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Abstract: The purpose of this paper is to introduce a hierarchical Non-negative Matrix Factorization (NMF) approach, 
customized for the problem of blindly separating brain glioma tumor tissue types using short-echo time 
proton magnetic resonance spectroscopic imaging (1H MRSI) signals. The proposed algorithm consists of 
two levels of NMF, where two constituent spectra are computed in each level. The first level is able to 
correctly detect the spectral profile corresponding to the most predominant tissue type, i.e., normal tissue, 
while the second level is optimized in order to detect two ‘abnormal’ spectral profiles so that the 3 
recovered spectral profiles are least correlated with each other. The two-level decomposition is followed by 
the reestimation of the overall spatial distribution of each tissue type via standard Non-negative Least 
Square (NNLS). This method is demonstrated on in vivo short-TE 1H MRSI brain data of a glioblastoma 
multiforme patient and a grade II-III glioma patient. The results show the possibility of differentiating 
normal tissue, tumor tissue and necrotic tissue in the form of recovered tissue-specific spectra with accurate 
spatial distributions. 

1 INTRODUCTION 

Glioblastoma multiforme (GBM), which is the 
highest grade of glioma, is the most common and 
aggressive type of brain tumor in adults. Accurate 
diagnosis is of utmost importance in guiding therapy 
and determining prognosis. Magnetic resonance 
spectroscopic imaging (MRSI) (Brown et al., 
1982), which provides both spectral and spatial 
information, is becoming increasingly popular as an 
additional non-invasive tool for clinical diagnosis of 
brain tumors. Since the concentration of metabolites 
changes under disease conditions, the profile of the 
measured signal in each MRSI voxel helps to 
determine the location of abnormal tissue (Howe et 
al., 2003). 

Because of the heterogeneity of GBMs, the 
tumoral region could consist of several tissue types 
(Croitor Sava et al., 2011), which represent actively 
growing tumor, necrosis or normal brain tissue. 
Lower grade gliomas do not contain necrosis, but are 
also heterogeneous, e.g., the tumor can present 
infiltrations into the normal brain tissue. In MRSI, 
the partial volume effect, i.e., the presence of several 
tissue types within one voxel, may lead to increased 
variability in the measured signals. The spectrum 
corresponding to each voxel can be approximately 
described as a linear combination of spectra from 
different constituent tissue types (Su et al., 2008).  

Using Non-negative matrix factorization (NMF) 
to extract main tissue types from the mixed MRSI 
data was firstly proposed by Sajda and his 
colleagues (Sajda et al., 2003; Sajda et al., 2004; Du 
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et al., 2008; Su et al., 2008). They developed a 
constraint NMF (cNMF) algorithm, which enforces 
positivity, and incorporate it into a hierarchical 
decomposition framework to recover physically 
meaningful spectra using long echo time (TE) MRSI 
signals. 

In this paper, we study the applicability of a 
novel hierarchical NMF method for tissue type 
differentiation on short-TE MRSI data, which is 
potentially much more challenging than long-TE due 
to more complex spectral profiles. The proposed 
algorithm, as described in Section 3, consists of two 
levels of NMF, where two constituent spectra are 
computed in each level. Thus, we recover each 
tissue type step by step using NMF, i.e., first 
differentiate normal and abnormal tissue, and then, 
only in the abnormal region, differentiate active 
tumor and necrosis, or differentiate proliferation 
level of active tumor if necrosis is not present. Since 
the choice of the abnormal region has a high 
influence on the estimated sources, we propose to 
tune the threshold for selecting the abnormal region 
by minimizing the correlations between all three 
estimated tissue spectra, i.e., normal tissue spectral 
profile from the first-level NMF, and the two 
abnormal spectral profiles from the second-level 
NMF. Afterwards, non-negative least squares 
(NNLS) is applied on the original mixed signals 
using the obtained spectra in order to reestimate the 
spatial distribution of each tissue type over the 
whole grid. In section 4, experimental results on two 
typical patients show the capability of revealing 
tissue-specific spectral profiles and their spatial 
distribution, and are validated against expert 
labelling. 

