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Abstract: A minority game (MG) is a non-cooperative iterated game with an odd population of agents who make bids
whether to buy or sell. Based on the framework of MG, several kinds of games have been proposed. However,
the common disadvantage in their characteristics is to neglect past actions. So we present a new variant of
the MG, called an asset value game (AG), in which every agent aims to decrease a mean asset value, that
is, an acquisition cost averaged through the past actions. The AG, however, is too simple to reproduce the
complete market dynamics. So we further consider an improvement of AG, called an extended asset value
game (ExAG), and investigate their features and obtain some results by simulation.

1 INTRODUCTION

Background

A minority game (MG) has been extensively studied
in this decade. It is considered as a model for finan-
cial markets or other applications in physics. It is a
non-cooperative iterated game with an odd popula-
tion sizeN of agents who make bids whether to buy
or sell. Since each agent aims to choose the group of
minority population, he is called acontrarian. Every
agent makes a decision at each step based on the pre-
diction of a strategy according to the sequence of the
m most recent outcomes of winners, wherem is said
to be the memory size of the agents. Though MG is
a very simple model, it captures some of the complex
macroscopic behavior of the markets.

It is also known that the MG cannot capture large
price drifts such as bubble/crash phenomena, but just
can do the stationary state of the markets. This can be
intuitively explained as follows. Suppose that a group
of buyers can keep a majority for a long time. Then
a group of sellers must continuously win in the bub-
ble phenomenon. However, since every agent wants
to win and thus joins the group of sellers one after
another, it will gain a majority soon. That is, the
group of buyers cannot keep a majority, a contradic-
tion. Thus, it is difficult to simulate the bubble phe-
nomenon by MG.

Related Work

Much work has been done for the purpose of adapt-
ing MG to a real financial market. For example, first,
several authors investigated the majority game (MJ),
consisting oftrend-followers. Marsili (Marsili, 2001)
and Martino et al. (Martino et al., 2003) investigated a
mixed majority-minority game by varying the fraction
of trend-followers. Second, another way is to incor-
porate more realistic mechanism. A grand canonical
minority game (GCMG) (Challet et al., 2001; Ferreira
et al., 2005; Giardina et al., 2001) is considered as one
of the most successful models of a financial market.
In the GCMG, a set of agents consist of two groups,
called producers and speculators, and the speculators
are allowed not to trade in addition to buy and sell.
Third, it is also useful to improve the payoff function.
Andersen and Sornette(Andersen and Sornette, 2003)
proposed a different market payoff, called $-game, in
which the timing of strategy evaluation is taken into
consideration. Ferreira and Marsili(Ferreira and Mar-
sili, 2005) compared the behavior of the $-game with
that of the MG/MJ. The difficulty of the $-game is
to evaluate its payoff function because we have to
know one step future result. (Kiniwa et al., 2009)
proposed an improved $-game, in which the timing of
evaluation is delayed until the future result is turned
out. Fourth, there are some other kinds of improve-
ment. Liu et al. (Liu et al., 2004) proposed a mod-
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ified MG, where agents accumulate scores for their
strategies from the recent several steps. Recent work
by Challet (Challet, 2008) proposed a more sophis-
ticated model using asynchronous holding positions
which are driven by some patterns. Finally, two books
(Challet et al., 2005; Coolen, 2005) comprehensively
described the history of minority games, mathemati-
cal analysis, and their variations. Beyond the frame-
work of MG, efforts to reproduce the real market dy-
namics are continued (Takayasu et al., 1992; Yamada
et al., 2007).

Motivation

The purpose of this paper is also to improve MG by
the thirdly mentioned above. Though the framework
of MG and its variants seem to be reasonable, we
have a basic question — “Do people always make
decisions by using their strategies depending on the
recent history ?” Some people may just take actions
by considering losses and gains. For example, if one
has a company’s stock which has rapidly risen (resp.
fallen), he will sell (resp. not sell) it soon without us-
ing his strategy as illustrated in Figure 1. Such a situa-
tion gives us the idea of an acquisition cost, or a mean
asset value. In the conventional games, like the origi-
nal MG, an agent forgets the past events and makes a
decision by observing only the price up/down within
the memory size1. In our game, however, each agent
evaluates the strategies by whether or not the current
price exceeds his mean asset value. Since the mean
asset value contains all the past events in a sense, he
can increase his net profit by reducing the mean asset
value. We call the game anasset value game, denoted
by AG.

