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Abstract: Phonemes are the standard modelling unit in HMM-based continuous speech recognition systems. Visemes
are the equivalent unit in the visual domain, but there is less agreement on precisely what visemes are, or how
many to model on the visual side in audio-visual speech recognition systems. This paper compares the use
of 5 viseme maps in a continuous speech recognition task. The focus of the study is visual-only recognition
to examine the choice of viseme map. All the maps are based on the phoneme-to-viseme approach, created
either using a linguistic method or a data driven method. DCT, PCA and optical flow are used to derive the
visual features. The best visual-only recognition on the VidTIMIT database is achieved using a linguistically
motivated viseme set. These initial experiments demonstrate that the choice of visual unit requires more
careful attention in audio-visual speech recognition system development.

1 INTRODUCTION Many of these maps are present in literature, and there
is no agreement on which is the best one.

Many authors have demonstrated that the incorpora-  In this paper five maps created using different
tion of visual information into speech recognition sys- methods are compared. All the maps have a vary-
tems can improve robustness, as shown in the reviewing number of visemes (from 11 to 15, plusig&ence
paper of Potamianos et al. (Potamianos et al., 2003).viseme). In order to compare the performances of the
In terms of speech recognition as a pattern recognitionmaps, a HMM recognition system is used. The sys-
task, the most common solution is a Hidden Markov temis trained using different visual feature setsa;
Model (HMM)-based system. Phonemes are the typi- DCT; and optical flow. Since the focus of this work is
cal model unit for continuous speech. Mel-frequency On the visual element of speech recognition initially,
cepstrum (MFCC) is the typical feature. On the vi- Visual-only cues were tested for this paper. No audio
sual side, there is less agreement as to the optimalcues were used. Ultimately, the overall recognition

approach even for the most basic early integration combining audio and visual cues is of interest. This
schemes. work uses a basic visual HMM system however, in

While many efforts continue to examine visual order to focus the problem on the viseme set without

feature sets to best describe the mouth area, it is alsdhe interactions of integration schemes.

unclear what the optimal modelling units are in the In investigating visemes, it is necessary to use a
visual domain for continuous speech. At the high- continuous speech database rather than an isolated
est level, the approach is to use visemes, but only aword recognition task in order to get visemic coverage
generic definition is recognized. A viseme is defined in the dataset. The most attractive datasets, in terms
as a visually distinguishable unit, the equivalent in the of number of speakers and sentences uttered, are Av-
visual domain of the phoneme in the audio domain TIMIT (Hazen et al., 2004) and IBM ViaVoice (Neti
(Potamianos et al., 2003). However there is no agree-€et al., 2000). Currently, neither is publicly available,
ment on what a viseme is in practice. The most com- so0 a smaller dataset was used in this workipV
mon approach to deriving visemes is to use a hard TIMIT (Sanderson, 2008).

link between phonemes and their visual manifesta-  The paper is structured as follows: an overview
tion. This is most likely influenced by considering of viseme definitions is given first along with details
the baseline HMM system to be audio based. Hence aof the five phoneme-to-viseme maps used; The fea-
many-to-one phoneme-to-viseme map can be derived.ture extraction techniques are presented; and finally
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PHONEME-TO-VISEME MAPPING FOR VISUAL SPEECH RECOGNITION

results of aHMM based recognition system are pre- Table 1: Jeffers phonemes to viseme map (Jeffers and Bar-
sented for the feature sets and viseme maps. Paraml_ey, 1971). The last viseme, /S is used for silence. The table
eters for thepcT feature extraction scheme are opti- shows the viseme visibility rank and occurrence rate in spo-
mised in the experiments reported in this paper, while ken English.

