HIGH THROUGHPUT COMPUTING DUE TO NEAR-OPTIMAL
EMERGENT MULTIAGENT COALITIONS FOR LOAD SHARING

Leland Hovey and Mina Jung
Syracuse University, Syracuse, U.S.A.

Keywords: Multiagent, Evolution, Load-sharing, Scheduling.

Abstract: Grid CPU load-sharing is a subclass of computational grid resource management. Its purpose is to improve
grid throughput — High Throughput Computing (HTC). The problem is load-sharing optimization state-space
can be quite large. This is because of two factors: the load-sharing optimization problem is NP-complete,
and a large volume of CPU-intensive loads can require thousands of Internet connected CPUs. Approximate
models can find near-optimal solutions to NP-complete problems. Multiagent coalition formation (MCF) is
a particular approximate game theoretic approach for these problems. We propose a new distributed MCF
(DMCF) model for Grid CPU load-sharing, DMCF grouping genetic algorithm (DMCF-GGA). This paper
presents the model in detail. It also compares this model with our existing model, DMCF-spatial. The com-
parison consists of a discussion of the models’ similarities and differences, and a comprehensive empirical
evalution. The results of this study are the following: The optimization search cost of DMCF-GGA is sig-
nificantly less than DMCF-spatial. DMCF-GGA has a linear relation between coalition size and search cost
(for high throughput). We have found preliminary lower and upper bound estimates for the effective coalition
size. We have also found the average job sizes required for the run time of DMCF-GGA to be 1% of the job
execution time.

1 INTRODUCTION A computational grid is a consortium of dis-
tributed CPUs inter-connected by the Internet or ded-
Currently, computing power for large-scale problem icated links. The purpose is high throughput for large
solving is in demand(Foster and (Eds.), 1999). If this quantities of CPU-intensive jobs (such as found at
power is provided by by a vast collection of small LHC and Fermi). CPU load sharing is a subclass
workstations (grid) instead of a single supercomputer, of RM. Optimized load sharing improves computa-
the financial cost is much less. Grid computing has tional grid throughput by assigning loads (scheduling)
evolved to be defined as “flexible, secure, coordi- so the load level of all CPUs is close to their capac-
nated resource management among dynamic multi-ity. But, since this problem is NP-complete (Fiala and
institutions”, conjoined through the Internet or a ded- Paulusma, 2005), and a Grid can have thousands of
icated network. Resource management is an opti-inter-connected CPUs, the load-sharing optimization
mized and dynamic assignment of distributed hetero- State-space can be huge.
geneous Grid resources. Optimization metrics in- Approximation models can solve certain opti-
clude throughput, turnaround time, utilization, mon- mization problems having large state-spaces (Vazi-
etary cost, or access rights (Ibaraki and Katoh, 1988).rani, 2004). Multiagent coalition formation (Sand-
Recent examples of Grids, such as the Large holm, 1999) (MCF) is a type of approximate game
Hadron Collider (LHC) and Fermi Lab experiments, theoretic model. MCF enables self-interested agents
have demonstrated the importance of resource man-to reduce state-space search costs by coordinating
agement (RM) and have drawn much active grid RM their activities with other agents (e.g., the coordi-
research a RM optimized for certain metrics can pro- nation of load-sharing among collections of CPUS).
vide the capacity for the large-scale job quantities pro- This paper proposes a new distributed MCF (DMCF)
duced by these experiments. The Open Grid Forum model for Grid CPU load-sharing, DMCF group-
(OGF) and the Globus Alliance are also major orga- ing genetic algorithm (Michalewicz, 1999) (DMCF-
nizations committed to grid research. Both organiza- GGA). The motivation for this model s itis pragmatic
tions have specific RM research groups. in terms of algorithm complexity, low cost in terms of

Hovey L. and Jung M.. 295
HIGH THROUGHPUT COMPUTING DUE TO NEAR-OPTIMAL EMERGENT MULTIAGENT COALITIONS FOR LOAD SHARING.

DOI: 10.5220/0003733702950305

In Proceedings of the 4th International Conference on Agents and Atrtificial Intelligence (ICAART-2012), pages 295-305

ISBN: 978-989-8425-95-9

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)

ICAART 2012 - International Conference on Agents and Artificial Intelligence

both searching and communication, and scalable. The
study explains this model is described in detail and | A. Machines and Architecture

presents the algorithm. It also compares this model ; neﬁ?foge”eous videntical maChinﬁ_S
. [_ . . _ . ulti-purpose vsuni-purpose macnines
Wlth our existing m.odel, DMCF spa,tla.l. .Th_|§ con 3. Static vs. dynamic machine availabillty
sists ofan explanatl_on of t_h_e models s_lmllarmes and 4. Resource allocation viob scheduling
differences, and their empirical evaluation. 5. Metascheduling vs. local scheduling
B. Job Characteristics
1.1 ObjECtiVGS and Organization e Multiprocessor vainiprocessor jobs
e Queue size vgob size
o) e Divisible vs. non-divisible jobs
The objectives of this study are a problem state-space Jobs with deadlines
reduction, and a cost/benefit analysis of whether au- . jog size esut’.“at'on ! miorati
. . e Job preemption and migration
tonomous agents can acquire the Core (section 2.2 o Jobarrival distribution

for high throughput coalitions at the smallest search
cost. The remainder of this paper is organized as fol-
lows: the background information and details are pro-
vided in Section 2. Section 3 describes the new model
and explains the similarities and differences of the this
model and the existing model. Section 4 describes all
experiments utilized for the models’ comparison. Fi-

nally, section 5 discusses implications and future di-

rections. Figure 1. Grid Scheduling Problem Classification: (1) Ma-
chines and Architecture, (2) Job Characteristics, and (8) O
timality Metrics.