Figure 1: Illustration of our idea.

However, there is still an unsolved problem in AG
that stems from the framework of MG: the payoff
function does not give an action, but just adds points
to desirable strategies. Thus, if the adopted strategy is

1Recently, several studies (Araujo and Lamb, 2004;
Araujo and Lamb, 2009) in this direction have been made
from the viewpoint of evolutionary learning.

not desirable, the agent has to wait until the desirable
one gains the highest score. So, there is a time lag be-
tween the rapid change of a price and the adjustment
of an agent’s behavior.

To improve the time lag, we allow each agent
another action that satisfies the payoff function with
some probability. If the price rises/falls rapidly and
the difference between the price and agenti’s mean
asset value exceeds some threshold, the agenti may
take the action according to the payoff function (re-
gardless of the strategy). By tuning up the threshold,
etc., we can reproduce the real market dynamics. We
call the variant of AG anextended asset value game,
denoted by ExAG.

Contributions

Our contributions in this paper are summarized as fol-
lows:

• We present a new variant of the MG, called an
asset value game.

• To improve the problem of AG, we further con-
sider an extended AG.

• We investigate the behavior of AG and ExAG in
detail.

The rest of this paper is organized as follows. Sec-
tion 2 states our model, which contains MG, MJ, AG
and ExAG. Section 3 presents an analysis of AG. Sec-
tion 4 describes a simulation model and shows some
experimental results. Finally, Section 5 concludes the
paper.

2 MODELS

In this section, we first describe MG and MJ in Sec-
tion 2.1, then the difference between MG and AG in
Section 2.2. Finally, we describe the difference be-
tween AG and ExAG in Section 2.3.

2.1 Previous Model — MG and MJ

At the beginning of the game, each agenti ∈
{1, . . . ,N} is randomly givens strategiesRi,a for a∈
{1, . . . ,s}. The number of agents,N, is assumed to be
odd in order to break a tie. Any strategyRi,a(µ)∈ Ri,a

maps anm-length binary stringµ into a decision−1
or 1, that is,

Ri,a : {−1,1}m−→ {−1,1}, (1)

where m is the memory of agents. Ahistory H,
e.g., [−1,1,1, . . .], is a sequence of−1 and 1 rep-
resenting awinning decision h(t) for each time step
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t ∈ T = (0,1,2, . . .). The winning decision of MG
(resp. MJ) is determined by the minority (resp. ma-
jority) group of−1 or 1. Each strategyRi,a(µ) ∈ Ri,a

is given ascore Ui,a(t) so that the best strategy can
make a winning decision. For the lastm winning de-
cisions, denoted byµ= hm(t−1)⊆ H, agenti’s strat-
egyRi,a(µ) ∈ Ri,a determines−1 or 1 by (1). Among
them, each agenti selects his highest scored strategy
R∗

i (µ) ∈ Ri,a and makes a decisionai(t) = R∗
i (µ) at

time t ∈ T. The highest scored strategy is represented
by

R∗
i (µ) = arg max

a∈{1,...,s}
Ui,a(t), (2)

which is randomly selected if there are many ones. An
aggregate valueA(t) = ∑N

i=1ai(t) is called an excess
demand. IfA(t)> 0, agents withai(t) =−1 win, and
otherwise, agents withai(t) = 1 win in MG, and vice
versa in MJ. Hence the payoffsgMG

i andgMJ
i of agent

i are represented by

gMG
i (t +1) = −ai(t)A(t) and (3)

gMJ
i (t +1) = ai(t)A(t), respectively. (4)

The winning decisionh(t) = −1 or 1 is added to the
end of the historyH, i.e.,hm+1(t) = [hm(t −1),h(t)],
and then it will be reflected in the next step. After the
winning decision has been turned out, every score is
updated by

