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Abstract: We present a two-layer architecture for two-wheeled robots trajectory planning. This architecture can be used
to describe steering behaviours and to generate candidate trajectories that will be evaluated by a higher-level
layer before choosing which one will be followed. The higher layer uses a TAMS tree to describe the current
robot goal and its decomposition into alternative steering behaviours. The lower layer uses the DKP trajectory
planner to grow a tree of spline trajectories that respect the kinematic constraints of the problem, such as
linear/angular speed limits or obstacle avoidance. The two layers closely interact, allowing the two trees to
grow simultaneously: the TAMS tree nodes contain steering parameters used by DKP to generate its branches,
and points reached in DKP tree nodes are used to trigger events that generate new subtrees in the TAEMS tree.
We give two illustrative examples: (1) generation and evaluation of trajectories on a Voronoi-based roadmap
and (2) overtaking behaviour in a road-like environment.

1 INTRODUCTION PDDL for instance (McDermott et al., 1998), and mo-
tion planning when the configuration space can be en-

Our aim is to provide human-like steering behaviours tirely precomputed (Jaesik and Eyal, 2009) but they
to autonomous mobile robots with the respect of their still do not consider kinematic constraints. Eventu-
physical constraints. We would like to design robotic ally, some recent works mix sample-based approaches
applications using high-level building blocks repre- in both discrete and continuous hybrid state spaces
senting motion strategies liKellow or overtakeand ~ (Branicky et al., 2006) but the configuration space
behaviours likedrive smoothlyor drive aggressively ~ may grow exponentially (Jaesik and Eyal, 2009). Re-
This kind of problem has already been addressedalism of driving behaviours also becomes an impor-
for autonomous simulated characters by (Reyn0|ds, tant challenge in traffic simulations. Like in our case,

1999) who proposed a two-layer architecture to ex- the main difficulty lies in the link between high (psy-
press steering behaviours. chological) and low (measurable) levels. This prob-

We reuse here the basic idea from Reynolds but [em has for instance been addressed in (Lacroix et al.,

transposing on real-world robots results that work 2007) using probabilistic distributions of some mea-
for simulating characters raises some problems. TheSurable parameters likine to collisionortime to line
main one lies in the link between the cognitive layer crossingto generate the variety of behaviours encoun-
of the robot and the trajectory planning layer. An teredinthe real world.
action selection level first decides which high-level Our solution uses two different closely interacting
goals are given to the motion planning layer. Such layers. Each layer grows a tree which construction
an approach hides the motion planning and locomo- influences the building of the other: thajectory tree
tion problems, so the completeness and kinodynamicand thesteering tree
constraints respect issues exist. The action selection  The trajectory tree contains trajectory samples
level cannot verify the trajectory feasibility of the de- dynamically extended using treeering parameters
cisions and it appears difficult to encode the kinody- from the steering behaviours expressed in ster-
namic constraints within this level. ing tree We use our sample-based approach named
In the context of robotic arms, some recent ad- DKP, first presented in (Gaillard et al., 2010) and suc-
vances have been done in mixing planning, using cessfully applied on real robots (Gaillard et al., 2011).
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ing behaviour tree and a trajectory tree, following the
model in (Reynolds, 1999). The steering behaviour
tree controls the trajectory tree growth and DKP in-
ternal selection/propagation properties, following the
trajectory tree state. The trajectory tree created by
DKP grows if possible in the environment and trig-
gers the instantiation of new behaviours in the steer-
ing behaviour tree in reaction to situations encoun-
Figure 1: Example of DKP quadratics samples treein tered in the env_ironment. The steering t_)ehaviourt_ree
magenta. The final trajectory froBtartto Goalis in blue. reflects the trajectory tree: each steering behaviour
corresponds to a valid subtree of the DKP trajectory
tree if this steering behaviour respects the dynamics of
the robot. Finally, this steering behaviour tree is used
to select the chain of behaviours to follow using the
TAMS formalism. Our architecture can be seen as a
roadmap based planner where waypoints are replaced
by steering behaviours situated in the environment.