those for the other feature sets are taken from previous| \iseme Vi?;ibi".ﬁy OCC[L;;EE”CE P;”V”T
an (1) onemes
work by the authors. A 1 315 TN
lerl fow/ Irl gl Iw/
/8 2 1549 1 Jins juwi faxtl fux!
2 VISEME MAPS 1 3 =28 |l m
E 5 2.90 Tdh7 Tthi
As previously stated, visemes have multiple interpre- IF 6 1.20 [ch/ fih/ Ish/ Jzh/
tations in the literature and there is no agreement on ;ﬁ ; i-gé /3y§ ;a;’/
a way to define them. Two practical definitions are ' T2l /ae/slaﬂﬁ/ TayTTeh
plausible: 1l 9 31.46 eyl fib/ fiyl Iyl
e Visemes can be thought of in termsasticulatory mo’,é?ﬁw%/ (>
gesturessuch as lips closing together, jaw move- 1 10 21.10 Jell Inx/ len/ Jdx/
ment, teeth exposure, etc. K 11 484 197 KT Tngl Teng!
e Visemes are derived from groups of phonemes [ S [ = ] . [ Isilf |

having the same visual appearance. maps, the viseme number is much higher, e.g. Gold-

The second definition is the most widely schen map contains 35 visemes (Goldschen et al.,
used (Potamianos et al., 2003; Saenko, 2004; Neti1994).
et al.,, 2000; Bozkurt et al., 2007), despite a lack In the first map, Jeffers & Barley group 43
of evidence that it is better than the first definition phonemes into 11 visemes in the English lan-
(Saenko, 2004). Using the second approach, visemesgyuage (Jeffers and Barley, 1971) for what they de-
and phonemes are strictly correlated, and visemes carscribe “as usual viewing conditions”. The map link-
be obtained usingmapof phonemes to viseme. This ing phonemes to visemes is shown in Table (1). In
map has to be anany-to-onemap, because many this table visemes are labelled using a letter, from
phonemes can not be distinguished using only visual /A to /K. To these 11, asilenceviseme has been
cues. This is the approach used in this work. Within added, labelled using /S. The last column is a sug-
this approach, there are two possible ways to build a gested phoneme to viseme mapping for the TIMIT
map: phoneme set. Two phonemes are not listed in the ta-

1. Linguistic. Viseme classes are defined through Pl€: /hh/-and /hv/. No specific viseme is linked to
linguistic knowledge and théntuition of which them because, while the speaker is pronouncing /hh/

phonemes might appear the same visually. or /hv/, the lips are already in the position to produce
the following phoneme. Therefore /hh/ and /hv/ have

2. Data Driven. Viseme classes are formed per- peen merged with the following viseme. The table
forming a phoneme clustering, based on features ghq\s the viseme visibility rank and occurrence rate
extracted from the region of interest around the j, spoken English (Jeffers and Barley, 1971). This
mouth. map is purely linguistic.

A data driven method has several advantages. Firstly, = The second map analyzed is proposed by Meti

since most viseme recognition systems use statisticalal. (Neti et al., 2000). This map has been created us-

models trained on data, it might be beneficial to au- ing the IBM ViaVoice database and using a decision
tomatically learn natural classes from data. Secondly, tree, in the same fashion as decision trees are used
it can account for contextual variation and differences to identify triphones. Thus, this map can be con-
between speakers (but only if a large database is avail-sidered a mixture of a linguistic and data driven ap-
able) (Saenko, 2004). This is particularly impor- proach. Neti’s map is composed by 43 phonemes and
tant because the linguistic-based method is usually 12 classes (plus a silence class). Details are shown in

performed with canonical phonemes in mind, while Table (2)

recognition is done on continuous speech. Hazenet al. (Hazen et al.,, 2004) use a data
All five maps tested in this work have a relatively driven approach. They perform bottom-up clustering

low number of visemes (from 11 to 15, plus silence using models created from phonetically labelled vi-

