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Abstract: Promotional sales have become in recent years a paramount issue in the marketing strategies of many compa-
nies, specially in the current economic situation. Empirical models of consumer promotional behavior, mostly
based on machine learning methods, are becoming more usual than theoretical models, given the complex-
ity of the promotional interactions and the availability of electronic recordings. However, the performance
description and comparison among promotion models are usually made in terms of absolute and empirical
values, which is a limited handling of the information. Here we first propose to use a simple nonparametric
statistical tool, thepaired bootstrap resampling, for establishing clear cut-off test based comparisons among
methods for machine learning based promotional models, by simply taking into account the estimated sta-
tistical distribution of the actual risk. The method is used to determine the existence of actual statistically
significant differences in the performance of different machine design issues for multilayer perceptron based
marketing models, in a real database of everyday goods (milk products). Our results show that paired bootstrap
resampling is a simple and effective procedure for promotional modeling using machine learning techniques.

1 INTRODUCTION

In the present economic landscape, given by eco-
nomic instability and changes in the acquisition be-
havior of consumers, food retailers have turned to
the modification of the conventional commercial deci-
sions implemented in their shops (Haluk and Özgül,
2007). Therefore, sales promotion have become in
recent years a fundamental tool for retailers’ strate-
gies, and the investment in this setting has highly
increased in the marketing strategy, with percentage
even above 50% (Blattberg and Neslin, 1990). Bet-
ter understanding of the sales promotion dynamics
has received growing attention from machine learning
and data mining techniques, which are powerful tools
to extract information from examples in past quanti-
tative experience (Leeflang and Wittingk, 2000).

However, operational problems can arise in ma-
chine learning promotional modeling, when based
on nonlinear estimation techniques, for evaluating
and demonstrating working hypothesis (Heerde et al.,
2001; Liu et al., 2004; Martínez-Ruiz et al., 2006;

Martínez-Ruiz et al., 2006; Wang et al., 2008). First,
conventional parametric tests are often not appropri-
ate, because given the heavy tails and heteroscedas-
ticity for the prediction residuals, Gaussianity is no
longer a working property for them. Second, spe-
cial attention has to be paid in order to be sure to be
working with hypothesis tests in terms of actual risk
comparisons, and not of empirical risk comparisons,
to avoid as much as possible the unaware presence
of overfitting in the machine learning based models.
And third, as an indirect consequence of not having a
clear cut-off test, their results cannot always be easily
compared across studies, even when they have been
made on the same data set.

Therefore, the objective of this work was to pro-
pose an operative procedure for model diagnosis in
the context of using machine learning techniques for
promotional efficiency applications. We used an em-
pirical approach, based on machine learning tech-
niques for analyzing the sales dynamics in a specific
product, namely, milk, which is a everyday consumer
products, and we analyzed its response to promotional
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discounts in a retailer environment by means of Multi
Layer Perceptron (MLP) neural networks.

2 TEST FOR ACTUAL RISK

Artificial Neural Networks (ANN) are multiparamet-
ric nonlinear models, and they are capable of learning
from samples and discovering complex relationships
among variables which can be hidden in the data vol-
ume available in the training set (Bishop, 1995). In
the MLP network, one of the mostly used ANN, there
is one input neuron for each variable in input pattern
x, and as many output neurons as output variables to
be estimated (i.e.,y can be a multivariable output),
hence the number of hidden layers and the number of
neurons in each have to be chosen during the design
process.

Several merit figures can be used for benchmark-
ing estimation models with machine learning tech-
niques. On the one hand, absolute merit figures give
an idea of the actual magnitude of the averaged error,
being usual being the Mean Absolute Error (MAE),
given byMAE = 1

N ∑N
i=1 | f (xi)− yi| whereas relative

merit figures can give a better idea of the amount of
variability in the data which has ben actually captured
by the model. In this work, a cross-validation tech-
nique is used for benchmarking and comparing sev-
eral model architectures (Haykin, 1999).

