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Abstract: Retrial queues have been widely used for modelling many practical problems arising in computer and commu-
nication systems. It has been known to be difficult problems to develop a numerical algorithm or an approxi-
mate solution for advanced multiserver retrial queues such as the models with phase type distribution of retrial
time, impatient customers governed by a general persistence function and multiclass of customers. Recently,
we have developed an approximation method based on the approach in Fredericks and Reisner (1979) with
some modifications for the advanced systems described above. In this paper, we introduce the approximation
results developed recently.

1 INTRODUCTION

The retrial queueing system consists of a service facil-
ity with finite capacity and an orbit of an infinite size.
A customer enters the service facility if the service
facility is not full upon arrival. Otherwise, the cus-
tomer joins orbit and repeats its request after random
amount of time. The time interval between two con-
secutive attempts of each customer in orbit is called a
retrial time.

Retrial queue has been widely used for modelling
many practical problems arising in computer and
communication systems. Even for the basic M=M=c
retrial queues with multiple servers, the exact results
have not been obtained except for some special cases.
Instead, attempts to develop algorithmic or approxi-
mation methods have been made for long time. For
the Markovian retrial queues with multiple servers
with Poisson arrival, exponential service and expo-
nential retrial time, some algorithms and approxi-
mations are presented, e.g. (Neuts and Rao, 1990;
Greenberg and Wolf, 1987; Fredericks and Reisner,
1979) and for more details of retrial queues, refer
the monographs (Artalejo and Gómez-Corral, 2008;
Falin and Templeton, 1997) and references therein.
Neuts and Rao (1990) propose a generalized trunca-
tion method that uses the system in which only finite
number of customers in orbit can retry for approxima-
tion of the basic M=M=c retrial queue. Neuts and

Rao’s method uses the matrix analytic method for
computing the approximate system and its feasibil-
ity depends on the size of matrix components of the
approximate system. Greenberg and Wolf (1987)
present an approximation for the stationary distribu-
tion of the number of customers in service facility in
the M=M=c=K retrial queue under the assumption that
retrials see time averages (RTA). The approximation
using RTA assumption does not depend on the retrial
rate and works well only for small value of retrial rate.
Fredericks and Reisner (1979) develop an approxima-
tion for the number of customers at service facility in
M=M=c retrial queue with impatient customers. Fred-
ericks and Reisner’s method reflects the retrial rate
and works well when the retrial rate g is small, but it
becomes worse as g increases (Artalejo and Gómez-
Corral, 2008).

Kulkarni and Liang (1997) suggest some open
problems which include developments of analytical,
numerical, and approximate solutions for advanced
models such as the retrial queue with general retrial
time, impatient customers, general service time. Re-
cently, we have developed an approximation method
based on the approach in Fredericks and Reisner
(1979) with some modifications for the advanced sys-
tems. Objective of this paper is to introduce the
recent results developed by Shin and Moon (Shin
and Moon, 2011a; Shin and Moon, 2011b; Shin and
Moon, 2011c).
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Fredericks and Reisner’s method with modifica-
tion is described briefly in Section 2. Approximations
of the M=M=c retrial queue with phase type retrial
time, impatient customers and multiclass customers
are briefly described in Sections 3-5.

2 APPROXIMATION OF THE
BASIC MODEL

Consider an M=M=c retrial queue with no waiting
space in service facility. Customers arrive from out-
side according to a Poisson process with rare l and the
service time and inter retrial time distributions are ex-
ponential with rates µ and g, respectively. Let C(t) be
the number of customers at service facility and N(t)
be the number of customers in orbit at time t in the
M=M=c retrial queue. Assume the stability condition
r = l=(sµ)< 1. Then XXX = f(C(t)(t);N(t)) t � 0g is a
Markov chain on the state space S = f0;1;2 � � � ;cg�
f0;1;2; � � �g.

