
same strategy for CORECLUST testing. The 
predictions were made for 40Kb region ([-20Kb, 
+20Kb] relative to TSS) of each gene. The modules 
predicted in D. melanogester sequences were 
compared with the known ones from the REDFly 
database (Halfon, 2008). 

As a performance measure we applied the 
correlation coefficient (CC) as it combines all 
aspects of the predictions quality. The results of the 
performance analysis were compared with three 
other publicly available programs: Stubb (Sinha, 
2003), MOPAT (Hu, 2008) and Cluster-Buster 
(Cbust) (Frith, 2003). The comparison shows (Table 
2) that predictions made by CORECLUST have a 
higher value of CC than Stubb (p-value = 0.05, 
Wilcoxon signed-rank test), MOPAT (p-value = 
0.00067, Wilcoxon signed-rank test) and Cluster-
Buster (p-value = 0.02, Wilcoxon signed-rank test). 

The testing of the program on two distinct 
systems shows that it is applicable to different 
regulatory systems and eukaryotic clades and can be 
successfully used for solving the standard problem 
of identification cis-regulatory modules for a set of 
system-specific TFs. 

Table 1: Comparison of the programs' performance. The two maximum values in each column is set in bold. The maximum 
value is marked by gray background. CC - correlation coefficient, Sn - sensitivity, Sp - specificity, PPV - positive predictive 
value, PC - performance coefficient, ASP - average site performance. 

Methods CC Sn Sp PPV PC ASP 

CORECLUST 0.56 0.66 0.93 0.58 0.45 0.62 

MSCAN 0.50 0.63 0.91 0.51 0.39 0.57 

ModuleSearcher 0.46 0.48 0.95 0.57 0.35 0.53 

CMA 0.46 0.56 0.92 0.51 0.36 0.53 

Cluster-Buster 0.41 0.74 0.80 0.35 0.31 0.55 

Cister 0.36 0.92 0.61 0.25 0.25 0.59 

MCAST 0.30 0.96 0.48 0.21 0.21 0.58 

CisModule 0.29 0.72 0.70 0.25 0.23 0.49 

Stubb 0.24 0.65 0.70 0.24 0.21 0.44 
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Table 2: Comparison of the programs' performance. The  
maximum value in each line is set in bold. 

Gene CORECLUST MOPAT
bowl 0.20 0.10 -0.01 0.17

0.45 0.27 0.31 0.47
cad -0.03 0.17 -0.02 -0.04
ems -0.02 0.15 -0.01 -0.02
eve 0.73 0.56 0.54 0.58

0.31 0.28 0.27 -0.02
0.31 0.36 0.32 0.27

gt 0.41 0.48 0.27 0.40
h 0.69 0.17 0.26 0.49

0.32 0.33 0.17 0.22
0.43 0.22 0.27 0.45

Kr 0.45 0.24 0.29 0.64
0.26 0.14 0.13 0.17

run 0.08 0.17 0.07 0.11
0.23 0.07 -0.01 0.17

slp1 0.35 0.34 0.44 0.35
0.26 0.15 0.09 0.17

TOTAL 0.32 0.20 0.20 0.29
median 0.31 0.22 0.26 0.22

0.21 0.13 0.17 0.21
P-value 0.049 0.00067 0.0197

Stubb Cbust

btd

fkh
ftz

hb
kni

prd

salm

tll

st.dev.

 

4 THE INTERNAL STRUCTURE 
OF THE PREDICTED 
REGULATORY MODULES  

CORECLUST predicts regulatory modules that are 
characterized by similar structure, which allows to 
reveal and analyze the rules of site arrangement. The 
structure of regulatory regions from training 
sequences can be taken from the HMM parameters. 
But it is even more interesting to study preferred site 
arrangements in the predicted modules. As the 
model describes preferences, but not strict rules, of 
site arrangements, the regulatory regions that are 
found in real genomic sequences can possess some 
structural features not included in the model in 
advance. 

To reveal pairs of sites that are situated next to 
each other more frequently than it is expected by 
chance (in the case of site independence), we use the 
Pearson correlation coefficient: 

)1()1(
),( ,
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where pi is the frequency of an occurrence of a site 
of type i next to any other site, pj is the frequency of 
an occurrence of a site of type j next to any other site 
and pi,j is the frequency of an occurrence of a site of 

type i next to a site of type j (the order and directions 
of sites are taken into account). 

4.1 Structural Analysis of CRMs 
Found in the Drosophila Genomes 

The method is applicable for genome-wide search. 
That is, after training the model on regulatory 
regions of some gene (“starting” gene) and its 
orthologs it can be used for searching for similar 
regulatory regions genome-wide. 

We used each of the 17 Drosophila 
developmental genes as a “starting” gene and then 
searched all Drosophila genomes for regulatory 
regions with the similar structure. After this we 
revealed the overrepresented site pairs for every run 
(every “starting” gene). 