A bootstrap resampleis a data subset is drawn
from the observation set according to their empirical
pdf p̂y,x(x,y). Hence, the truepdf is approximated
by the empiricalpdfestimated from the observations,
and the bootstrap resample can be seen as a sampling
with replacement process of the observed data, this
is, p̂y,x(x,y) 7→ V∗ = {(x∗i ,y

∗
i ) ; i = 1, ...,N}, where

superscript∗ represents, in general, any observation,
functional, or estimator, that arises from the bootstrap
resampling process. A partition ofV∗ in terms of
resampleV∗(b) is given byV = {V∗

in(b),V
∗
out(b)},

whereV∗
in(b) is the subset of observations that are in-

cluded in resampleb, andV∗
out(b) is the subset of non

included observations. Abootstrap replicationof an
estimator is given by its calculation constrained to the
observations included in the bootstrap resample. The
bootstrap replication of the empirical risk estimator
given by a calculation operatort and its weightsw is
R̂∗

emp(b) = t ({w},V∗
in(b)). The scaled histogram ob-

tained fromB resamples is an approximation to the
true pfd of the empirical risk. However, further ad-
vantage can be obtained by calculating the bootstrap
replication of the risk estimator on the non included
observations. By doing so, rather than estimating the
empirical risk, we are in fact obtaining the replica-

tion of theactual risk, i.e.,R̂∗
act(b) = t ({w},V∗

out(b)).
The bootstrap replication of the averaged actual risk
can be obtained by just taking the average ofR̂∗

act(b)
for b= 1, . . . ,B. Moreover, the replications of thepdf
of the model merit figures can provide confidence in-
tervals (CI) for the performance. A typical range for
B in practical applications can be from 100 to 2000
bootstrap resamples.

For giving a clear cut-off test allowing us to
benchmark the significance of the observed differ-
ences between the performance of two different ma-
chine learning based promotional models, we use
here the bootstrap nonparametric resampling proce-
dure. The use of bootstrap resampling is supported by
the previous observation of heavy tails in the resid-
ual distribution when using this kind of models, as
well as bimodalities, and other non-Gaussian effects
(Efron and Tibshirani, 1997). The procedure can
be readily adapted in order to benchmark the perfor-
mance of two different machine learning techniques
(or a given algorithm with different settings), by us-
ing apairedbootstrap resampling, in which the same
resamples are to be considered in the benchmarked
models. In this work, when resampling two different
modelsmodel1 andmodel2, results have been com-
pared according to three different statistics, namely,

∆MAE = MAE(model1)−MAE(model2) (1)

∆CI = ∆CI(model1)−∆CI(model2) (2)

∆CIsup = CIsup(model1)−CIsup(model2) (3)

where CI has been obtained for a 95% level, and
∆CI(modeli) =CIsup(modeli)−CIin f (modeli). These
statistics provide a description in terms of the average
magnitude of the error, but also in terms of its scat-
ter. In general, given that it is complicated to obtain
closed forms for CI of scatter measurements, boot-
strap resampling represents a useful approximation
for making it possible.

3 EXPERIMENTAL RESULTS

We used a real database with a everyday consumer
products corresponding to the milk product category.
Specifically 6 products were analyzed corresponding
to 6 different promotional models, as indicated in Ta-
ble 1. The number of daily sold units were available
in the same retailer (supermarket) during one year, ex-
cluding the weekends. Up to 304 examples (patterns)
were available for each category, corresponding to the
days when transactions were recorded in the super-
market. They were aggregated into 43 weeks, in order
not to have a too strong effect of weekly seasonality
in this database. In all models, there are three kinds
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of input variable: price indicesxM, direct discountxd

and baselineBL. Regarding the price indices variable

they are defined asPI(i, t) = Pprom(i,t)
Preg(i,t)

, wherePreg(i, t)

andPprom(i, t) are the regular and promotional price,
respectively, of producti at weekt. Hence, the price
index gives the relative variation between the promo-
tional price and the regular price, and its value is 1
whenever both are equal.