Let (C;N) be the stationary version of (C(t);N(t))
and P(i; j) = P(C = i;N = j), (i; j) 2 S . The balance
equations are given as follows:

(l+ iµ+ jg)P(i; j) = lP(i�1; j)
+ (i+1)µP(i+1; j)+( j+1)gP(i�1; j+1);

0� i < c; j � 0 (1)
(l+ cµ)P(c; j) = lP(c�1; j)+lP(c; j�1)

+ ( j+1)gP(c�1; j+1); j � 0; (2)

where P(i; j) = 0 for (i; j) 62 S . Define

Pi = P(C = i); Ni = E[NjC = i]; 0� i� c:

Summing over j in (1) yields

(li +µi)Pi = li�1Pi�1 +µi+1Pi+1; 0� i < c; (3)

where µi = iµ, P�1 = 0 and

li = l+ gNi; 0� i� c�1: (4)

Thus the stationary distribution of the number of
busy servers is identical to that of finite birth-and-
death process with birth rates fl jgc�1

j=0 and death rates
fµ jgc

j=1 and is given by

Pi = P0

i

Õ
k=1

�
lk�1

µk

�
; i = 1;2; � � � ;c (5)

with

P0 =

"
1+

c

å
i=1

i

Õ
k=1

�
lk�1

µk

�#�1

:

Let u j = P(N = j), j � 0. Summing over i in (1) and
(2), we have that

( j+1)gu j+1� jgu j = l(P(c; j)�P(c; j�1))
+ g(( j+1)P(c; j+1)� jP(c; j)); j � 0; (6)

and hence the mean L = E[N] is given by

L =
lcPc

g
; (7)

where lc = l+ gNc. Let Ri be the proportion of re-
turning customers from orbit who find the service fa-
cility in state i, that is,

Ri =
gNiPi

å
c
j=0 gNiPi

=
NiPi

L
; 0� i� c: (8)

It can be seen from (7) and (8) that

lc =
l

1� gRc
:

We have from (4) and (8) that

li = l+
li � � �lc

µi+1 � � �µc
Ri; 0� i� c�1: (9)

From the observations above, we adopt the follow-
ing approximation assumption.
Assumption A. The service facility behaves like a
birth-and-death process with birth rates fligc�1

i=0 and
death rates fµigc

i=1 and is independent of the retrials.
Let Q be the generator of the birth-and-death pro-

cess with birth rates fligc�1
i=0 and death rates fµigc

i=1
and qi j(t) be the transition probability of Q and q̃i j(q)
the Lapalce transform of qi j(t). To determine Ri, sup-
pose that at time 0, a customer attempts to get service
and it finds that all the servers are busy and joins orbit.
This customer returns after an exponential time with
parameter g. Then, Ri is approximated by the fraction
of returning customers from orbit that find the service
facility in state i, that is,

Ri �
Z

¥

0
qci(t)ge�gt dt = gq̃ci(g); 0� i� c: (10)

Remark. The approximation of Ri in (10) is the
same as that in Fredericks and Reisner (1979).

Once an approximation of lll is given, the square
matrix Q̃(q) = (q̃i j(q)) can be calculated by the for-
mula

Q̃(q) = (qI�Q)�1;

where I is the identity matrix of order c+1.
Combining (9) and (10), we have the approxima-

tion formula for li as follows

li = l+l
li � � �lc�1

µi+1 � � �µc

gq̃ci(g)

1� gq̃cc(g)
; 0� i� c�1; (11)
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Now we describe the computational procedure for l j.
Let lll = (l0; � � � ;ls�1) and denote by g(lll) the right
hand side of the equation (11) and define a sequence
of lll

(n) = (l
(n)
0 ; � � � ;l(n)

s�1) by

lll
(n) = g(lll(n�1)); n = 1;2; � � � (12)

with lll
(0) = (l; � � � ;l). Repeating the successive sub-

stitution (12), we choose lll
(n) as an approximation of

lll if it satisfies jjlll(n)�lll
(n�1)jj¥ < e for given toler-

ance e > 0.
Numerical experiments provide that approxima-

tions for L0 is the same as the exact result L0 = l

µ .
For improving the accuracy of approximation for L =
E[N], a modification of approximation for L is pro-
vided as follows

L̂(m) = LAppr(m)+(LM=M=c�LAppr(m�)); (13)

where LAppr(m) is the approximation for L in the
system with mean retrial time m and LM=M=c is the
mean number of customers in queue for the ordinary
M=M=c queue and m� is chosen to be large enough so
that the variation of LAppr(m) for m�m� is negligible.

3 RETRIAL QUEUE WITH
PH-RETRIAL TIME

Consider an M=M=c retrial queue in which the re-
trial time is of phase type distribution PH(aaa;GGG). For
stability of the system r = l

cµ < 1 is assumed. Shin
and Moon (2011a) proposed an approximation for this
system as follows.