2 IN VIVO 1H MRSI DATA 

2.1 Data Acquisition Protocol and 
Patients 

The short-TE MRSI data were acquired at the 
University Hospital of Leuven (UZ Leuven) on a 3T 
MR scanner (Achieva, Philips, Best, The 
Netherlands). Point-resolved spectroscopy (PRESS) 
(Bottomley, 1987) was used as the volume selection 
technique, TR/TE: 2000/35 ms, FOV: 16cm*16 cm, 
volume of interest (VOI): 8cm*8cm, slice thickness: 
1cm, acquisition voxel size: 1cm*1cm, 
reconstruction voxel size: 0.5cm*0.5 cm, receiver 
bandwidth: 2000Hz, samples: 2048. 

Our algorithm was tested on two types of 
patients: 

 In vivo MRSI data of GBM patients containing 
necrotic areas. Anatomic image of a typical 
patient is shown in Figure. 1(a) 
 In vivo MRSI data of glioma patients with no 
apparent necrotic area. Figure 1 (b) shows the 
anatomic image of a typical patient who has a 
grade Ⅱ glioma with focal progression to a 
grade Ⅲ glioma. 

  
(a) 

  
(b) 

Figure 1: Left: Anatomic image. Right: tissue specific 
spectra of patients. (a) Patient 1, a GBM patient with 
necrosis. (b) Patient 2, a glioma patient with no apparent 
necrosis areas. The outer green box is the PRESS box and 
the inner blue box contains the selected voxels of interest.  

2.2 Data Preprocessing 

In-house software SPID (Poullet, 2008), which was 
developed on the Matlab platform, was used for 
standard spectroscopic signal preprocessing. The 
applied steps were as follows: 

 In the MRSI grid, signals of insufficient quality 
(low signal-to-noise ratio (SNR), baseline 
problems, chemical shift displacement effects, 
etc.) usually exist, affecting mostly the voxels 
close to the border of the PRESS box. Therefore, 
these signals were excluded by selecting an inner 
smaller box inside the PRESS box of the MRSI 
grid (see Fig.1).  
 Residual water components ware removed using 
Hankel-Lanczos Singular Value Decomposition 
with Partial Re-Orthogonalization (HLSVD-
PRO) (Laudadio et al., 2002). The model order 
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was set to 30 and the passband from 0.25 to 4.2 
ppm. 
 A baseline offset correction was found 
necessary. But this is not suppressing the 
baseline due to macromolecules, which may be 
relevant for tissue differentiation.  
 The real parts of the preprocessed spectra were 
truncated to the region 0.25 – 4.2 ppm before 
analyzing them using the NMF algorithm. 

3 METHODS 

3.1 Basics of Non-negative Matrix 
Factorization (NMF) 

NMF (Paatero et al., 1994; Lee et al., 1999), as a 
blind source separation (BSS) method, has attracted 
much attention in performing the factorization:   

X WH N= +                              (1) 

where X  is a matrix of observed MRSI spectra 
represented as column vectors, with one column per 
voxel. W  is a matrix of constituent tissue spectra, 
with each column representing a typical spectrum 
for each tissue type. Each row of the matrix H
contains the linear combination weights (interpreted 
here as abundances or concentrations) of all 
constituent tissue spectra. N  stands for additive 
measurement noise. The mathematical formulation 
of the basic NMF problem is  
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3.2 Hierarchical NMF-NNLS 

In this section, a hierarchical NMF-NNLS algorithm, 
which recovers the 3 most distinct tissue-specific 
spectral profiles and their corresponding spatial 
distributions step by step, is described. 

 Step 1: First level NMF. Apply NMF to the 
preprocessed MRSI signals with the number of 
components chosen to be 2. Two patterns of 
spectra (W-normal and W-abnormal, 
respectively) and their contribution to each 
location in the brain image (H-normal and H-
abnormal) will be recovered. Then, label the 
obtained 2 sources as normal and abnormal 
tissue types according to typical metabolic 
features of their spectral profiles (i.e., the NAA 