With its selection/propagation architecture, DKP pro-
vides properties for the low layer that we need to build
a cognitive trajectory planner. It produces trajectories
that respect the kinematic constraints of the robot and
avoid obstacles as shown in Figure 1. It also translates
steering behavioursinto parameters for the underlying
trajectory planner. Finally, it provides solutions that ) ] .
optimize a criterion and it is deterministic: the cogni- 2.1 Controlling DKP with Steering
tive part should not have to repeat trajectory planning Parameters

until an optimal solution is found if one exists.

The steering treeis made up of instantiated  |n DKP, all trajectory planning constraints c such
models of HTN (Hierarchical Task Networks) sub- as kinematic constraints and obstacles avoidance con-
trees representingteering behavioursCommon ap-  straints require a geometrical representaigp, (t),
proaches are based either on a STRIPS-like descrip-moved alongtrc(t) for mobile obstacles. DKP also
tion of the world and possible actions, or on HTN needs the transformatiofiisfrom the constraint basis
decomposition of goals into compound tasks. HTN to the parameter space basis and back. Finally, a con-
have been widely used because they allow a human-straintcis the tuple(S; p(t), Tc). LetC = {c«} denote
friendly description of tasks, even if their practical ex- the set of constraints applied to a sample.
preSSiVeneSS iS not bettel’ than STRIPS (Lekavy and We deﬁne @Oa] guidance for propagation |eve|
Né.Vrat, 2007) We use TAEMS (DeCker, 1996), which by the tup|e(AGoaLtreoal(t)7Goal) which associates a
is a formalism used to describe HTN, to describe Goal state to a delimited zone of the environment
complex tasks using resources, having durations anda, .. _(t), represented with constructive surface
Com_ple)f interrelations, which is the case in robotic geometry approach, moved a|0mgoal(t)_ The prop-
applications. agation part of DKP extends an exploration tree in the

So, our approach combines top-down and bottom- environment. When the end point of a selected sam-
up interactions. The latter provides a way for the bot- ple Pho..ka () IS contained iNAgoaltrg,, (t), the next
tom layer, DKP, to give information to a cognitive top  grown samples minimize the distance to the associ-
layer, using TAMS, allowing it to decide which ac- atedGoal in the propagation level. A set of propa-
tion to take based on different evaluable alternatives. gation goal guidances is denoteGuideandApguide
The paper is organized as follows. Section 2 details s the set of areas which are associated to a goal
our two-layer architecture. Sections 3 and 4 give two within a set of goal guidances. We require that the
examples demonstrating the benefits of our architec- greas fromApgyige do not overlap:Agoaltrgoyk(t) N
ture for roadmap-based guidance and for the evalua-Ag oy .1 () = O with k1.
tion of various steering behaviours in an overtaking With the same formalism than propagation g0a|
scenario. guidance, we defingoal guidance for selection level

with a set denote®Guide These goals work sepa-
rately from the propagation level to guide the explo-

2 STEERING BEHAVIOURS FOR ration tree created by the selection level. Only one

goal may be defined to keep the good properties from

TRAJECTORY PLANNING the selection process (which works in afihanner).

Time properties in propagation level ar@min,
We propose to create a steering behaviour driven tra-the minimal sample durationTnax, the maximal
jectory planner. Two trees grow in parallel: a steer- sample duration andamplge, the time interval