The input pattern was given by concatenation of
the three kind of input variables,x = [xM

,xD
,BL].

The output of each model is given by the sold
units for that particular product. Hence, the
promotional model can be expressed asy(i, t) =
f (xM(i, t),xD(i, t),BL(t)), wherey(i, t) is the num-
ber of sold units for thei − th product during week
t; xM(i, t) = [PI1(i, t), ...,PInm(i, t)] is a vector with
the price indices of producti during weekt, with nm =
6; xD(i, t) is the direct discount dichotomous variable
for producti during weekt; andBL(t) is the baseline
variable at weekt. The input metric variables were
the same for all the models.

We considered the decision of two different de-
sign criteria for MLP-based promotional models. On
the one hand, the MLP for estimation problems can
give a multiple output, which in principle could ben-
efit from the consideration of joint cross-information
among models. However, there is no warranty that
a multiple output architecture will work better than a
separate MLP single model for each product. On the
other hand, another design criterion is the use of dif-
ferent activation functions in the hidden layer nodes,
being two widely used forms the linear and the sig-
moid logistic activation. Given that there is no theo-
retical result, this function has to be chosen for each
data mining model.

For this purpose, free parameters were tuned in
the MLP for the single output set of models using
LOO. Then paired bootstrap test was used to check
which architecture can be pointed as more convenient,
in terms of the previously used merit figures. Table 1
shows the comparison of the number of neurons in the
hidden layer (n0) for both architectures. Note thatn0
has a relevant variation in terms of different products

Table 1: Free parameter tuning in terms ofn0 for MLP with
multiple and with single output, for Milk Data Base.

no (MLP) no(MLP_ind)

Model 1 (Asturiana) 17 15

Model 2 (Ato) 17 8

Model 3 (House brand) 17 1

Model 4 (Pascual Calcio) 17 6

Model 5 (Pascual Clasica) 17 8

Model 6 (Puleva Calcio) 17 14

Table 2: Single vs multiple output MLP for Milk products,
using MAE merit figure. See text for details.

MLPind MLP MLPind vsMLP

Model 1 357.3 || 359.1 320.7 || 321.6 66.4 [-193.9,577.1]

[266.2,463.2] [248.5,401.5] 37.0 [-50.8,130.3]

65.4 [-192.1,569.9]

Model 2 222.6 || 222.3 199.6 || 200.4 26.2 [-114.1,192.1]

[180.8,267.2] [157.1,247.9] 28.6 [-17.9,72.9]

50.2 [-69.4,217.6]

Model 3 135.8 || 136.3 152.5 || 152.5 -66.9 [-144.6,49.3]

[105.5,167.3] [119.2,188.6] -14.4 [-36.0,7.8]

-57.5 [-124.6,62.0]

Model 4 59.6 || 59.7 72.3 || 72.4 -7.8 [-49.2,18.7]

[44.2,77.4] [58.5,88.3] -12.8 [-27.2,1.4]

-13.4 [-54.5,7.0]

Model 5 305.2 || 310.8 198.7 || 197.8 258.8 [63.9,528.1]
[227.9,397.5] [148.5,250.7] 103.3 [21.0,186.2]

267.3 [74.9,544.1]

Model 6 226.7 || 226.7 125.6 || 125.0 304.5 [98.2,447.1]
[167.3,293.2] [97.8,155.3] 100.7 [37.8,163.1]

304.5 [108.6,473.2]

with single output, and also, thatn0 is sensibly larger
for multiple output MLP architecture.