viseme) similar to 14 classes present in the MPEG-4 sual frames. The map obtained is “roughly” (Hazen
viseme list (Pandzic and Forchheimer, 2003). In other et al., 2004) based on this clustering technique. The
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Table 2: Neti map (Neti et al., 2000). Table 4: Bozkurt Map (Bozkurt et al., 2007).
Code Viseme Class Phonemes in Cluster | Viseme Clasg Phonemes Set |
Vi /aol [ah/ [aa/ S Sil
_ _ ler/ loyl law/ /hh/ Vo ay, ah
V2 Lip-rounding luw/ luh/ low/ V3 o ’ oh ae
V3 based vowels lael lehl leyl lay/ y, en,
V4 fin/ fiyl fax/ v4 er
A | Alveolar-semivowels N 1ell Il Iyl V5 ix, iy, ih, ax, axr,y
B Alveolar-fricatives IsI'Tz] V6 uw, uh, w
C Alveolar 1t/ /d/ In/ len/ V7 ao, aa, oy, ow
D Palato-alveolar Ish/ Izhl [chl [jh/ V8 aw
E Bilabial Ip/ Ibl Im/ V9 g, hh, k, ng
F Dental fth/ /dh/ V10 r
G Labio-dental 11 vl Vil I.d,n enelt
H Velar Ing/ Ikl gl Iwl Vil s,z
[ S | Silence | Isill Isp/ | Vi3 ch, sh, jh, zh
V14 th, dh
Table 3: Hazen map (Hazen et al., 2004). V15 f,v
| Viseme Class] Phonemes Set | RiLO AR
(0)Y] fax/! in/ fiyl ldx/
BV Tahl Taal Table 5: Lee Map (Lee and Yook, 2002).
FV lael lehl layl leyl /hh/ [ Viseme Clasg Phonemes Se}
RV faw/ /uh/ luw/ low/ [aol Iw/ loy P bpm
L fell T dtszthdh
R ler/ [axr/ Ir/ K gknnglyhh
Y lyl CH jh chsh zh
LB /bl Ip/ E fv
LCI /ocl/ fpcl/ Im/ lem/ W W
AlCI /sl Iz[ lepil Itcl/ /dcl/ In/ [en/ Y iy ih
Pal Ichl fih/ Ishl Izh/ EH ehey ae
SB it/ 1dl ith/ fdh/ 1gl Ikl AA aaaw ay ah
LFr i vl AH ah
VICI /gcl/ /kcll Ing/ 20 a0 oy ow
| Sil | [sil/ ] UH uh uw
ER er
reason for this apparent inaccuracy is that the clus- S Sil

tering results vary a lot depending on the visual fea-
ture used. Hazeat al. group 52 phonemes into 14 peen assumed it is a linguistic map. Even though
visemes (p'US a silence viseme). This is shown in Ta- they claim thisis a many-to-one map, some phonemes
ble (3). are mapped into 2 visemes, so the map is a many-to-
Bozkurtet al.(Bozkurt et al., 2007) created a map many map. To remove this ambiguity, in such cases
using the linguistic approach. The map is based on phonemes are associated with the first viseme pro-
Ezzat and Poggio’s work (Ezzat and Poggio, 1998), in posed. This affects 5 vowel phonemes.
which they define the phoneme clustering as “donein |t js not a simple task to compare these maps be-
a subjective manner, by comparing the viseme imagescause the total viseme number and the total phoneme
visually to assess their similarity”. The Bozkurt map number are different in the five maps. Table 6 sums
comprises 15 viseme (plus a silence viseme), and 45yp the most relevant map properties. It is clear that
phonemes detailed in Table (4). some similarities are present, particularly between the
In the final map shown in Table (5), Lee and Jeffers and Neti maps. In these two maps 5 con-
Yook (Lee and Yook, 2002) identify 13 (plus a si- sonant classes are identical. Across all maps, the
lence viseme) viseme classes from 39 phonemes (plusconsonant classes show similar class separation. All
a silence phoneme and a pause phoneme). They ddhe maps have a specific class for phoneme clusters
not explain how the map has been derived, so it has{/v/, /f/} and {/ch/, /jh/, /sh/, /zh}. Jeffers, Neti,
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Table 6: Map properties. Clustered phoneme number, num- ties of movement of brightness pattern in an image.
ber of visemes and number of vowel visemes. Silence The code used in (Bouguet, 2002) implements the

viseme and phonemes are not taken into consideration.