Let m be the number of phases of PH(aaa;GGG). Let
X0 be the number of customers at service facility
and Xi the number of customers in orbit whose re-
trial phase is of i in stationary state and Li = E[Xi],
0� i�m. Then, it can be shown that p j = P(X0 = j),
0� j � c satisfies the balance equation of the a birth-
and-death process with birth rates fl jgc�1

j=0 and death
rates fµ jgc

j=1, where µ j = jµ and l j can be expressed
in terms of R j that is the proportion of returning cus-
tomers from orbit who find the service facility in state
j as

l j = l+l

 
c

Õ
i= j+1

li�1

µi

!
R j

1�Rc
; 0� j < c:

Under the approximation assumption that the service
facility behaves like a birth-and-death process with
birth rates fl jgc�1

j=0 and death rates fµ jgc
j=1 and is

independent of the retrials, R j is approximated as the

probability that a returning customer finds the service
facility in state j, that is,

R j �
Z

¥

0
qc j(t)aaaexp(GGGt)GGG0 dt; 0� j � c;

where qi j(t) is the transition probability of Q.
Then, l j is calculated by successive substitution.
Numerical experiments provide that approximations
for L0 is the same as the exact result L0 = l=µ.
For improving the accuracy of approximation for
L = å

m
k=1 Lk, the modification (13) for L is used. In

Table 1, the L̂ and the simulation are listed for two
retrial time distributions MER3(0:0740741; 4

3m ;
10
3m )

and CE3;1(0:007773; 0:146991
m ; 1:188568

m ), where
MERk(p;n1;n2) = pErlang(k;n1) + (1 �
p)Erlang(k;n2) is the mixture of two Erlang
distributions Erlang(k;ni), i = 1;2 of order k and
CEk; j(p;n1;n2) the distribution whose Laplace-
Stieltjes transform is of the form

f �(s)= p
�

n1

n1 + s

�k�
n2

n2 + s

� j

+(1� p)
�

n2

n2 + s

� j

:

Table 1: L in M=M=5 retrial queue (r = 0:8).

Retrial Time m L̂ Sim(c.i.)
MER3 0.1 2.622 2.523(�0:051)

C2
V = 0:5 1.0 4.922 4.961(�0:084)

5.0 16.01 16.06(�0:25)
10.0 30.16 30.24(�0:40)

CE3;1 0.1 2.785 2.673(�0:054)
C2

V = 5:0 1.0 5.439 5.534(�0:090)
5.0 16.79 17.00(�0:26)

10.0 30.97 31.15(�0:46)

4 RETRIAL QUEUE WITH
IMPATIENT CUSTOMERS

Consider an M=M=c=K retrial queue with impatient
customers. The impatience of customers is governed
by the persistence function fbk;k = 1;2; � � �g, where
bk is the probability that after the kth attempt fails, a
customer will make the (k+1)st one. The retrial time
is exponential whose rate may depend on the number
of failures to enter the service facility. Let gk be the re-
trial rate of the customer that has experienced block-
ing k times. For a technical reason, the number of
retrials of a customer from orbit is limited by m, that
is, bk = 0 for k � m+1. Since bk = 0 for k � m+1,
it can be easily seen that the system is always stable.
Shin and Moon (2011b) proposed an approximation
for this system as follows.

Let X0 be the number of customers in service fa-
cility and Xk the number of customers in orbit who
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have failed k times to enter the service facility. It can
be shown that P0 j = P(X0 = j), 0� j� c satisfies the
balance equation of the a birth-and-death process with
birth rates fl jgK�1

j=0 and death rates fµ jgK
j=1, where

µ j = min( j;c)µ and l j can be expressed in terms of
Rk j that is the proportion of returning customers of
type k who find the service facility of state j as

l j = l+l

 
K

Õ
i= j+1

li�1

µi

!
m

å
k=1

 
k�1

Õ
i=1

biRiK

!
bkRk j;

and Rk j (0� j � K;1� k � m) is approximated by

Rk j �
Z

¥

0
qK j(t)gke�gkt dt = gkq̃K j(gk):

In Table 2, approximation results (App.) are com-
pared with the simulation results (Sim.) with half
length of 95% confidence interval (c.i.) for L0, mean
number LOrbit of customers in orbit and the block-
ing probability PB = P0c in the system with gk = g,
k = 1;2; � � � ;m.

Table 2: M=M=5=7 retrial queue with µ = 1:0, r = 1:2.