Table 2 shows the MAE and the comparison
among both schemes, with the sigmoid activation
function, for all the products in the data base. Indi-
vidual models for each product with single output is
denoted asMLPind, whereas multiple output architec-
ture is denoted asMLP. Each cell in the second and
third columns contains the empirically estimated ac-
tual risk (i.e., averaged from LOO estimation of MAE
for each case), together with the bootstrap estimate
of the averaged MAE, namely, the mean (upper line,
right), and the 95% CI of this sample mean. The ap-
parently best model of both, in terms of empirical
LOO-MAE, is highlighted in bold. The comparison
between both models is represented in the last col-
umn, showing the average and the 95% CI for∆MAE,
∆CI, and∆CIsup, in the first, second, and third line
of the cell, respectively. In this column, bold is used
for highlighting the CI which yield significant differ-
ences with respect to the paired bootstrap test, i.e.,
those statistics for the differential merit figure whose
estimated difference does not overlap the zero level.

It can be observed that, for Models 3 and 4, the
performance is apparently better when using individ-
ual architectures, whereas Models 1, 2, 5, and 6 are
better when considering the joint architecture. How-
ever, only significant differences are present in Mod-
els 5 and 6, both in terms of averaged and scatter
MAE, hence the most advantageous situation is to use
a multiple output architecture. No significant differ-
ences are sustained by the paired bootstrap test for
Models 1, 2, 3 and 4. In general terms, we can con-
clude that, for this Milk Data Base, it is better to con-
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Table 3: Sigmoid vs linear MLP for Milk products, using
MAE merit figure. See text for details.

Sigmoid Linear Sigmoid vs Linear

Model 1 358.2 || 368.3 325.7 || 326.3 31.5 [-66.7,138.9]

[258.0,461.3] [252.4,414.2] 140.3 [-128.9,583.3]

141.0 [-118.1,584.0]

Model 2 235.1 || 235.5 203.8 || 205.6 32.0 [-4.6,67.5]

[195.2,281.7] [156.8,256.2] -36.56 [-219.9,85.8]

-25.6 [-185.5,91.3]

Model 3 143.3 || 148.6 137.7 || 140.7 6.1 [-14.1,29.1]

[111.9,174.9] [106.4,171.1] 2.24 [-50.5,84.3]

12.5 [-36.6,87.0]

Model 4 56.9 || 58.4 64.7 || 66.4 -8.9 [-18.8,2.0]

[40.36,78.2] [48.63,82.6] 0.79 [-28.6,56.7]

2.4 [-29.0,54.3]

Model 5 347.8 || 360.1 191.9 || 190.2 153.4 [68.1,242.2]
[271.9,426.3] [154.7,231.2] 372.8 [121.1,555.6]

377.8 [116.5,549.5]

Model 6 245.5 || 255.2 116.3 || 116.1 127.1 [69.2,187.4]
[190.7,302.3] [90.4,142.9] 335.5 [134.8,445.8]

346.8 [164.4,465.1]

sider multiple output MLP architecture in those prod-
ucts showing a more stable behavior, and hence, re-
sults can be strongly dependent on the specific prod-
uct.

For the case of MLP with single output, the in-
creased performance due to the use of linear or sig-
moid logistic activation function in the hidden layer
nodes, was further analyzed. Table 3 shows the same
information than in the previous analysis, for the
paired comparison of both models in each product,
after having fixed the individual output architecture
design parameter, according to the previous result. In
this case, the empirical MAE is lower when using lin-
ear activation functions in all models except Model 4.
Significant differences are supported by the bootstrap
test only in Models 5 and 6, but with strong con-
sistency for all the statistics evaluated for the merit
figure distribution. In general terms, it can be con-
cluded that using linear activation function in the hid-
den nodes yields better results consistently in the Milk
Data Base analyzed here.

4 CONCLUSIONS

In the present work, a method for giving a systematic
statistical comparison between two machine-learning
based models in promotional sales modeling has been
presented. The method has its bases on the princi-
ples of the estimation of statistical descriptors of ac-
tual risk and theirpdf, by means of bootstrap resam-
pling, and on the use of the increment in the merit
figure. The consideration of paired differences gives

a suitable approach for controlling the standard error
of the statistical description of the merit figures, hence
allowing clear cut-off tests.
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