Map | Phonemeg Total \_/owel
Visemes| Visemes
Jeffers 43 11 4
Neti 42 12 4
Hazen 52 14 5
Bozkurt 45 15 7
Lee 39 13 7

Bozkurt and Lee have a specific class fdb/, /m/
Ipl}. Group{/th/, /dh/} forms a viseme in Jeffers, Neti

Lucas-Kanade technique (Lucas and Kanade, 1981).
The output of this algorithm is a two dimensional
speed vector for eackol point. A data reduction
stage, odownsamplingis required. Therol is di-
vided indgr x dc blocks, and for each block the me-
dian of the horizontal and vertical speed is calculated.
In this waydg - dc 2D speed vectors are obtained.

PCA (also known aigenlipsin AVSR applica-
tions (Bregler and Konig, 1994)) armxt T are similar
techniques. They both try to represent a video frame
using a set of coefficients obtained by the image pro-

and Bozkurt, while in Hazen and Lee itis merged with jection over an orthogonal base. While theT base
other phonemes. Aside from this, the Hazen map (theis a priori defined, theca base depends on the data

only data driven map) is significantly different from

used. The optimal number of coefficieMNdthe fea-

the others, while Jeffers and Neti have an impressive ture vector length) is a key parameter in them cre-

consonant class correspondence.

In contrast, vowel visemes are quite different from
map to map. The number of vowel visemes varies
from 4 to 7, and a single class can contain from 1

ation and training. A vector too short would lead to
a low quality image reconstruction, too long a feature
vector would be difficult to model with amm. DCT
coefficients are extracted using the zigzag pattern and

up to 10 vowels. No specific cross-map patterns are the first coefficient is not used.

present within maps.
A final difference within the maps is that the
phonemeq/pcl/, /tcl/, /kell, /bcll, [dcll, Igcll, lepif

are not considered in the analysis by Jeffers, Neti,
Bozkurt and Lee, while they are spread across several

classes by Hazen.

3 FEATURE EXTRACTION

Feature extraction is performed in two consecutive
stages, &egion of Interestor ROI) has to be detected

and then a feature extraction technique is applied to

the area. Theol is found using a semi-automatic

Along with these features, first and second deriva-
tives are used, defined as follows:

Ali] = Rli + 1) — Ri — 1]
DA = i+ 1) — Ayfi — 1]

wherei represents the frame number in the video, and
k € [1..N] represents the kth generic featlirezalue.
Used withpca andDcT coefficients A andAA repre-
sent speed and acceleration in feature evolution. Both
A andAA have been added taca andDCT features.
While optical flow already represento! elements
speed, onlyA has been tested with it.

Optimal optical flow and cA parameters have al-
ready been investigated and reported by the authors
for this particular dataset (Cappelletta and Harte,

1)

technique (Cappelletta and_Harte, 2010) based on tw02011)_ Results showed that an incrementof vec-
stages: the speaker’s nostrils are tracked and then, USor length does not improve the recognition rate figure

ing those positions, the mouth is detected. The first

with an optimal value oN = 15. The best perfor-

stage succeeds on the 74% of the database sentenceg,snce is obtained usinyandAA coefficients, with-

so the remaining 26% has been manually tracked to

allow experimentation on the full dataset. The sec-

out the originalpPca data. Similarly, the best perfor-
mance with optical flow was achieved using original

ond stage has 100% success rate. Subsequently thg, 5 ,res witha coefficients. In this case performance

ROI is rotated according to the nostrils alignment. At
this stage therol is a rectangle, but its size might
vary in each frame. Thugols are either stretched or

is not affected by different downsampling configura-
tions. Thus, the Z 4+ A configuration will be used
for experiments reported in this paper.

squeezed until they have the same size. The final size

is the mode calculated using &bls size.
Having defined the region of interest, a feature ex-
traction algorithm is applied to theol. Three differ-

4 EXPERIMENT

ent appearance-based techniques were used: Optical

Flow; PcA (principal component analysis); amtT
(discrete cosine transform).
Optical flow is the distribution of apparent veloci-