C. Optimality Metrics

Makespan, or turnaround time

Total flow time, total of turnaround times
Weighted (total) flow time

Total throughput

Earliness

Lateness

Square deviation

2 BACKGROUND

A. Deterministic vs. non-deterministic
Probabilistic
Control theoretic

This section consists of the following: Section 2.1 ex- .
L]
o Gametheoretic
L]

plains how the CPU load shariqpgoblemfits within
the field of Scheduling Theory (ST). It also shows the Genatic

classification of our models within all types of S©- Hierarchical

lutions Section 2.2 is a detailed description of the | B. static vs.dynamic

DMCF approach. C. Centralized vs.decentralized

2.1 Problem and Solution Figure 2: Scheduling Theory Solution Classification.

Classifications

the Core through DMCF (section 2.2). They are also
Generally, most problems within ST have the at- evolutionary because the search for a coalition struc-
tributes listed by fig. 1 (Brucker, 2004). This paper’'s tures is based on an evolutionary algorithm. The sec-
problem, CPU load sharing, is a specific scheduling ond set of attributes is static vs dynamic. Both mod-
problem characterized by the underlined items of the els are dynamic since nodes can be added or taken
figure. This problem will serve as a basis for future away without changing the algorithms. The third set
work encompassing other attributes. The problem is of attributes is centralized or decentralized. For a cen-
also known as the generalized assignment or multiple tralized algorithm (Wu et al., 2004), a single machine
knapsack problem. collects load data and determines the optimal alloca-

Most scheduling solutions within ST have the tion. This locality of control can provide algorithm

attributes provided by fig. 2. Both DMCF solu- efficiency and easy management. But, these algo-
tion models discussed in this paper are character-rithms are not scalable and fault tolerant. The Hungar-
ized by the underlined items of the figure. The first ian Method (Kuhn, 1955) and “Mulknap” (Pisinger,
set of solution attributes is deterministic vs. non- 1999) are both existing solutions to the multiple knap-
deterministic. Efficient deterministic solutions to NP- sack problem. Since they are both centralized, the
complete problem have not been found. But, ap- cost of large problem instances can be prohibitive.
proximate non-deterministic solutions are an active Decentralized algorithms (Csari et al., 2004; Weich-
research area. Both the compared models are a hyhart et al., 2004) divide the overall assignment task
brid game theoretic/evolutionary algorithm. They are among mutiple sites. These sites can act as both an
game theoretic since they attempt to attain stability in allocator and a computing resource. Since no site per-

296

HIGH THROUGHPUT COMPUTING DUE TO NEAR-OPTIMAL EMERGENT MULTIAGENT COALITIONS FOR

forms the entire assignment task, decentralized algo-
rithms can be scalable and fault tolerant. However,
these algorithms may incur high communication over-
head (usage monitoring). Also, a centralized algo-
rithm can be closer to optimal than multiple local al-
locators.

2.2 DMCEF Overview

A characteristic function game (CFG) is a game in
which a characteristic function determines the value
of each coalitiorVs, whereSis a coalition. MCF is a
type of CFG that consists of three phases:

I. Coalition structure generation: construct of parti-
tion! of agents where each subset of agents is a
coalition. This partition is called a coalition struc-
ture C9S. Social welfare is the sum of all agent’s
payoffs. The goal of this phase is to maximize the
social welfare of agent8 by finding a coalition
structuré

CS' = argcse partitions of AMax V(CS),

h CS =
where (CS SEZ

Vs
S

Both of this study’s models partition the overall
n autonomous multiagent load sharing problem
into k, (k < n) load sharing subproblems. There
is a coalition of agents for each subproblem. Eac
subproblem consists of: (1) a coalition of multia-
gents where each agent (called a node-agent) act
on behalf of each CPU node, (2) each node-agen
having the task of potentially sharing its load with
some other coalition node.

h

Il. Solve the optimization problem of each coalition.

LOAD SHARING

Core= (X,CSVSCA, st.- > Vg
i

S
and in Z Vs.
ic SECs

A CSthat maximizes social welfare is stable in the
Core (Sandholm, 1999). Both models optimize
throughput and divide this amount evenly among
all agents (e.qg., social welfare). Both models ter-
minate if no agents choose to move out of the final
CSs

3 MODELS: DMCF-GGA AND
DMCF-SPATIAL

This study compares two evolutionary models for
large-scale Grid CPU load sharing optimization: the
new DMCF-GGA and the previous DMCF-spatial.

This section consists of the following: Section 3.1
discusses the similarities and differences of the two
models. Next, section 3.2 describes the DMCF-GGA
algorithm in detail and provides the algorithm code.

3.1 Similarities and Differences
Both models are based on the three-phased DMCF ap-

proach explained in section 2.2. The similarities of
the two models occurs in Phase | as explained in sec-

gion 3.1.1. Section 3.1.2 discusses the differences that
toceur both in Phase | and Il.

3.1.1 Similarities

Both models have the following attributes in common

First, share the tasks and resources of the agent$or Phase I:

in the coalition. Next, calculatéSec CSvs. Fi-
nally, solve the joint problem. In this study,
DMCF-spatial uses a locality based technique and
DMCF-GGA uses the first fit algorithm.

Payoff — dividing the value of the generated coali-
tion structure among agents. Thereis a spe-
cific payoff scheme defined as the agents remain-
ing within the coalitions instead of moving out of
them:

1A partition of a set X is a set of nonempty subsets of
X such that every element x in X is in exactly one of these
subsets.

2Superadditivity is when any pair of coalitions is best
off by merging into one. Our model prevents superadditivity
by having a defined coalition size for each experiment.

e The agents and algorithms operate in a distributed
environment.