120



TOWARDS COGNITIVE STEERING BEHAVIOURS FOR TWO-WHEELED ROBOTS

in order to produce samples of durati®gin, Tmin + we create a ggegsum node in the TAEMS tree with
Samplge, ..., Tmax. A discretisation stegtepis set two children: the first one contains the area parame-
for evaluating constraints in the propagation level. So, ters setsp,  and the second one contains the next
the tupleTpr = (Tmin, Tmax, Sample., Step describes  area parameters sefy, ;1 If an area parame-

exploration tree. In the backtracking mode used for of the area parameters g | .1, SRy, kkt1k+2
this paper, only one sample is created for each prop-is added to the geqsum node. Whem areas from
agation step:Samplg,= 0 andTmin = Tmax The Aspcan be triggered as successors of an area parame-
time discretisation for constraints evaluation is set to ters sesp, _\, we create a gnax node in the TEMS
step= Tmayx/10. tree withn children containing the associated area pa-
An area parameters set sp is the tuple rameters sets. This.igpax node is added as a child
(Asptrc (1), Csp, PGuidep, SGuidep, Torop) associating  to the gsegsum node containingp, . When the
to an areaspyr, Of the workspac&V somesteering end point of a selected sampbg, .k, iS contained in
parameters a set of constraint€sp, a set of goal  Aspp(t), the next grown samples of the exploration
guidance for the propagation leveGuidep, a set of tree are created respecting the corresponding set of
goal guidance for the selection lev@Guidegp and the constraintsCspx and using the corresponding set of
time propertiedy,,. Thesteering parameters setde- goal guidance for the propagation leveGuideyy,
notedSP, contains all the area parameters sets. Let goal guidance for the selection lev@Guidgyk and
Asp be the set of areas that are associated to steeringhe time properties of the exploration tree.

parameters. The DKP exploration tree interacts closely with
the steering behaviour tree thanks to the area trigger-

2.2 Simultaneously Growing Trees ing system. When the end point of a selected sample
Pko..ka 1S CONtained im areasAgpyr (t), We createn

The completesteering behaviour treeis built using independent new forks in the DKP tree. We can see

automatic instantiation of subtree models represent-each fork as a new DKP exploration subtree with the
ing the steering behaviour library of the application. samplepy, , as root, each first sample child apply-
We use the TAEMS formalism (Horling et al., 1999). ing one of then steering parameter sets. Nevertheless,
Even if our architecture does not limit the usage of some samples may overlay in the workspace, espe-
any of the TAEMS quality accumulation functions, in cially those near the root sampg,.. k, from which

this paper, we only use two of them: then different steering parameters sets are expanded.

e g-segsum used when all the subtasks need to be
completed in order before giving a quality to the

supertask. In this case, the supertask will getthe 3 |LLUSTRATIVE EXAMPLES:
combined quality of all its subtasks as its quality; ROADMAP-BASED GUIDANCE

e g-max, which is functionally equivalent to an OR
operator. It says that the quality of the supertask we use the environment of Figure 1 for this first ex-
is equal to the maximum quality of any one of its  ample which illustrates the use of the steering tree to
subtasks. guide the trajectory planning algorithm on a roadmap.
We proposean area triggering systemto apply A roadmap captures the connectivity of the different
steering behaviours on the exploration tree: each nodeareas of the environment. It is made up of precom-
in the TAEMS tree contains a steering parameter setputed paths allowing the mobile robot to explore the
SP associated to an area s&¢p. When the end-  environment while avoiding obstacles.

ing point of a selected sampf&, .k, (t) in the DKP Among the numerous existing approaches pro-
tree is contained isp tr.k(t), this sample is prop-  posed in literature, we opted for a Voronoi diagram
agated using the steering parameters fepn over- because it has the property of keeping the robot away

riding the previous area parameters sgt ; which from obstacles: the paths composing the roadmap
ruled the guidance of the exploration tree until this are equidistant to obstacles boundaries. This obstacle
sample. It means that other samples not concernedclearance property naturally provides a good roadmap
by this triggering will pursue using their respective to guide the robot. It also let it substantially deviate
steering parameters. When applied, the next sampledrom it because the area around the roadmap is free.

in the exploration tree also inhesp, until new steer- An example of roadmap generated with a Voronoi
ing parameters are applied on one of the next samplesdiagram is provided in Figure 3(a) (thick light grey
and so on. When only one area fréxgp can be trig- lines). This is done in two steps. First, the contours of
gered as a successor of an area parametesgseg, obstacles and of the environment bounds are discre-
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Reach goal

Figure 2: The TAEMS crossroads pattern to be instantiated
in the steering tree.

tised to obtain a set of points from which we generate
a Voronoi diagram. Second, the Voronoi diagram is
simplified by removing the segments crossing obsta-
cles or going to the boundary of the environment.