41 VIDTIMIT Dataset

The VIDTIMIT dataset (Sanderson, 2008) is com-
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prised of the video and corresponding audio record-5 RESULTS

ings of 43 people (24 male and 19 female), reciting

10 short sentences each. The sentences were chos

from the test section of the TIMIT corpus. The selec- .1 Feature Set Parameters
tion of sentences in MTIMIT has full viseme cov-
erage for all the maps used in this paper. The record-
ing was done in an office environment using a broad-
cast quality digital video camera at 25 fps. The video T-D-S

of each person is stored as a numbered sequence of Corr = T x 100 (2)

JPEG images with a resolution of 512 x 384 pixels. where T is the total number of labels in the reference

90% quality setting was used during the creation of - . . .
the JPEG images. For the results presented in this pa_transcrlptlons, D is the deletion error and S is the sub-

per, 410 videos have been used and they have beer?tm“'tIon error.
split in a training group (297 sentences) andtest 60
group (113 sentences). The two groups are balancec

in gender and they have similar phoneme occurrence *°
rates. Training and test speakers did not overlap.

HMM results are assessed using togrectnesesti-
mator, corr, defined as follows:

42 HMM Systems 0

[&]
HMMS were trained usingcA, DCT and optical flow 2013
features. A visemic time transcription fon&TIMIT
was generated using a forced alignment procedure ™ DEA|
with monophonedmMs trained on the TIMIT au- A ‘ ‘ ‘ ‘ _t N4
dio database. The system was implemented using ° 10 20 30 40 50 60

M - Mixture Number

Figure 1: BasioCT test, 3 States. N14, N20 refer to num-
ber of DCT features at 14, 20 etc..

HTK. All visemes were modelled with a left-to-
right HMM, except silence which used a fully ergodic
model. The number of mixtures per state was grad-
ually increased, with Viterbi recognition performed
after each increase to monitor system performance.
No language model was used in order to assess raw so
feature performance. The feature vector rate was in-
creased to 20ms using interpolation. Both a 3 and 4
4-stateHMM were used.

The experiment was conducted in two stages. In
the first stage the Jeffers map was used. i
andDcT feature parameters were varied in order to

60

find the optimal parameter configuration. It should 10‘ e
be noted that similar results were achieved using the Lot
other maps b_ut space limits thg presentation of t_h_ese o m - - - - 5
results to a single map. In particular, the recognition M - Mixture Number

rate is tested varying themm mixture number. Re-  Figure 2: Higher ordepcT featuresN = 20, 3 StatesbcT
sults are compared withca and optical flow feature denotes 2MCT features onlybcT+A denotes addition of
performance. first order dynamics)A denotes inclusions of both first and

In the second stage of the experiments, the featuresecond order dynamics without origirat T coefficients.
set parameters were fixed (using the optimal configu- .
rations in (Cappelletta and Harte, 2011) and those de-  Figures 1 and 2 show the correctness of the 3-state
termined for the>cT), in order to compare the results HMM USINgDCT features and the Jeffers map. Results
from different maps. The optimal number of mixtures fOr the 4-stateiMm are not shown because no sig-
for each individual viseme class was tracked. This Nificant improvement from the 3-state was achieved.

overcomes issues with different amounts of training F19ure 1 shows the results of the basicT coefficient
data in different classes. ThusiMs used between 1 (€StS obtained by varying the feature vector lerigth
and 60 mixtures per state. between 14 and 54. The best results are achieved with

a vector length of 14 and 20, even though all the con-
figurations achieve very similar results, according to
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Heckmannet al. (Heckmann et al., 2002). Signifi-
cant improvement can be achieved usihgnd AA.
Figure 2 shows the performance of 2€T coeffi- sof
cients with first and second derivatives added. The
recognition rate is increased by at least 30%. This be-
haviour mirrors that of theca feature set. As might

Corr [%]

—4— Jeffers

be expected, no significant improvement is achieved )
. . . 20 : : —&— Neti
behind 35 Gaussian mixtures. @ Hazen
or v Bozkurt
5.2 Maps Comparison N ‘ ‘ ‘ | A Lee
> P D M M &
_ SR R R R R
In the second part of the experiment, all the maps ot o™

were tested. ThecaA andDCT results are obtained _

usingA and AA coefficients only, usingN = 15 for Figure 3: 3- and 4-statasmM correctness for each map,
_ ! : using all feature extraction techniques. Jeffers map gets