The agents and algorithms minimize the commu-
nication overhead.

e The emergedCS (partition) maximizes total

throughput (near-optimal).

The models are pragmatic. Our intention for the
designs and implementations is so they can be
readily deployed as an additional scheduler in
Condor (an existing grid batch job scheduling sys-
tem).

e Coalition formation is due to an evolutionary al-
gorithm. Each coalition is comprized of node-
agents. Initially, the autonomous node-agents
form aCSof k coalitions. Each generation, node-
agents self-organize into a n@& The sequence
of generations causes a sequenc€8&. Since

297

ICAART 2012 - International Conference on Agents and Artificial Intelligence

the coalitions’ members may change, the coali- Phase IlI: the payoff is divided evenly among the

tions are dynamic. These evolvi@Ss have node-agents when the agents are stable in the Core

monotonically increasing fithess. The fitness met- (when no further throughput increases occur).

ric is total throughput.

3.1.2 Differences
e A distributed chromosome represent£8§ (the

entire state of the Grid). Each of the chromo- For phase I, the two models differ about: (1) the gene

some’s genes specifies a node’s coalition. A gene strycture and (2) procedure for conditional migration.

is implemented as a node-agent. There is one oA pMCF-spatial gene is a pair of cartesian coordi-

node-agent per node. A node-agent acts on be-pates. So, each node-agent is located at a point on a

half of its node. Hence, the node-agents (chromo- 2.dimensional logical grid (Oliphant, 1994). Node-

Some) are distributed. Each generation, some of agents that have the same Spatia| proxiﬁ]ﬁgk}ng

the gene values are replaced. There is one chro-tg the same coalition. A DMCF-GGA chromosome is

mosome for the evolutionary algorithm. the same as the former. But, the gene of its node-agent

e There are two types of distributed agents; is a coalition ID. DMCF-GGA node-agents with the
same coalition ID belong to the same coalition.

— condition-actionnode-agents — the are agents DMCF-GGA is an example of Cooperative Dis-
that self-organize (evolve) into coalitions as de- tributed Problem Solving (CDPS) (Decker et al.,
scribed above. To construct new coalitions each 1998). Fig. 3 presents an evaluation of the agents
generation based on a condition, node-agents (both node-agents and cm-agents) as a CDPS system.

may perform the action of move Condition- - The node-agents operate independently to enable the
action movesare implemented as conditional coalition to emerge. Since there is no central local-
migration, and ity-of control, the failure of any node does not hinder
— cm-agents — these agents distribute coalition operation of the algorithm. This improves reliability
member node-agents witkoal i tion menber and fault tolerance. If more nodes are added, more

andt hroughput lists, and they distribute these coalitions are constructed. For the number of nodes
lists to the other coalitions. There is one cm- We tested, the number of coalitions does not affect
agent for each coalition. scalability.

e The genetic operator is conditional migration . .
A. Heterogeneity of the system, structural assumptions,

(Kowalski and Sadri, 1996). This enables the domain and architectural assumptions

node-agents to form new coalitions. The pro- 1. agent functionality is identical

cedure is: (1) a node-agent starts by randomly 2. number of agents equals the number of servers

chosing a new candidate coalition, (2) all node- B é.ffetcr:]t?vseotl:lgggir?;gg/rﬁo approach common goals

agents ef.feCted by thls. pOSSIble memberShlp de- 1. agents shares problem solving knowledge through a

termines if the change increases both the through- cm-agent

put of the coalition where the candidate is from 2. reptresemationhan? reasoning of agent goals is optial

i) system throughpu

a_nd the throughput of th_e coalition where the Can 3. agent goals interrelate: agents’ throughputs are av-

didate move to, and (3) if so, the node-agent joins eraged for coalition throughput and optimal system

the coalition. The result of all migrations during a throughput o .
L . - 4. range of agent collaboration: critical timing consttsin

generation is an increase fitness (throughput). for the actions of the agents.

C. Organization and control of the system
1. task decomposition: a task consists of partitioning an
individual into coalitions.

2. task allocation: each server has pre-allocated tasks.

e The average job size is measure in Mfléps

Phase Il: the node-agents within each emergent

coalition collaborate to share the job loads (e.g., load Tasks are reallocated to the most efficient server.
sharing). The load sharing algorithms differ for the 3. Ifestultfhco"ediﬁmifthe ttiﬁalitiof&-managtef agr%nts th I-

. . ects e results trom € nodae-agents. en, the
two models (section 3.1.2). The output of this phase coalition-manager agents all exchange their results.
is a map that assigns each coalition job to a specific
coalition nodé. Figure 3: A cooperative distributed problem solving frame-

_ work to describe the presented DMCF model.
S“Floating point operations per second (FLOPS) has

been the yardstick used by most High Performance Com- DMCF-spatial's conditional migration moves a
puting (HPC) efforts to rank their systems (Livny et al.,

1997)” 5A node-agent defines a circle of radiushat speci-
4A single application of our model has executed on fies if the nodes belong to the same coalition. Node-agents
grids up to 50000 nodes. located within the radius have the same spatial proximity.

298

HIGH THROUGHPUT COMPUTING DUE TO NEAR-OPTIMAL EMERGENT MULTIAGENT COALITIONS FOR

LOAD SHARING

node-agent to the proximity of another coalition if the tion members, (3) the throughput of each coalition

throughput of each affected coalitions improves. Pos-
sible coalition overlap is an ancillary effect. DMCF-
GGA's conditional migration changes a node-agent’s
coalition ID if the throughput of each affected coali-
tions improves. Coalitions do not overlap. This
model’s motivation is to reduce of the load sharing

problem’s search space (e.g., search cost) over themarized as follows.