peak at 2.01 ppm is higher in the source 
corresponding to normal tissue). 
 Step 2: Automatically find the optimal threshold 
for the abnormal region. Perform intermediate 
NMF decompositions with 2 sources on 
gradually increasing sets of voxels, where these 
sets are selected according to a variable threshold 
on the magnitude of the H-abnormal map.  A 
reasonable trade-off for mutually least 
correlation between recovered spectral profiles is 
found by minimizing the sum: Corr(W-
normal,W-abnormal1) + Corr(W-normal,W-
abnormal2) + Corr(W- abnormal1+W-
abnormal2).                                                                                          
 Step 3: Second level NMF. Apply NMF only to 
the voxels of the abnormal region selected using 
the optimal threshold in order to further separate 
the abnormal tissue into two abnormal tumor 
profiles, which reflect the aggressiveness level, 
with their corresponding spatial distributions. If 
one of the profiles contains predominantly lipids 
(according to the peaks at 0.9 and 1.3 ppm) and 
almost no other metabolites, then label that 
profile as necrosis. 
 Step 4: NNLS reestimation. Since the second 
level NMF was restricted to the selected 
abnormal region, some border voxels containing 
abnormal tissue may have been excluded due to 
the thresholding. Applying non-negative least 
squares approach (Lawson et al., 1974) to the 
whole grid with the 3 recovered tissue spectra 
(i.e., solving problem [2] for W fixed to a three-
column matrix [W-normal, W-abnormal1, W-
abnormal2]) will give a complete estimation of 
the spatial information of these 3 tissue types 
over the whole initially considered grid. 

4 EXPERIMENTAL RESULTS 

We studied the applicability of brain tumor tissue 
type differentiation using the proposed hierarchical 
NMF-NNLS algorithm. The results of two different 
cases are shown in Figure 2 and Figure 3. 

4.1 Results for Patient 1: GBM Patient 
with Necrosis 

Results of 2-level hierarchical NMF-NNLS to the 
preprocessed brain signals of patient 1 are shown in 
Figure 2. The corresponding anatomic picture of the 
patient 1 (male, GBM) is shown in Figure 1 (a) with 
the green box and the blue box representing the 
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PRESS box and the selected voxels of reasonable 
quality, respectively. Figure 2 (a) presents the 
recovered normal and abnormal spectra of the first 
level NMF. The spectrum that shows a decreased 
NAA/Cho ratio, a decreased Cre and significant 
levels of Lac-Lip, represents the tumor tissue. The 
one with almost no metabolites other than lipids 
(and potentially lactate), is the typical spectral 
pattern of necrotic tissue. The H-maps in (b) give 
their spatial distribution. (c) illustrates the selected 
abnormal region. (d) and (e) are the results of the 
second level NMF. (f) shows the reestimated spatial 
information using NNLS. We can see tumor and 
necrosis in (c) covering bigger regions than in (b) 
and therefore being able to show more complete 
information at the border region which contains 
mixed tissues. 

4.2 Results on Glioma Patients with no 
Apparent Necrosis Area 

To explore the applicability of the proposed method 
(see Section 2.4), it was tested on another case, 
which is a patient who has been diagnosed with 
grade II-III glioma and, according to the expert 
labeling, does not present macroscopic necrosis; 
Anatomic picture is given in Figure 1 (b). Results 
are shown in Figure 3. It is controversial if we still 
try to search for 3 components with our method 
when there is no necrosis. Still, this situation is 
realistic, because in most cases we are not sure 
beforehand if there is necrosis within the lesion.  
Figure 3 (a) and (b) give the results of the first level 
decomposition and thresholding. Panel (a) illustrates 
the recovered spectra of normal tissue and abnormal 
tissue; the H-maps in (b) show the spatial 
distribution of the corresponding spectra after 

 
Figure 2: Result of hierarchical NMF-NNLS on patient 1, a GBM patient with necrosis. (a) – (b): Step 1, first level NMF. 
(c): Abnormal region after optimal thresholding. (d) – (e): Step 3, second level NMF. (f): Step 4, NNLS. 
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thresholding. We can see that the factorization is 
effective in finding normal and abnormal tissue. 