To perform the guidance of the robot over the
roadmap, we have to retrieve the nearest waypoint
W in the roadmap to any potential locatit of the

robot in the environment. This can be efficiently done |- ;

by building ameta Voronoi diagrama Voronoi di-

agram around the Voronoi diagram waypoints. We | g
obtain a polygonal decomposition of the environment |-

illustrated in Figure 3(b) (thin black lines). Each poly-
gonP contains a unique waypoik¥ of the roadmap.
The area oP contains all the points of the environ-
ment closer tdV than the other waypoints. We see
in Figure 3(b) that from a robot locatiod, we can
retrieve the containing polygd (filled in magenta)
and then the associated waypddit(plotted in blue).
Using this cellular decomposition, we can build
the steering tree making the bridge between the tra-
jectory planner and the roadmap. The steering tree

Q
Goal

®Staﬁ

(a)

Figure 3: (a) A roadmap as a simplified Voronoi diagram
(thick grey lines). (b) Meta Voronoi diagram (thin black
lines) associating a unique area to each roadmap waypoint.

e
[ i [ 1 = gl
‘ ! ‘ e ‘ i

Figure 4: Roadmap waypoillY associated to a robot posi-
tion M, and projected waypoinm.%l,p at a distanca. (a) 1
projected waypoint, on 1 branch, before the crossing, (b) 2
projected waypoints, on 2 branches, after crossing.

area, depicted in cyan. For instance, for Wevay-

models all the possible strategies to bypass the obstaPoint from Figure 4(a), "ghere would be twoptheoretical
cles. A bypassing strategy can be modelled by the Projected waypointsV;” (abovew) andW," (below

TAEMS crossroads pattern illustrated in Figure 2:
e the gseqgsum node expresses the trajectory has

not reached the goal and has to be continued. The

No node corresponds to the part which has already
been done and for which we have an evaluation.

o the gmax node chooses the best alternative (i.e.
the alternative of maximal quality) between the
steering behaviour subtrebss, ..., Nk, that is, the
best bypassing strategy amakg

The steering tree is made up of instantiated cross-
roads patterns. Itis progressively built thanks a depth-
first traversal of the roadmap, from ti&tart way-
point. Each time a waypoint/ of the roadmap is
visited, it is projectedat a given distance on the
roadmap. This projection consists in finding on the
roadmap thek waypoints\Mp, (i € {1,k}) situated at
least at the distancé from W. This is depicted in
Figure 4 where projected waypoints are plotted in or-
ange. Note that if the projected waypoint has already
been visited, it is ignored.

This notably forbids to go backward and perform

W), butWy’ is not considered.

When creating steering parameter SBY;, associ-
ated to steering nods,, two cases are possible. First,
if the projection process leads to a unique projection
waypoint K = 1), the pair(P,Wlp) is added to the set
of goal guidance for the propagation lesbuidey.
Second, when several projected waypoints are de-
tected k > 1), a crossing in the roadmap has been
passed and the considered polygénare identified
as triggering areadgp for eachk new steering pa-
rameters seSRy, . In this case, a new crossroads
pattern is instantiated in the steering tree, associating
the new steering parameter sets to TEMS nodes and
generating new alternatives to be evaluated.