PCA,IandN —b20_f0rdtheE_>CT f‘(lazture set. Olp tlcal_ frlgw the best performance in all tests, considering both 3- and

results are obtaine L_lsmgxz ownsampling wit 4A-states.

coefficients. Along with correctness, defined in equa-

tion 2, it is advisable to use tlaecuracyestimator to ‘ ‘ s ‘ :

give a better overall indication of performance. The 6o ¢ Jeffers

standard definition was used: T Neti

50l —@— Hazen
T-D-S—I v Bozkurt
Acc= ————— x 100 ©) wf 4 D

where | is the number of insertions.
Figure 3 and Figure 4 show recognition results
for the five maps. When examining the figures, it is

Acc [%]

wl / ‘\\‘/ A**w——f —

20

important to realise that recognition results in a con- o W

tinuous speech task are expected to be relatively low ol j Y ‘ ‘ ‘

when compared to, for example, an isolated digit task. RS Q\O«'z’ RS i ?\0«“
can certainly be argued that results will improve ¢ §C

It tainly b d that Its will e e

significantly with use of a language model and when _
combined with audio cues. However, this viseme set F;F;‘retm 3- a?d 4t'_5tat:*ﬂ"'h’\" _accurac&/vf#lr eg‘c?f map, US'”Etl_”
exploration is seeking to study baseline viseme per- 2" '€aturé extraction techniques. tvhiie Jetiers map st
f initiall gets good results, some maps reach the guessing rate level
ormgnce initially. , (different for each map, see Table 6).

It is apparent that the Jeffers map gives the best

results both in terms of correctness and accuracy. The ] o ) ]
Neti map is the next best map, with little difference other feature sets yield similar conclusions. Figure 5
in performance from the remaining maps. Examin- and Figure 6 show the confusion matrices obtained

ing the accuracy figures, it is clear that the insertion USing 3-statesimm optical flow tests. Total label
level remains high overall. An insertion penalty was number, Qeletlon number.and substitution number are
investigated in an attempt to address this issue but a@lS0 provided (see equation 2).
suitable balance has not yet been found for the sys-  As expected the 5 identical classes£B, /F=D,
tem. The performance for the optical flow arda /C=E, /E=F and /A=G ) obtain basically the same
features using 3-statemms was little better than a  results. Thus, the Neti performance gap has to be
guess rate. in the remaining consonant classes and in the vowel
Itis possible to see a correlation between recogni- visemes. Considering the vowel classes, it is possible
tion rate and the number of viseme and vowel classesto see that in terms of number of phonemes covered,
listed in Table 6. The lower the viseme and vowel Jeffers has two big (/B and /I) and two very small (/D
class number, the better the recognition figure. Whilst and /G) vowel classes. In contrast, Neti has four quite
this is fully expected in a pattern recognition task, itis balanced vowel classes (V1-V4 contain almost the
still interesting to compare the Jeffers and Neti maps same number of phonemes). Jeffers has an advantage
because, even though many visemes encompass thbecause misclassification is less probable if classes
same phonemes (5 classes are identical), the result@re big (see /B and /I in Figure 5). Moreover, even
are quite different. Results from 3-statesim with a complete misclassification in the two small classes
optical flow feature are used to demonstrate this, but will have a minor impact on the overall recognition

327



ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods

‘ - — —— 1 T—T——T—T 7
n.. e > wo B 2 32 71 A s Bls 7 o 1 9 i1 7 7 13047|s7 137
BLalbid1z 3 5 7 3 27 67 15 | 66 1444 Bf22 51 50 4 6 1 2 15 12 9 10 14 10|59 155
/C-2 13 BEGY 3 4 1 4 8 26 13 | 41 744 B 4 2 & 4 3 8 4w 3 A% 8 8 349
— Df14 2 11 17 4 ggdl 4 6 1 4 3 |22 6l