DMCEF-spatial model. DMCF-spatial’s conditional

(Mflops) in the entire set of coalitions, and (4) algo-
rithms to push/pull components 1 — 3. The location of
each cm-agent is defined by an elect algorithm (sec-

tion 3.2.2). It may change at any generation during

Phase I. But, it remains the same for Phase II.
The DMCF-GGA algorithm (algo. 1) is sum-
The top-level is: (Iis-

tributedinitializeSystem then (2)DistributedE-

migrations may consist of many attempts at relocating vol veCoal i ti ons. The result is & Shaving the high-

nodes at locations outside the neighborhood of every
coalition. But, with DMCF-GGA every conditional
migration is an attempt to join one of a small number
of coalitions.

The DMCF-spatial algorithm for Phase Il is the

est total throughput. This procedure’s variables are

AD is an administrative domédin pc is the previous

generation having a change in throughput, gnid

the current generation.

following: the load a node-agent shares with another Algorithm 1: DMCF-GGA Top-level: Distributedinitial-

coalition node-agent is inversely proportional to the
number of coalitions where the second node-agent is
a member. (Hovey et al., 2003) contains the algorithm
details. Phase Il for DMCF-GGA is the first fit algo-
rithm.

3.2 DMCF-GGA Algorithm

First, this section describes the two types of DMCF-
GGA agents, a node-agent and a cm-agent (fig. 4).
Then, it explains the DMCF-GGA algorithm in detail.

” coalition push/pull
node ID| coalition ID node load throughput algorithms
(a) node-agent
node load
" node load coalition push/pull
coalition ID : throughput algorithms
nodé load

(b) cm-agent
Figure 4: The composition of a node-agent and a cm-agent.

A node-agent consists of the following five com-
ponents (fig. 4(a)): (1) node ID - unique node spec-
ifier (0 .. 500), (2) coalition ID - specifies the coali-
tion where the node-agent is a member - the range
of which is [0 .. nCoalitions], (3) node load; the to-
tal of the jobsize of all jobs at the node (Mflops), (4)
coalition throughput; the total throughput (Mflops) of
all coalition members, and (5) algorithms to push/pull
components 1 — 4. In addition, a node-agent remains
located at a specific node throughoutthe DMCF-GGA
algorithm.

A cm-agent has the following four components
(fig. 4(b)): (1) coalition ID; specifies the coalition
where the node-agent is a member (0 .. nCoali-
tions), (2) a node load (Mflops) for each of the coali-

izeSystem and DistributedEvolveCoalitions.

1: procedure DISTRIBUTEDINITIALIZE SYSTEM

2: Update-self-AD-cm-agent

3: Update-every-AD-cm-agent

4. When each AD receives “sufficient Mflops” from every AD
cm-agent, the system is initialized.

Sa NotifyReady

6: end procedure

7: procedure DISTRIBUTEDEVOLVECOALITIONS

8: repeat

9: ConditionalMigration

10: NotifyDoneMigration

11: CoalitionSnapshot

12: NotifyDoneGeneration

13: until

14: end procedure

3.2.1 DistributedlnitializeSystem

DistributedinitializeSystem can be subdivided
into 3 steps (algo. 1 lines 2—-4). These second level
procedures are presented in algo. 2 and they each run
once.

1. Updat eLocal CMA, algo. 1 step 2, is listed as algo.
2 lines 1-6. At the start of DMCF-GGA, each
AD has a server for all its nodes. This is the ini-
tial cm-agent¢mg. It is chosen at random. Jobs
may start to arrive at each node at this time. The
node-agent records the total job size as the jobs
arrive. If the total Mflops of the jobs is within
a threshold of the node capacity, the node-agent
sends # | ops ok” to that AD’s cmaand job ar-
rival is cutoff. The procedure’s variables ammna
is a cm-agent, is the total Mflops of all the jobs
on a nodeth is the required total jobsize thresh-
old, andcapthe capacity of the node (Mflops).

6An AD is typically a single administrative authority
managing a collection of servers and routers, and the inter-
connecting network(s).

"at approximately the same time

299

ICAART 2012 - International Conference on Agents and Artificial Intelligence

2. Updat eEver yCMA (algo. 1 step 3) is listed as algo.
2 lines 7-10. When eaatma; receives K | ops
ok”, they each sendM | ops ok” to every other
cma cm-agent. This procedure’s variables ame:
is a node-agent member of a coalitiema; is the
sender cma, antina is the receiver cma.

. NotifyReady (algo. 1 step 4) is listed as alg. 2
lines 11 — 19. First, eactma cm-agent receives
“M1ops ok” from every cma. Next, eachcma
sends #1ops ok” to each of its member node-
agents. Then, the node-agents senehdy” to
their cma. Eachcma sends feady” to every
othercma. Finally, each cma sendst't enpt -
ni g” to each of its member node-agents. This pro-
cedure’s variables arama is all nodes and they
are acting as receivers.