Figure 5 shows the steering tree associated to the
environment of Figure 4. This steering tree allows
the trajectory tree of Figure 6 to evaluate the 4 pos-
sible steering behaviours, by planning the 4 associ-
ated trajectories (drawn in blue). The distadogsed
to project waypoints on the roadmap directly impacts
the smoothness of the trajectories, allowing smooth
turns in places where the roadmap has sharp corners.

loops. This can be observed in Figure 4, where vis- Generated trajectories are guaranteed to be feasible by
ited waypoints are illustrated through their associated the robot and contain its required speed for all points,
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which is not the case of the initial Voronoi based

When Ry catches up withRy, i.e. enters in area

roadmap. Once all the alternatives are known, the A;(t) behindRy, it triggers the instantiation of tHel-
best one can be chosen, according to an application-low or overtakesteering behaviour. Two alternatives

dependent criterion (e.g. curvature, length, time or
energy spent).
If we compare the DKP tree of Figure 1 to the one

of Figure 6, we can see that the shape of the final tra-

jectories are better than when DKP runs alone. The

are set under a.max node and are added to the steer-
ing tree. Ry may adjust its speed tg; one andfol-
lowit: the linear speed constraint is sef27,30|m/s,

time samples are set to 1s (following a robot cruising
at a constant speed does not require very reactive ma-

tree also contains much lesser branches, resulting innoeuvres) ané (t) stays the goalRy may overtake

faster computation, even with better environment ex-
ploration.

4 ILLUSTRATIVE EXAMPLES:
OVERTAKING
Description. For this example, we consider the fol-

lowing scenario, illustrated by Figure 9. A fast robot
Rp moves as fast as possible on a road-like environ-
ment with two lanes. Robd®y starts moving at the
beginning of the bottom lane and wants to go to the
extremity of this lane. A slower rob&; also moves
straight on the bottom lane at a constant sp&edn

the top lane, another rob& also moves at a con-
stant spee& = S, in the opposite direction. The
road is 500m long and 6m wide. Robot dimensions
are 4mx 1.7m (like a small car). The clearance on the
robot sides is set t0.15m. RobotR; andR, move

at a speed of 110 km/h(30m/s) on their respective
lanes. Ry must reach an overall go@l; (t) set at the
end of the bottom lane (main goal setSGuide.

As shown in (Gaillard et al., 2011), DKP can deal
with this kind of overtaking situation. From our point
of view, the solution (the one from DKP used alone
or solutions from other hybrid trajectory planners) is
a "forward obstacle avoidance”: there is no reason-
ing or adaptation about the kinematic constraints or
the samples duration during the trajectory planning
(except for the backtracking process). The kinematic
constraints are too low to apply to a common overtak-
ing situation that we may meet on our roads. More-
over, even if the kinematic constraints may allow an
overtake, if the roboR, starts too close, DKP may
fail to provide an intuitive "wait and follow” solution:
in DKP, the trajectory is forced to move as far as pos-
sible because of the distance minimizing criterion.

Using steering behaviours, we can deal with this
situation with more realistic parameters. This al-
lows to get and evaluate botbllow andovertakebe-
haviours. We first set the initial following steering be-
haviour for the roboRy. To reach the Goal G(t), Ry
cruisesfast at a maximum speed of 130 km/h: the lin-
ear speed constraint is sef{8®, 3g)m/s, time samples
are set to (s andG; (t) is added t&SGuide

R; and this behaviour is factorised underaegsum
node. Theovertakesteering behaviour uses different
steering parameters sets:

1. Ry accelerates to 150km/h amges to top lane
the linear speed constraint is set[R0,42)m/s,
time samples are set tol® (overtaking requires
a precise driving at this speed) and a g@Galt)
added tdPGuideenforcedR, to turn left.

whenRy enters in areéy(t) behindR; on the top
lane, in the same speed conditionstéys on top
lane a goalGs(t) added toPGuideis set at the
end of the top lane.

2.