/D 2 i 1 . 1 11 9
Ef17 4 20 2 2 7 9 1 12 10 6 |34 90

E-1 T 1 Eel 2 7 Bl 1 4 |13 56
FF10 1 /15 1 2 9 494

JFE 18 6 2 2 16 1 11 17 2 6 |19 65
GEg 5 MM 1 5 1 651

/G 3 2 3 1 ez 1 1| 7 17
Hilo 6 B8] 2 5 1 110|

M1 3818 4 1 6 1 |37 25 [&8 19 |61 167
V1l16 3 24 2 2 2 166|
A1 20 7 4 1 2 1 2 E:dlao 22 |73 118 il - BN - 704
Ats 19 17 3 6 3 15 BE9M 1 14 | 48 83 valzo 7 18 5 2 116
KES Fiem 11| 2 2 32 8 27 51 18 14 |66 151 val17 3 38 3 1 6 151
5 0o 0 s 0
TR L PR YD ey v © G 9 % % ¥

Figure 5: Confusion matrix obtained with 3-stategm us-
ing optical flow feature and Jeffers map. /B, /D, /G and /I
are the vowel viseme$Subcolumn represents the substitu-
tion error for each viseme, whildel represents the deletion
error for each visemel = 3523 D =420 S= 955 (see eq.
2).

rate. Figure 5 shows that /D and /G are basically com-

pletely misclassified, mostly in favour of the other two

Figure 6: Confusion matrix obtained with 3-stategm us-
ing optical flow feature and Neti map. V1 to V4 are the
vowel visemes.Subcolumn represents the substitution er-
ror for each viseme, whildel represents the deletion error
for each visemeT = 3662 D =531 S= 1262 (see eq. 2).

fers) achieved the best recognition rates in all the per-
formed tests. Compared with the second best map
(Neti), this improvement in performance can be at-

vowel classes /B and /1, but these classes have such aributed to better clustering in some consonant classes

low occurrence that this misclassification is negligi-
ble from a statistical point of view. On the contrary,

Neti vowel visemes are more frequently misclassified.

They contribute roughly 60% more classification er-

and less vowel visemes (statistically, Jeffers visemes
/D and /G are negligible).

Work is ongoing to extend this system to include
other feature sets including other optical flow im-

ror, either in substitution or deletion errors. plementations andctive Appearance ModéhAMM)

Similar behaviour is present in the remaining con- features to provide a definitive baseline for visual
sonant classes. The remaining consonant phonemespeech recognition. To validate whether the Jeffers
are clustered in two visemes in Jeffers map (/K and map is a better approach to viseme modeling in the
1J) and in three visemes in Neti map (A, H and C). context of a full AVSR system, the maps are also be-
Once again, the lesser the class number, the better théng tested incorporating speech features. This will test
classification. The three Neti visemes contribute 40% the hypothesis that better visual features should im-
more error than the two Jeffers consonant visemes. prove the overall AVSR performance when the speech
quality is low.

Unfortunately, the phonemes-to-viseme map ap-
proach does not take into account audio-visual asyn-
chrony (Potamianos et al., 2003; Hazen, 2006), nor
the fact that some phonemes do not require the use
. . of visual articulators, such /k/ and /g/ (Hilder et al.,
This paper has presented a continuous speech recogy(10). Thus, along with the tested maps, it is impor-
nition system based purely oaMm modelling of — (4n¢ 10 include in the analysis viseme definitions that
visemes. A continuous recognition task is signifi- 44 not assume a formal link between acoustic and vi-
cantly more challenging than isolated word recogni- ¢ speech cues. This will emphasize the dynamics
tion task such as digits. In terms of AVSR, itisamore ;, human mouth movements, rather than the audio-
complete test of a system’s ability to capture pertinent \is\al link only.
information from a visual stream, as the complete To this end, the availability of large continuous

set of visemes is present in a greater range of COn-gneech AVSR datasets (as opposed to isolated word
texts. Five viseme maps have been tested, all based 0,55 or databases containing a small number of sen-
the phonemes-to-viseme map technique. These mapggnces), continues to be a hurdle in AVSR develop-
were created using different approaches (linguistic, yent.

data driven and mixed). A pure linguistic map (Jef-

6 CONCLUSIONSAND FUTURE
WORK
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