Then, in Step 3, the abnormal tissue was 
separated into two parts that apparently do not 
contain necrotic tissue (also confirmed by the 
absence of lipids). The one near the normal region is 
the border of the tumor, with its spectral pattern 
(Abnormal 1 in Figure 3 (c)) still indicating 
abnormality (low NAA/Cho). The recovered 
spectrum from the other part of abnormal region 
(Abnormal 2 in Figure 3 (c)) has a significant 
increase of Cho and Lips, obvious peaks of Ala and 
Lac, and a decrease of other metabolites. For this 
case without necrosis, instead of separating tumor 
and necrosis, our proposed method reveals the 
regions in the tumor that correspond to different 
levels of proliferating tumor cells.  In the end, NNLS 
estimation gives more complete spatial information 
of each tissue type. 

4.3 Results Validation 

The distribution maps of the 3 tissue types were 
overlapped onto the anatomical images; see Fig. 4. 
The recovered location of our results corresponds 
well to the one shown on the anatomic image. 

As an additional validation for patient 1, we also 
computed correlation coefficients between the 
recovered spectra and the average of pure tissue-
specific spectra according to the labeling of an 
expert (SVC). The result for normal tissue is 0.9933, 
for tumor is 0.9618 and for necrosis is 0.9950, which 
shows that all spectral sources are relatively highly 
correlated with the validated spectra. 

For patient 2, who has grade II-III glioma but 
without macroscopic necrosis, the result of our 
proposed method reflected the level of tumour 
proliferation, which was validated by histopathology. 

 
Figure 3: Result of hierarchical NMF-NNLS on patient 2, a glioma patient with no apparent necrosis area. (a) – (b): Step 1-
2, first level NMF and optimally selected abnormal region (c) – (d): Step 3, second level NMF. (e): Step 4, NNLS. 
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Figure 4: Overlap of the distribution results onto the anatomic images. The first row is the result of the GBM patient with 
necrosis. (a): normal tissue distribution; (b): tumor tissue distribution; (c): necrosis tissue distribution. The second row is the 
result of the glioma patient without necrosis. (a): normal tissue distribution; (b): abnormal 1 tissue distribution; (c): 
abnormal 2 tissue distribution. 

5 DISCUSSION & CONCLUSIONS 

A novel tissue type differentiation approach, 
hierarchical NMF-NNLS, and its clinical application 
were explored in this study for GBM patients.  

The data we used in this study is short-TE MRSI 
signals because spectra of short-TE represent more 
metabolites than long-TE spectra. But there is more 
significant peak overlap and, usually, a higher noise 
level. Therefore, using short-TE signals in solving 
tissue type differentiation is more challenging but of 
more significance. 

The reason we need the hierarchical procedure is 
based on the assumption in the considered data sets 
that the MRSI grid encompasses mostly normal 
tissue and a glioma tumor with heterogeneous tissue 
content. Due to the unbalanced proportion of the 
tumor tissue voxels inside the grid, the sources 
corresponding to under-represented tissue types 
would be difficult to be identified by simply using 
NMF with more than 2 sources. Therefore, the 

robustness of NMF for extracting meaningful 
spectral patterns can be increased through a 
hierarchical NMF approach. 

The possibility of differentiating brain tumor 
tissue types was demonstrated in two distinct cases. 
Representative results from a GBM patient showed 
the capability of the proposed algorithm to separate 
short-TE MRSI data into normal tissue, tumor and 
necrosis with accurate spatial information. For the 
case of a glioma patient without necrosis, our 
method is able to indicate the proliferation level of 
the tumor. This result is useful because assessing 
tumor proliferation level is important in brain tumor 
diagnosis, as it gives information that is potentially 
helpful in directing the patient’s clinical 
management. Both cases show that the proposed 
method is able to find meaningful sources and their 
corresponding spatial distributions using short-TE 
MRSI signals. 

However, the data presented in this paper is 
preliminary and a more appropriate data pool will be 
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used in future work in order to actually fully assess 
the performance of the proposed technique. 

Another paper appearing in these proceedings 
focuses on a “simulation study of tissue type 
differentiation using non-negative matrix 
factorization”. In that preliminary research, we 
studied the performance of several NMF 
implementations on simulated MRSI signals. The 
‘(a)hals’ algorithm (Cichocki et al., 2007; Cichocki 
et al., 2009; Gillis, 2011) had the best performance 
in those simulations and has therefore been used for 
all the NMF computations in this paper.  
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