. whenRg enters in aredgs(t) in front of Ry on the
top lane, in the same speed conditiongades to
the bottom lane a goalGy(t) added toPGuide
enforcesRy to turn right.

4. whenRy enters in aredy(t) in front of Ry on the
bottom lane, it returns to theruise steering be-

haviour.

Figure 7 shows the steering tree of this example. The
areas and goals associated to the motioR;adire il-
lustrated in Figure 8

The trajectory planning returns a solution associ-
ated to each behaviour. For instance, in Figure 9(a),
the overtakebehaviour is not solved when the robot
R sits in the opposite lane at the same instant: only
thefollow behaviour should be applied as valid trajec-
tory. If Ry sits further (Figure 9(b)), thevertakebe-
haviour is also solved and should be applied as valid
trajectory. Theovertakebehaviour solution lasts 13s
whereas thdollow behaviour solutions lasts B5s.
Once again, the resulting trajectories are better than
with DKP alone. The trajectory tree is also far less
complex than usual solutions from DKP, where a lot
of backtrack occurs before a valid trajectory is found.
Computation time is thus greatly reduced.

We presented two possible usages of our archi-
tecture, but the expressiveness of steering pa-
rameterand TAEMS languages is high enough to de-
scribe other human-like steering behaviours. Dy-
namic changes of the acceleration or linear/angular

IFigures 8 and 9 have been vertically upscaled
times.
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q_seq_sum
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q_seq_sum q_seq_sum
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Figure 5:The steering tree for a roadmap-based guidanceEach leaf corresponds to an area, filled in cyan, in whickethe

is no crossing and where intermediate goals are plottedaingar. Dark blue polygons represent areas to be ignored $®cau
they have already been visited in parent nodes.

Figure 6:The trajectory tree guided by the steering tree of Figure 5. Blue curves are tia¢tfiajectories that reach the goal.
Magenta curves are under construction or given up trajestotight magenta polygons correspond to arrival areandéu
construction trajectories. Orange dots are associatechiediate goals, provided by the steering tree.

Reach Goal
Goal: G1(t)

q_seq_sum

Follow/Overtake?

Overtake

Cruise

q_seq_sum

Speed: —>[30, 36] Follow
Samples: 0.5s . Go to top lane Stay on top lane | |Go to bottom lane Cruise
Goal: G(t) Triggered on: A(t) P y P

Next trigger: A(t)

Speed: ™~ [27, 30]

Triggered on: Ay(t)

Triggered on: Aq(t)

Triggered on: Aqt)

Triggered on: At)

Samples: 1s Speed: 7 [30, 42] Speed: — [30, 42] Speed: — [30, 42] Speed: ™\ [30, 36]
Goal: Gy(t) Samples: 0.1s Samples: 0.1s Samples: 0.1s Samples: 1s
Goal: Gy(t) Goal: G4(t) Goal: G4(t) Goal: Gy(t)

Next trigger: A1) Next trigger: Aq(t) Next trigger: A )

Figure 7:The final steering tree for overtaking. Nodes with thick lines were created in the initial configioa of the tree.
Other nodes come from the instantiation of Hedlow/Overtakepattern.

Gi(tl) @

Gi(t) @
Gi(t) @

Gy(ty) @i

Figure 8: Overtaking areas and goalsrepresented at different time steps. (a);atvhen a candidate trajectory enters the
A1(t) area, (b) aty, when a candidate trajectory enters thft) area. The controlled robot is the green rectangle and the
vehicles to avoid are the blue rectangles.
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(a) e

(b) e e O R,

Figure 9:Different overtaking situations. (a) Rp, in green, cannot overtake. It must folld¥y using the trajectory in blue.
(b) Ry can follow or overtakdR; and we get two alternative trajectories in bl&g.is drawn on the one that overtakes.

speed constraints and of the goal point could be usedpound behaviours likevertake aggressivetyr follow
to describe other driving manoeuvres and smooth orsmoothly
aggressive driving behaviours.
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