Ui,a(t +1) =Ui,a(t)⊕Ri,a(µ) ·sgn(A(t)), (5)

where⊕ means subtraction for MG (addition for MJ)
and sgn(x) = 1 (x ≥ 0), = −1 (x < 0). In other
words, the scores of winning strategies are increased
by 1, while those of losing strategies are decreased
by 1. We simply say that an agent increases selling
(resp. buying) strategies if the scores of selling (resp.
buying) strategies are increased by 1. Likewise the
decrement of scores. Notice that the score is an ac-
cumulated value from an initial state in the original
MG. In contrast, we define it as a value from the last
Hp steps according to (Liu et al., 2004). That is, we
use

Ui,a(t+1)=Ui,a(t)⊕Ri,a(µ)·sgn(A(t))−Ui,a(t−Hp).
(6)

The constantHp is not relevant tom, but is only used
for selecting the highest score. Analogous to a fi-
nancial market, the decisionai(t) = 1 (respectively,
−1) represents buying (respectively, selling) an asset.
Usually, the price of an asset is defined as

p(t +1) = p(t) ·exp
A(t)
N

. (7)

2.2 Asset Value Game

The difference between MG and our asset value game
is the payoff function. Letvi(t) be agenti’s mean

asset value at timet, andui(t) the number of units of
his asset. The payoff function in AG is defined as

gAG
i (t +1) =−ai(t)Fi(t), (8)

whereFi(t) = p(t)−vi(t). The mean asset valuevi(t)
and the number of asset unitsui(t) are updated by

vi(t +1) =
vi(t)ui(t)+ p(t)ai(t)

ui(t)+ai(t)
(9)

and
ui(t +1) = ui(t)+ai(t), (10)

respectively. That is, the payoff function (3) in MG is
replaced by (8) in AG. Without loss of generality, we
assume thatvi(t),ui(t)> 0 for anyt ∈ T.

The basic idea behind the payoff function is that
each agent wants to decrease his acquisition cost in
order to make his appraisal gain. Figure 2(a) shows
the relationship between the price and the mean asset
values ofN = 3 agents, where the price is represented
by the solid, heavy line. Notice that if the population
sizeN is small, the price change becomes drastic.

The most important feature of the AG is to ap-
preciate the past gains and losses. Even though an
agent has bought a high-priced asset during the asset-
inflated term (see Figure 1), the mean asset value of
the agent reflects the fact and an appropriate action
compared with the current price is recommended.

2.3 Extended Asset Value Game

Here we consider the drawbacks of AG, and present
an extended AG, denoted by ExAG, to improve them.
Though the AG captures a good feature of an agent’s
behavior, the payoff function indirectly appreciates
desirable strategies. If the adopted strategy is not de-
sirable, the agent has to wait until the desirable one
gains the highest score. So, there is a time lag be-
tween the rapid change of a price and the adjustment
of an agent’s behavior.

More precisely, the movement of price is followed
by the asset values (see arrows in Figure 2(a)). This
behavior can be explained by the following reasons. If
the price rapidly rises, it exceeds almost all the mean
asset values. Then,Fi(t) = p(t)− vi(t) becomes plus
and theai(t) =−1 (i.e., sell) action is recommended.
So, some agents change from trend-followers to con-
trarians in a few steps. During the steps, such agents
remain trend-followers, that is, buy assets at the high
price. Thus, their mean asset values follow the move-
ment of price.

Our solution is to provide another option of the
agent. That is, the agent who has much higher/lower
asset value than the current price can directly act as
the payoff function, called adirect action. However,
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Figure 2: Price influence on mean asset values.

if so, every agent may take the same action when the
price go beyond every asset value. To avoid such an
extreme situation, we give the direct action with some
probability.

Let K = K+ (Fi ≥ 0), K− (Fi < 0) be theFi ’s
threshold over which the agent may take the direct
action, and letλ be some constant. Each agent takes
the same action as the payoff function (without using
his strategy) with probability

p=

{

1−exp{−λ(|Fi|−K)} (K ≤ |Fi |)
0 (|Fi|< K),

(11)

where

K =

{

K+ 0≤ Fi
K− Fi < 0 such thatK− < K+

and takes the action according to his strategy with
probability 1− p. In short, in ExAG

• agent i takes an actionai(t) satisfying gAG
i (t +

1)> 0 with probabilityp, and

• an actionai(t) = R∗
i (µ) with probability 1− p.