Algorithm 2: Second-level: InitializeSystem Components.
1. procedure UPDATELOCALCMA

2: Yemavn € cma

3: if abs (t - cap) th then

4. send (M1 ops ok”, n, cma);

5: end if

6: end procedure

7: procedure UPDATEEVERYCMA

8: Yemavn € cma recv ("M | ops ok”, n, cma);

9: Yema Vema, send (M| ops ok”, cma,cma);
10: end procedure

11: procedure NOTIFYREADY

12: Ycma Yema, recv (“Mflops ok”,cma;,cma);

13: vYema Vn € cma, send (M ops ok", cma,, n);
14: ¥n € cma Yema, send (r eady”, n,cmay);

15: ¥n € cma Vema, recv (' ready”, n,cma);

16: Ycma Yema, send (ready”, cma,cma);

17: Vema; Yema, recv (ready”, cma,cma);

18: Vcma Vnecma, send(attenpt-m g", cma, n);

19: end procedure

3.2.2 DistributedEvolveCoalitions

DistributedEvolveCoalitions can be subdivided as
listed in algo. 1 steps 6-15. Each node-agentfuns
its own copy of this procedure. This procedure’s vari-
ables are:

cma= coalition manager agent

c= temporary coalition ID

p= probability of migration

nc= total number of coalitions

n(t) = throughput

c1 = coalition where node-agent is migrating from

¢ = coalition where node-agent is migrating to

nm= number of coalition members

cap= node capacity

the = coalition threshold

c-ID = coalition ID

An explanation of these steps follows. Algo. 1 step 7:

Repeat steps 8 — 12 until there is no increase of total
throughput for 100 generatichs

8For grid size above 500, the fitness approaches the
maximum more slowly. So, the number of generations for
the stopping condition increases.

300

Condi tional M gration (algo. 1 step 8) is listed
as algo. 3. When each node-agent receives either
“ready” or “attenpt - g”, it attempts to migrate with
probability “p”. Temporarily, the node-agent ran-
domly chooses a new coalition ID. A migration oc-
curs if the condition (algo. 3: steps 8 — 11) is met.
Intuitively, a node migrates if; a) it is overloaded, its
coalition is overloaded, and the coalition it moves to
is underloaded, or b) if it underloaded, its coalition
is underloaded, and the coalition it moves to is over-
loaded. If this condition is met, the temporary new
coalition becomes fixed (for at least for one genera-
tion). Then, each node-agent, whether or not it mi-
grates, sendsibne- ni g” to its cm-agent.

Algorithm 3: Second-level: Conditional Migration.

1: procedure CONDITIONAL MIGRATION

2: Yemavn € cma

3. recv (‘attenmpt nig",cma, n);

4: if (rand() < p) then

5: c =int (urand[O..nc])

6: €1 = (n(t)c, — (nmx cap));

7 €2 = (n(t)c, — (nmx cap));

8: if

9: ((n(t)n > cap && €1 > the && & < the) ||
10: ((n(t)n < cap && &1 < the && & > the)
11: then

12: cID = c;

13: end if

14: endif

15: send {done- ni g", n, cma);

16: end procedure

Not i f yDoneGenerati on (algo. 1 step 12), is listed
as algo. 4 lines 19-23. Each cm-adesénds tione-
gen” to all other cm-agents. Then, each cm-agent
sends &t t enpt - ni g” to its member node-agents. Fi-
nally, either another generation begins or the evolu-
tionary process terminates.

Noti f yDoneM gration (algo. 1 step 9) is listed as
algo. 4 lines 1-5. When a cm-agent receivegmé-
ni g” from all its member node-agents, it then sehds
“done-ni g” to all other cm-agents.Coal i ti onSnap-
shot (algo. 1 step 10) is listed as algo. 4 lines 6—
15. The node-agents each sérttieir node- | D and
| oad to their cm-agent. When a cm-agent receives
these items from all its member node-agents, it con-
structs two new lists, the member-lise i st) and
the member load-list - | i st). These lists are sent to
the other cm-agents. When each cm-agentreceives all
lists, they then send them to the member node-agents.
El ect (algo. 1 step 11) is listed as algo. 4, lines 16—
18. Each existing cm-agenbegins an election of a
new cm-agent for the members of the new coalition
(Bully algorithm (Garcia-Molina, 1982)).

HIGH THROUGHPUT COMPUTING DUE TO NEAR-OPTIMAL EMERGENT MULTIAGENT COALITIONS FOR
LOAD SHARING

Algorithm 4 : Second-level: DistributedEvolveCoalitions

Attribute Value
Components. nodes in the Grid 500
1: procedure NoTIFYDONEMIGRATION coallition sizes for each | [23, 33, 45, 83, 100]
2: Yemavn e cmarecy (done-mi g*, n, cmay); seres
3. Vema Yema send {done-ni g*, cmas,cma); migration threshold for | [0.05 - 1.20] incremented by 0.05
4. Yema Vema recv (‘done-mi g", cma); each series
5: end procedure job type cpu-intensive
6: procedure COALITION SNAPSHOT ;
7: Yemavn € cmasend (ode- | D, | oad, n, cma); node capacity 1000 Mflops per sec
8: Yemavn € cmarecv (ode- | D, | oad, n); total size of arriving 19 nodes @ 526500 Mflops
9: Yema jobs for every 20 nodes | and 1 node @ 10008500
10: ConstructListsiem | i st,ld-1ist); in the Grid Mflops
11: vemee Yema send (em | i st, 1 d-1ist, cma,cma); .
12: vemas Vema recv (rem i st, 1 d-1ist, cma,cma); m%?gggg%/pof 025

13: Vcmavn e cmasend fem | ists,|d-1ists, cma, n);
14: Vcmavn € cmarecv frem i sts,|d-1ists, cma, n);
15: end procedure

condition of termination | no change for 100 generations

(the Core is attained)

16: procedure Elect metrics total throughput and migration
17: VcmaBully (); count
18: end procedure number of trials 30

19: procedure NOTIFYDONEGENERATION

20: Vema Ycma send {done gen g, cma,cma);
21: Vcma Ycma recv ('done gen g",cma,cma);
22: Ycmavn e cma send (attenpt-nig", n);

23: end procedure

Figure 5: The attributes and values of the DMCF-spatial
and DMCF-GGA experiments.

4.2 Results
4 EXPERIMENTS

This section contains the results of the following

experiments: Phase | — Migration Threshold vs.