Noticeably, some of the observed 
overrepresented site pairs were documented before. 
For instance, the interaction of Bcd proteins was 
shown to be important for transcriptional regulation 
of genes hb and kni (Lebrecht, 2005). This is 
consistent with our observations that Bcd-Bcd site 
pair is overrepresented in the regulatory regions 
found by the hb- and kni-trained models. Also, the 
Hb-Hb and Cad-Cad correlations have been recently 
shown in (Papatsenko, 2009), which also fits well to 
our predictions. Moreover, according to our 
predictions, the site-to-site distances in the Hb-Hb 
site pair have a periodic helical distribution (Figure 
3A), which also has been observed in (Papatsenko, 
2009). 

Interestingly, although for different “starting” 
genes we observe different sets of overrepresented 
site pairs, some of the pairs are typical for several 
genes simultaneously. This phenomenon may be 
interpreted as a characteristic of the whole 
regulatory system. For example, the site pair 
Hb<Hb< (two Hb binding sites, the direction of an 
“arrow” ('<' or '>') shows the direction of the site 
relative to the gene direction) is significantly 
overrepresented for 10 starting genes and in all cases 
the distance between the sites is distributed 
according to the damped sinusoid (Figure 3A). 

An example of a distance distribution, which is 
not included in the model, but still is observed in the 
predicted regulatory regions, is provided by the 
distribution for the pair Bcd>Bcd> (two Bcd binding 
sites, both situated on the positive DNA strand 
relative to the gene direction). This site pair is 
overrepresented for six “starting” genes and in all 
cases the site-to-site distance distribution has an 
unusual high peak at distance 190-191 bp, as well as 
at distances 200-202 bp and 171-172 bp (Figure 3B). 
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Such long distances between sites are rather 
uncommon and perhaps could indicate that the 
corresponding TFs interact with DNA wound around 
a histone protein core.  

Similarly interesting are the site-to-site distance 
distributions for the pair Tll<Tll<. This pair is 
overrepresented only for three starting genes but for 
all of them most Tll<Tll< site pairs have 
characteristic distances: 19 bp, 152-153 bp, and 171-
172 bp (Figure 3C). 

One more observation on the site relative 
arrangements is that the relative orientation of the 
sites in a pair seems to be important. For most TF 
pairs we found an overrepresentation for only some 
orientation arrangements. For instance, for the 
predictions made by the h-trained model, only two 
types of the Kni site pairs were overrepresented: 
Kni>Kni> and Kni<Kni<, which are pairs of sites on 
the same DNA strand. The orientation relative to the 
regulated gene also could be of importance: only site 
pair Hb<Hb< is significantly overrepresented for the 
starting gene h and several other genes. 

These observations demonstrate that TFs 
function cooperatively: if two TFs interact with each 
other when binding the DNA, the orientation of their 
binding sites should be crucial for successful 
regulation. 

4.2 Structural Analysis of CRMs In 
Vertebrate Genomes 

For the regulatory regions predicted by the model 
trained on the muscle genes we also observe 
overrepresented site pairs, most of which are 
supported by the experimental data. For example, 
binding sites of TFs Myf and Mef2, as well as Sp1 
and Myf, occur next to each other unexpectedly 
often in the predicted modules; the validity of this is 
confirmed by the data from the database of 
composite elements TransCompel (Matys, 2006). 
Predicted interaction of the TFs Tef and Mef2 is 
confirmed by (Maeda, 2002). 

For this regulatory system, we also observe the 
importance of specific sites relative orientation. 

Thus, for Sp1 TF only S1>Sp1> and Sp1<Sp1< 
site pairs are overrepresented, while the pair 
Sp1>Sp1< is underrepresented. 

The results presented in this section argue that in 
many cases the regulatory structure is important and 
could be used as an additional information for the 
prediction of functional CRMs and understanding of 
the transcriptional regulation mechanisms in 
eukaryotes. 

 

 

Figure 3: Examples of distributions of distances between adjacent sites for pairs Hb<Hb< (A), Bcd>Bcd> (B) и Tll>Tll> 
(C) in the regulatory modules, predicted for models trained on different starting genes. The starting (training) gene, the 
correlation coefficient and the number of observed pairs (in brackets) are given at each plot. The random distance 
distribution is shown by the red line. 
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5 CONCLUSIONS 

We have developed a new algorithm 
CORECLUST based on generalized hidden 
Markov models, which is able to successfully 
predict regulatory modules in eukaryotic genomes 
for a set of PWMs starting from a set of co-
regulated and/or orthologous genes. CORECLUST 
utilizes the cross-species conservation without 
relying on multiple alignment, which can be useful 
for analysis of poorly alignable intergenic regions. 
The main disadvantage of the algorithm is the 
limitation of number of used PWMs, as it causes 
the increase of the HMM parameters, which can 
result in model overfitting. The future work aims 
to overcome this limitation by reducing the number 
of training parameters to only significant ones. 
Nevertheless, CORECLUST demonstrates better 
performance than other methods. The main 
biological advantage of the method is that it 
reveals regulatory regions structure, which could 
help in better understanding of the transcriptional 
regulation process. 
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