Figure 2(b) shows the behavior of the price and
the mean asset values forN=3 agents in our extended
AG, whereK+ = 300,K− = 50 andλ= 0.001. Notice
that the change of price in Figure 2(b) is not so drastic
as that in Figure 2(a). In addition, all the values do not
follow the price movement.

3 ANALYSIS OF AG

In this section we briefly investigate the features of
AG. Though we mainly discuss the bubble in the fol-
lowing, similar arguments hold for the crash. For con-
venience, we define a contrarian as follows. Ifai(t) =
−1 (resp. ai(t) = 1) for a historyhm(t − 1) = {1}m

(resp. hm(t − 1) = {−1}m), agenti is a contrarian.
Let tr be the first time at which the winning decision
is reversed aftert−m. LetCMJ(t), CAG(t) andCMG(t)
denote the set of contrarians in MJ, AG and MG, re-
spectively. The next theorem means that the bubble
phenomenon is likely to occur in the order of MJ, AG
and MG.

Theorem 1. Suppose that the same set of agents expe-
rience hm(t−1)= {1}m starting from the same scores
since t−m. Then, for any t′ ∈ T = (t, . . . , tr −1) we
have

CMJ(t ′)⊆CAG(t ′)⊆CMG(t ′).

Proof. First, we show thatCAG(t) = CMG(t) at time
t. Consider an arbitrary agenti. Notice that agent
i has the same score both inAG and in MG. Since
hm(t−1) = {1}m, agenti takes the same action based
on the same strategy both inAGand inMG. Thus, we
haveCAG(t) =CMG(t) at timet.

Next, we show thatCAG(t ′) ⊆ CMG(t ′) at time
t ′ ∈ T. Notice that all the agents inMG increase the
selling strategies forhm(t −1) = {1}m. On the other
hand, notice that the agents inAG that have smaller
mean asset valuesv(t) than the pricep(t) increase the
selling strategies forhm(t −1) = {1}m. Since every
contrarian refers to the same part (i.e.,{1}m) of the
strategy, he does not change his decision during the
intervalT. If an agent increases the selling strategies
in AG, it also increases the selling strategies inMG.
Thus we haveCAG(t ′)⊆CMG(t ′) at timet ′ ∈ T.

The similar argument holds forCMJ(t ′)⊆CAG(t ′).
⊓⊔

We call an agent abi-strategistif he can take both
buy and sell actions, that is, has strategiesRi,a con-
taining both actions, forhm(t −1) = {1}m or hm(t −
1) = {−1}m. The following lemma states that there is
a time lag between the price rising and the action of
agent’s payoff function.

Lemma 1. In AG, suppose that a history H contains
hm(t − 1) = {1}m. Even if a bi-strategist keeps the
opposite action of the payoff function for Hp steps, he
takes the same action as the payoff function after the
Hp+1-st step.

Proof. Suppose that a bi-strategisti has a strategy
Ri,a1 (resp. and a strategyRi,a2) which takes the op-
posite action of (resp. the same action as) the pay-
off function. If i adopts the strategyRi,a1 now, the
score difference betweenRi,a1 and Ri,a2 is at most
2Hp. Since the difference decreases by 2 for a step,
the scores ofRi,a1 andRi,a2 becomes the same point at
theHp-th step. Then, after theHp+1-st step, he takes
the strategyRi,a2. ⊓⊔

For simplicity, we assume that the size ofHp is
greater thanm enough.

Lemma 2. In AG, suppose that a history H contains
hm(t − 1) = {1}m. For any time steps t1, t2 ∈ T =
(t, . . . , tr −1), where t1 < t2, we have

CAG(t1)⊆CAG(t2).

ICAART 2012 - International Conference on Agents and Artificial Intelligence

18



Proof. Suppose that agenti belongs toCAG(t1). We
show that once the rising pricep(t1) overtakes the
mean asset valuevi(t1) of agenti, vi(t1) will not over-
takep(t1) as long asp(t1) is rising. Since

vi(t +1)− vi(t) =
a(p− v)

u+a
> 0 and 0<

a
u+a

< 1,

p> v holds as long asp(t1) is rising. Thus, agenti is
contrarian at timet1+1. We haveCAG(t1)⊆CAG(t1+
1), and can inductively showCAG(t1)⊆CAG(t2). ⊓⊔

We say that the bubble ismonotoneif hm(t −1) =
{1}m holds for anyt ∈ T = (t, . . . , tr −1).