This study’s extensive experiments are a preliminary Throughput and Migration Counts, Phase | Migra-

comparison of the DMCF-spatial and DMCF-GGA tion Counts vs. Throughput, Phase Il — Load Sharing

models. The metrics measured were (1) averageCounts, and Overall Performance.

coaliton throughput, and (2) overall search cost. They Phase | — Migration Threshold vs. Throughput

use a estimate of the communication cost. This sec-and Migration Counts: The experiments showed that

tion contains the configurations of all experiments, increasing the threshold, decreased the total through-

and the results of these experiments. put and decreased the migration counts. The migra-

tion threshold may be viewed as tladlowed error

in existing coalition throughput. For both models, a

node may migrate if the average coalition throughput

The comparison consisted 2 sets of five series of is above the threshold. Highaflowed errormeans

experiments. The first set measured DMCF-spatial fewer coalitions are candidates for migration. This

and the second set measured a similarly configuredcauses both fewer migrations, and lowers the total

DMCF-GGA. Fig. 5 lists all the attributes commonto throughput.

both models. The series of five experiments consists

of an experiment for each coalition size. The experi- 4.2.1 Phase | — Migration Counts vs.

ments were performed on a simulated Grid consisting Throughput

of 500 nodes. This simulated grid is modelled after

the existing DAS-3 (Distributed ASCI Supercomputer The threshold selected to produce the following

3) grid. DAS-3's worst case latency between two ma- graphs has the fewest counts per throughput value.

jor nodes is 0.7 msec. Most of this latency is due to Fig. 6 depicts the migration counts compared to

physical fiber distance travele®:° throughput for DMCF-spatial (fig. 6(a)) and DMCF-
GGA model (fig. 6(b)). Both graphs have plots where
coalition sizes are fixed at [23, 45, 100] (only 3 of
5 coalition sizes are shown). First, migration counts

"9 masimur . . decrease as the coalition size increases. This may

maximum throughput was found in relatively few " o
generations if the experiments had the total size of the all P& Pecause as the coalition size increases, the prob-

4.1 Configurations

arriving jobs uniform on 1000Mt500M. So, a precise com-
parision of the models was not possible.
10(19 x 526) + (1 x 10000 = 20000M flops

ability of finding underloaded nodes to compensate
for overloaded nodes, increases. Hence, coalitions do
not need to change and there are fewer migrations.

301

ICAART 2012 - International Conference on Agents and Artificial Intelligence

st : : B i — : : 4.2.2 Phase Il — Load Sharing Counts vs.
Throughput

7.0006405

60000405

Fig. 7 shows load sharing counts compared to
throughput for DMCF-spatial (fig. 7(a)) and DMCF-
GGA (fig. 7(b)). For each coalition size (23, 45, 100),
the DMCF-GGA model has considerably fewer state
searches compared to DMCF-spatiall(7%). Also,

the load sharing count among coalition members does
not change as throughput increases. This is proba-
R bly due to the implementation of FF as an exhaustive
search. But, it will be improved in our future work.

50000405

40000405

Migration Counts

30008405

20008405

0.0006400
4.8000405 48200405 4.8400405 48600405 4.8800405 49000405 4.9200405 49400405

‘Throughput
[Zorodes —— a5 odes ——— 10076des]

Former: Load Sharing Counts v. Throughput

(a) DMCF-spatial model: the x-axis is the throughput, areytfaxis is the
migration count.

2.0000:+07
Improved: Load Sharing Counts v. Throughput (01)

1.4008405

15000407

12008405,

10008405,

Load Sharing Counts

1.0000407 P R

8.0000404

Mutation Counts

60000404,

50000406
48000405 48200405 48400405 48600405 48800405 49000405 49200405 4940405

Throughput
[Zirodes —— a5 nodes ——— T00modes]

2.0008404

(a) DMCF-spatial model: the x-axis is the throughput andytais is the
load sharing state change count.

Improved: Load Sharing Counts v. Throughput (01)

0.0000400
4.8000405 48200405 48400405 4860405 4.8800405 49006405 4.9200405 4940405

Throughput
[Zirodes —— d5rodes ———— 100 76des

(b) DMCF-GGA model: the x-axis is the throughput, and thexisas the
migration count.

Figure 6: The two graphs compare the coalition formation zamte
search of the DMCF-spatial and the DMCF-GGA models.
Each graph plots migration counts versus throughput for
coalition sizes [23, 45, 100].

0000406

Secondly, both graphs show the migration counts in-
crease as the throughput increases. This is likely due
to an accumulation of migration counts as the gen-
erations proceéd. Also, DMCF-spatial has an ex-
ponential count increase for high throughputs if the el
coalition size is small (23). But DMCF-GGA shows B,

the migration count increase over throthPUt is ap- (b) DMCF-GGA model: the x-axis is the throughput and the jsax the
proximately linear for all coalition sizes. Finally, ioad sharing state change count.

the graphs show the DMCF-GGA model has migra- rigure 7: The two graphs compare local load sharing
tion counts that are significantly smaller than DMCF- within the coalition of the DMCF-spatial and the DMCF-
spatial (for all throughput values);49% fewer if the GGA models. Each graph plots state change counts versus
coalition size of 23>42% fewer for a coalition size throughput for coalition sizes [23, 45, 100].

of 45, and>43% for a coalition size of 100.