(bk = 0:85k�1, k = 1;2;3, bk = 0, k � 4)
g L0 LOrbit PB

0.1 App. 6.345 61.42 0.593
Sim. 6.333 60.97 0.589

c.i. �0.003 �0.207 �0.001
1.0 App. 6.252 5.997 0.567

Sim. 6.141 5.835 0.541
c.i. �0.005 �0.024 �0.002

5.0 App. 5.881 1.108 0.481
Sim. 5.744 1.065 0.448

c.i. �0.005 �0.003 �0.001

5 RETRIAL QUEUE WITH
MULTICLASS OF CUSTOMERS

Consider an M=M=c retrial queue with m different
types customers. Let li, µi and gi denote the arrival
rate, service rate and retrial rate of type i customers
(i-customers), respectively. Assume r = å

m
i=1

li
cµi

< 1
for stability of the system. Shin and Moon (2011c)
proposed an approximation for this system as fol-
lows. Let Ci and Ni be the number of i-customers
being served and in orbit in stationary state, respec-
tively and set CCC = (C1; � � � ;Cm), NNN = (N1; � � � ;Nm).
Let K = [c

i=0K (i), where K (i) = f(k1; � � � ;km) 2
Zm
+ : å

m
j=1 k j = ig and Z+ = f0;1;2; � � �g. It can be

shown that p(kkk) = P(CCC = kkk), kkk 2 K satisfies pppQ = 0,
where ppp = (p(kkk);kkk 2 K ) and Q has same form as the
generator of level dependent quasi-birth-and-death
(LDQBD) process with finite level which describes

Table 3: M=M=3 retrial queue with m = 2(r = 0:8).

G PB L1 L2
0.5 App 0.5584 15.301 9.5116

Sim 0.5630 15.361 9.5189
c.i. �0.0025 �0.1562 �0.1027

1.0 App 0.5603 8.3544 5.4528
Sim 0.5673 8.3597 5.4162
c.i. �0.0025 �0.1332 �0.0693

5.0 App 0.5725 2.7856 2.1833
Sim 0.5923 2.7696 2.1402
c.i. �0.0036 �0.0673 �0.0424

10.0 App 0.5832 2.0811 1.7624
Sim 0.6055 2.0321 1.7041
c.i. �0.0034 �0.0470 �0.0324

the ordinary M=M=c=c queue with m classes of cus-
tomers in which the arrival rate ai(kkk) of i-customer
depends on the system state kkk 2 K and service rate is
µi, 1� i� m. The arrival rate ai(kkk) is given by

ai(kkk) = li +
giLiRi(kkk)

p(kkk)
; i = 1;2; � � � ;m;

where Li = E[Ni], PB = P(CCC 2 K (c)), RB(i) =
åkkk2K (c) Ri(kkk) and Ri(kkk) is the proportion of return-
ing customers of i-customers from orbit who find the
service facility in state kkk. It can be shown that

Li =
liPB

gi(1�RB(i))
; i = 1;2; � � � ;m:

Under under the approximation assumption that the
service facility behaves like a LDQBD process with
generator Q and is independent of the retrials, Ri(kkk)
is approximated by

Ri(kkk)�
gi

PB
å

jjj2K (c)
p( jjj)[(giI�Q)�1] jjjkkk; i = 1;2; � � � ;m

and ai(kkk) is calculated by iteration.
Let G = å

m
i=1 gi, bi =

gi
G

, 1 � i � m and bbb =
(b1; � � � ;bm). It can be seen that multiclass M=M=c
retrial queue converges to the ordinary M=M=c queue
with discriminatory random order service (DROS)
with the selecting probability bbb = (b1; � � � ;bm) de-
noted by M=M=c=DROS(bbb) as G tends to infinity for
fixed bbb. For the queue with DROS discipline, see
(Kim et al., 2011). From this observations, a refine-
ment of Li;App(G) is proposed by

L̂i(G) = Li;App(G)+(Li;M=M=c=DROS(bbb)�Li;App(G
�));

where Li;M=M=c=DROS(bbb) is the mean number of i-
customers in queue for M=M=c=DROS(bbb) and G� is
large enough so that the variation of Li;App(G) is neg-
ligible for G� G�.

Table 3 lists the approximation results and simu-
lation ones with 95% confidence interval (c.i.) for PB
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and Li in M=M=3 retrial queue with m = 2 classes of
customers, µµµ = (1:0;2:0), bbb = (0:2;0:8) and the ra-
tio of arrival rates aaa = (0:3;0:7), where ai =

li
å

m
i=1 l j

,
1� j � m.
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