Lemma 3. In AG, as long as more than half popula-
tion are bi-strategists, the price in a monotone bubble
will reach the upper bound.

Proof. First, the mean asset values that has been over-
taken by the price will not exceed the price again from
the proof of Lemma 2.

Second, any bi-strategisti with vi(t) > p(t) will
take a buying action in theHp+1 steps from Lemma
1. Sincevi(t +1)− vi(t) = a(p−1)/(u+a)< 0, the
mean asset value decreases. Thus, the rising price will
eventually reach the greatest mean asset value in the
set of contrarians.

Third, since all the bi-strategists increase the sell-
ing strategies, they will take selling actions inHp+1
steps. After that,A/N < 0 holds and the price falls
down. ⊓⊔

From Lemma 3, the following theorem is straight-
forward.

Theorem 2. In AG, as long as more than half pop-
ulation are bi-strategists, the monotone bubble will
terminate. ⊓⊔

4 SIMULATION

In this section, we present some simulation results.
Our first question with respect to ExAG is :

1. What values are appropriate for the constantλ and
the thresholdK in ExAG ?

Our next question with respect to AG is :

2. How does the inequality of wealth distribution
vary in AG ?

Then, our further questions with respect to several
games are as follows.

3. How widely do the Pareto indices of games differ
from practical data ?

4. How widely do the skewness and the kurtosis of
games differ from practical data ?

5. How widely do the volatilities differ in several
games ?

6. How widely do the volatility autocorrelations of
games differ from practical data ?

We present our basic constants in Table 1. We re-
peated the experiments up to 30 times and obtained
averaged results. The simulation is implemented by
the C language.

Table 1: Basic constants.

Symbol Meaning Value
N Number of agents 501
S Number of strategies 4
m Memory size 4
Hp Score memory 4
T Number of steps 5000
— Initial agent’s money 10000
— Initial agent’s assets 100
r Investment rate 0.01
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Figure 3: Price behavior for varyingλ in ExAG.

For the first issue, Figure 3 shows the patterns of
price behavior for three kinds ofλ values. From the
definition of the direct action probability (see (11)),
the smaller theλ becomes, the fewer the number of
direct actions occur. Thus, the ratio of trend-followers
is high forλ = 0.0001 and that of contrarians is high
for λ = 0.01.

In addition, Figure 4 shows the skewness and the
kurtosis for varying the constantλ, where the skew-
ness (α3) and the kurtosis (α4) are defined as

α3 =
N

∑
i=1

(xi − x)3

Nσ3 and α4 =
N

∑
i=1

(xi − x)4

Nσ4 ,

respectively, for time series variablexi and its aver-
agex. If the skewness is negative (respectively, posi-
tive), the left (respectively, right) tail of a distribution
is longer. A high kurtosis distribution has a sharper
peak and longer, fatter tails, while a low kurtosis dis-
tribution has a more rounded peak and shorter, thinner
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tails. In other words, the more the patterns of price
fluctuation occur, the smaller the kurtosis becomes.
Thus, ifλ is small and the reversal movements of con-
trarians are rare, the kurtosis becomes large. On the
other hand, if we varyK− with keepingK+ = 500,
the kurtosis is distributed as shown in Figure 5, where
a regression curve is depicted.

0.01 0.1 1

0

20

40

60

80

100

120

140

 Kurtosis
 Skewness

K
u
rt
o
si
s

-0.4

-0.2

0.0

0.2

0.4

S
ke

w
n
e
ss

Figure 4: Skewness and kurtosis vsλ in ExAG.
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Figure 5: Kurtosis vsK− in ExAG.

From the observation above, we setλ = 0.001,
K− = 50 andK+ = 500 in what follows.

For the second issue, we present our results in Fig-
ure 6. The Gini coefficient is used as a measure of
inequality of wealth distribution. Given a set ofN
agents’ wealth(X1,X2, . . . ,XN), the Gini coefficientG
is defined as

G=
1

2N2X

N

∑
i=1

N

∑
j=1

|Xi −Xj |,

whereX = ∑N
i=1Xi/N. If G = 0, the wealth is com-

pletely even. IfG is close to 1, an agent has a
monopoly on the wealth.