50000405

4.2.3 Overall Performance

4.2.3.1 Comparison of DMCF-GGA to Existing
Methods. We compared the results of the DMCF-
GGA experiments to three existing methods (1) first
11Throughput is monotonically increasing from one gen- come first served (FCFS), (2) FCFS first fit (FCFS-
eration to the next. FF), and (3) round robin (RR). The first method,

302

HIGH THROUGHPUT COMPUTING DUE TO NEAR-OPTIMAL EMERGENT MULTIAGENT COALITIONS FOR
LOAD SHARING

FCFS, is Condor’s scheduling method. If FCFS is uti- for the given coalition sizes (8 x 225= 1417mnsvs.
lized on a grid of 500 servers, the total throughput is 9(b)). This may not be the case if coalitions smaller
2.74e5. DMCF-GGA improves total throughput by than 23 are used. Phase | has a 64% greater effect on
80% over FCFS for a coalition size of 23. The sec- total cost than Phase Il for coalition size of 23, (figs.
ond method, FCFS-FF, uses FCFS to form coalitions 9(a), 9(b), and 9(c)). Hence, FF is not a bottleneck
and then it uses FF to load share within each coalition. for small coalitions, but it is one for the larger sized
The results are shown in fig. 8(a). DMCF-GGA has a coalitions. A goal in our future work is to find an ex-
19% improvement for a coalition size of 23. The re- act upper bound for coalition sizes.
sults of the third method, RR, are depicted in fig. 8(b). Fig. 9(d) (the result of 2) shows coalition size to
Though DMCF-GGA's throughput gains are small, have a greater effect on search cost than throughput.
DMCF-GGA uses 50% fewer state changes. More- Eqn. 3 gives the sec/(coalition size) relation.
over, DMCF-GGA forms coalitions that require less sec
load sharing than RR. y= 0023(@? 2.213 3)
Though- this suggests small coalitions reduce
search cost, migration counts increase as the coali-
tion size decreases. So, we also need to find an exact
lower bound for coalition sizes. In addition, the re-
sults of fig. 9(d) imply for DMCF-GGA to run at 1%
of the execution time the job duration is 221.3 (sec)
for a coalition size of 23, 266.3 (sec) for a coalition
size of 45, and 399.4 (sec) for a coalition size of 100.

4.2.3.2 DMCF-GGA Cost (Seconds). Figs 9(a)
and 9(b) lists the cost of DMCF-GGA Phase |, fig.
9(c) has Phase Il, and their total —the overall cost —
is provided by fig. 9(d). The propagation delay used
in figs. 9(a) — 9(c) iscounts? x 0.7 mseé®. Eqn.

1 calculates the Phase | cost, wherés the Phase |
overhead cost given by fig. 9(a), 225 is the average
number of generations to attain the Core, frigl the
migration counts given by fig. 9(b).

Procedure Counts Overhead
Cost
COSbhase = 0 X 225+ (1) (ms)
The total DMCF-GGA costtostqal, is calculated by ConditionalMigration 1 0.7
eqn. 2, where&ospnasg is the cost of FF (fig. 9(c)). NotifyDoneMigration 1 0.7
Fig. 9(d) provides the totals. CoalitionSnapshot 3 21
Elect 2 14
COStotal = COSPhase + COSbhase, @ NotifyDoneGeneration 2 1.4
Totals for Phase | 9 6.3
coalition | FCFSwith FF | DMCF-GGA Percent Im- (a) Overhead cost (cost of communication) per generation fo
Size provement Phase | procedures.
23 4.15e5 4.95e5 19 Counts Migration
45 4.29e5 4.99e5 14 Cost (ms)
100 4.61e5 4.99e5 8 throughput 980 | 239,115, or 62 167, 80, 43
(a) Maximum throughput of FCFS-FF vs. DMCF-GGA throughput 985 | 253,120, or 67 177, 84, 47
coalition Round Robin DMCF-GGA Percent Im-
size provement throughput 990 | 275,126, or 74 192, 88, 52
(b) Cost (ms) for Phase | — Migration — coalition sizes of 28, 4
23 4.63€5 4.95€5 8 and 100
45 4.62e5 4.99e5 8 Counts FF Cost (ms)
100 4.94e5 4.99€5 1 all throughput | 884, 1660, 3620 618, 1162, 2534

(b) Maximum throughput of Round Robin vs. DMCF-GGA

Figure 8: Comparison of DMCF-GGA and existing solu-
tions in terms of total throughput.

4.2.3.3 Cost/Benefit Observations. The number
of generations is seen to have a large effect on the

overhead (fig. 9(a)). The overhead has a greater ef-
fect on Phase | cost than migration’s states searched
Figure 9: Search cost (sec) for DMCF-GGA Phases | and
I, including the effect of the network.

2migration search counts

130.7 msec is DAS-3's worst case node to node latency.
DAS-3 has direct optical links between nodes. A congested
link does not have a large effect on latency.

levels

(c) Cost (ms) for Phase Il — First Fit — coalition sizes of 23, dnd 100

Total cost for each coalition size (sec)
23 45 100
throughput 4.90e5, 2.202 2.659 3.995
throughput 4.92e5 2.213 2.663 3.999
throughput 4.95e5 2.227 2.668 4.004

(d) Total search cost (sec) for different coalition sizes.

303

ICAART 2012 - International Conference on Agents and Artificial Intelligence

5 CONCLUSIONS AND FUTURE ACKNOWLEDGEMENTS

DIRECTIONS _ .

I would like to thank Jae C. Oh, Dmitri E. Volper and
First, an important result of this study is the search Judy Qiu for their suggestions and support.
cost of both migration and local load sharing of
DMCF-GGA is less than DMCF-spatial by a factor
of 10. Also, DMCF-GGA outperforms the controls, REFERENCES
FCFS, FCFS-FF and RR (sec. 4.2.3.1). Thus, DMCF-
GGA may be a candidate for use as a scheduler inBrucker, P. (2004). Scheduling chapter Computational
Condor. Secondly, it has determined the linear rela- Complexity, pages 50-60. Springer, Osnabruck, Ger-
tion between coalition size and search cost for high many, 4th edition. _
throughput. And, we have found preliminary esti- ©Sar B., Monostori, L., and Kadar, B. (2004). Learning
mates for the lower and upper bounds of the effective and cooperation in a distributed market-based produc-

=~ h ! tion control system. IProceedings of the 5th Interna-
coalition size. Further, we have found the average job tional Workshop on Emergent Synthegiages 109—

sizes required for DMCF-GGA to run at 1% of the job 116.

execution time. Decker, K., Durfee, E., and Lesser, V. (1998). Evaluating
In our future work, optimizing Phase | must be a Research in Cooperative Distributed Problem Solving.

priority since as the model scales up to 50,000, the UMass Computer Science Technical Report 88-89

Phase | cost scales increases 100:1. Given that thefiala, J. and Paulusma, D. (2005). A complete complexity
number of generations and counts for migration are gass'f'cats'ons‘j;%‘;r%'f assignment probleifheor.

. ; . t. Scj.349:67-81.
the main factors for the delay, improving the search omptt. Scl

. . . Foster, I. and (Eds.), C. K. (1999)he Grid: Blueprint for a
precision (e.g. adding a bulk migrate) could reduce Future Computing InfrastructureMorgan-Kaufmann

the delay. A bulk migration could be defined as 20% Publishers.

of a coalition’s nodes migrating at the same time. Garcia-Molina, H. (1982). Elections in a distributed com-

Also, currently migration may get stuck at a local puting systemIEEE Trans. Comput31:48-59.

maximum for some cas¥s Bulk migration may pre- Hovey, L., Volper, D. E., and Oh, J. C. (2003). Adaptive

vent this. dynamic load-balancing through evolutionary forma-
Generally, it seems that the difficulty of the prob- tion of coalitions. In Abraham, A., Koppen, M., and

; : . Franke, K., editorsPesign and Application of Hy-
lem {e.g. job size composition) has a large effect brid Intellient Systemgages 194-203, Ohmsha. IOS

on both the number of generations and the states Press.
searched during migration. Finding a precise correla- Ibaraki, T. and Katoh, N. (1988Resource Allocation Prob-

tion between problem difficulty, and these two factors lems: Algorithmic Approacheghapter 1, pages 1-9.
is another goal. MIT Press, Cambridge, MA, USA.

For the remainder of our work plan we envision Kowalski, R. and Sadri, F. (1996). Towards a unified agent
the following items: (1) To make the model more architecture that combines rationality with reactivity.
realistic, jobs should be non-divisible. (2) Since, In Pedreschi, D. and Zaniolo, C., editoisogic in
for DMCF-spatial, coalitions may overlap, the data Databases volume 1154 ofLecture Notes in Com-

o " . puter Sciencepages 135-149. Springer Berlin / Hei-
about coalition composition is unclear. But, study delberg. 10.1007/BFb0031739.
of DMCF-GGA coalition composition in detail may nn H. w, (1955). The Hungarian method for the assign-
offer insight about conditional search. Specifically, ment problem. Naval Research Logistic Quarterly
finding how job size compositions and coalition com- 2:83-97.

positions affect the relation between coalition size Livny, M., Basney, J., Raman, R., and Tannenbaum, T.
and search cost. (3) Restructure the model so it can (1997). Mechanisms for high throughput computing.
encompass multicore nodes. (4) Performance test ~ SPEEDUP Journalll(l).

DMCE-GGA within the SimGrid framework. This Michalewicz, Z. (1999) Genetic Algorithms + Data Struc-
framework enables the simulation of applications in tzusrg :SE‘.’O'”“OV” F;rogrlamsc\:(haftilr 119pi995 251~
a distributed computing environment for controlled - Sprihgerveriag, INew York, TNew vork.

. . Oliphant, M. (1994). Evolving cooperation in the non-
development and evaluation of the algorithms. (5) iterated prisoner’s dilemma: The importance of spa-

Matchmaking (Raman et al., 1998) is a component of tial organization. In Brooks, R. and Maes, P., editors,
Condor, and we will enhance it with the DMCF-GGA Artificial Life IV: Proceedings of the Fourth Interna-
algorithm. tional Workshop on the Synthesis and Simulation of

Living Systemspages 349-352. MIT Press.

S Pisinger, D. (1999). An exact algorithm for large multiple
14pecause it may terminate after no change for 100 gen- knapsack problem&uropean Journal of Operational
erations, and a change may occur after 100 generations. Research114:528-541.

304

HIGH THROUGHPUT COMPUTING DUE TO NEAR-OPTIMAL EMERGENT MULTIAGENT COALITIONS FOR

Raman, R., Livny, M., and Solomon, M. (1998). Match-
making: Distributed resource management for high
throughput computing. IfProceedings of the Sev-
enth |IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDG7Dages 28—
31, Chicago, IL.

Sandholm, T. (1999). Distributed rational decision mak-
ing. In Weiss, G., editoiMultiagent Systems. A mod-
ern approach to distributed artificial intelligenceol-
ume 1 of Reviews in important subjectshapter 5,
pages 241-251. The MIT Press, Munich, Germany.

Vazirani, V. V. (2004). Approximation Algorithmschap-
ter 1, pages 1-2. Springer.

Weichhart, G., Affenzeller, M., Reitbauer, A., and Wagner,
S. (2004). Modelling of an agent-based schedule op-
timisation system. IfProceedings of the IMS Interna-
tional Forum

Wu, A. S., Yu, H., Jin, S., and Lin, K.-C. (2004). An in-
cremental genetic algorithm approach to multiproces-
sor scheduling. IEEE Trans. Parallel Distrib. Syst.
15(9):824-834. Member-Schiavone, Guy.

LOAD SHARING

305