Figure 6(a) shows that the influence of memory
size on the Gini coefficient. It means that the smaller
the memory size is, the wider the inequality of wealth
becomes. If the memory size is small, some success-
ful agents earn much money and the others not. So
their mean asset values are widely distributed in the
long run. Thus, the Gini coefficient tends to be large.

Figure 6(b) shows that the influence of invest-
ment rate on the Gini coefficient. It means that the

larger the investment rate is, the wider the inequal-
ity of wealth becomes. If the investment rate is large,
the successful agents earn much money and the others
not. So their mean asset values are widely distributed
in the long run. Thus, the Gini coefficient tends to be
large.
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Figure 6: Influence on Gini coefficient in AG.
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For the third issue, Figure 7 shows the price de-
creasing change distribution for several games and
NYSE, where NYSE is the Dow-Jones industrial av-
erage 20,545 data (1928 /10/1 — 2010/7/26) in New
York Stock Exchange. That is, the normalized de-
creasing change of price|R|= |∆Price/σ| and its dis-
tribution is compared. The straight lines represent the
Pareto indices. At a glance, the curves of ExAG and
AG resemble that of NYSE, which means their dis-
tributions are likewise. The Pareto index of ExAG is
also not far from that of NYSE.

For the fourth issue, we obtained the following re-
sults. Both ExAG and AG have better values of skew-
ness and kurtosis than MG does as shown in Tables 2
and 3, where “stdev.” and “95% int.” mean standard
deviation and 95% confidence interval, respectively.

For the fifth issue, we present our results in Figure
8. The volatility is defined as the standard deviation
of the number of excess demand. The figure shows
that the volatility of AG is lower than other games for
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Table 2: Skewness.

method ExAG AG MG NYSE
average 0.098 0.39 -0.32 3.725
stdev. 1.82 1.03 1.86 —

95% int. [-0.58,0.77] [0.007,0.77] [-1.02,0.37] —

Table 3: Kurtosis.

method ExAG AG MG NYSE
average 42.3 72.9 148 18.92
stdev. 61.6 96.3 231 —

95% int. [21.3,67.3] [36.9,109] [62.2,235] —
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Figure 8: Volatility (N = 51∼ 5119,S= 4, m= 9).
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Figure 9: Autocorrelation of volatility.

every memory size. This means the memory size does
not have a great impact on the price formation in AG.

For the sixth issue, the autocorrelation function
C(τ) is defined as

C(τ) =
〈A(t)A(t + τ)〉

〈A(t)2〉
,

whereτ is a time lag. The value ofC(τ) becomes 1
(respectively, -1) if there is a positive (respectively,
negative) correlation betweenA(t) andA(t + τ). As
shown in Figure 9, only MG has the alternating,
strong positive/negative correlation for every time lag.
Other games, AG and ExAG, have weak correlations

which reduce as the time lag grows. The practical
data, NYSE, has a negative correlation only when the
time lag isτ = 1. Since the excess demand in NYSE
is unknown, we assume the number of agents is equal
to N = 501 and estimateA(t) from the equation (7).
Notice that ExAG has the same (negative) correlation
as NYSE whenτ = 1, while AG has the positive cor-
relation.

5 CONCLUSIONS

In this paper, we proposed an asset value game and
an extended asset value game. The AG is a simple
variant of MG such that the only difference is their
payoff functions. Though the AG captures a good
feature of an agent’s behavior, there is a time lag be-
tween the rapid change of a price and the adjustment
of an agent’s behavior. So we consider the ExAG, an
improvement of AG, by using parameters which con-
tain some probabilistic behavior. The ExAG has two
parameters by which the balance of trend-followers
and contrarians can be controlled. We examined sev-
eral values for the parameters and then fixed to speci-
fied values. We obtained several experimental results
which reveals some characteristics of ExAG. The ad-
vantages of ExAG are twofold. First, we can restrict a
drastic movement of price in AG by tuning the param-
eters. Second, we can reduce the time lag generated
by recovering score losses in AG.

Our future work includes investigating the influ-
ence of market intervention, an in-depth analysis of
the AG, and other applications of the games.
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