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Abstract: This paper presents and explains a set of equations for governing simultaneous task allocation in multi-robot 
systems and describes how they are used to construct a novel algorithm - the Idiotypic Task Allocation 
Algorithm (ITAA); the equations are based on Farmer's model of an idiotypic immune network but are 
adapted to include 2-dimensional stimulation and suppression and the use of affinity rather than 
concentration levels to select antibodies. This novel approach is taken to render the model suitable for 
simultaneous task allocation where robots must act individually; other idiotypic algorithms have only been 
applicable to problems where many robots are required to perform one task at a time using swarming 
behaviours. The paper describes the analogy between idiotypic network theory and the problem of task 
allocation and shows how the former can be used to increase the fitness of solutions to the latter, also 
discussing the types of  Multi-Robot Task Allocation (MRTA) problem that might benefit from this 
approach. The results of applying ITTA to a number of simulated mine-clearance problems (with increasing 
numbers of robots and mines) are presented, and clear advantage over the greedy solution in both simple 
and more complex scenarios is demonstrated. 

1 INTRODUCTION 

There are many different types of Multi-Robot Task 
Allocation (MRTA) problem including varying 
combinations of single-task (ST) robots, multi-task 
(MT) robots, single-robot (SR) tasks, multi-robot 
(MR) tasks, instantaneous assignments (IA, with no 
planning for future allocations), time-extended 
assignments (TA, which allows for future allocation 
planning) and online assignment variations of IA 
(OA, where tasks are introduced one at a time). The 
interested reader is directed to Gerkey and Mataric 
(2004), which presents a comprehensive, 
architecture-independent taxonomy. In addition, 
robots may be heterogeneous in their capabilities 
and performance, and tasks may differ in 
complexity, difficulty and solution requirements. 
Whilst all types of MRTA problem may be solved 
by implementing a greedy algorithm, characterised 
by repeatedly taking the 'best' valid option (based on 

some measure of fitness) at a local level, 
optimization is not guaranteed. In addition, the 
Linear Programming (LP) approach, which 
guarantees optimality, cannot be applied to some of 
the more complex MRTA problem types including 
ST-SR-IA-OA, ST-SR-TA, ST-MR-IA, ST-MR-TA, 
MT-SR-IA, MT-SR-TA, MT-MR-IA and MT-MR-
TA combinations, some of which are strongly NP-
hard (Gerkey and Mataric (2004)). There is thus a 
need for heuristic approaches that are capable of 
providing fitter solutions than those offered by 
greedy algorithms, and much research effort has 
been directed towards the development of heuristic 
MRTA techniques. For example, auction-like 
allocation mechanisms are described in Guerreor 
and Oliver (2011), Nanjanath and Gini (2010) and 
Gerkey and Mataric (2002). There have also been a 
number of works published on market-based 
techniques (for example Dias et al. (2005)), 
coalition-formation methods (Shehory and Kraus 
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(1998)), self-organisation (Fukuda et al. (1988)) and 
emergent systems (Liu et al. (2007) and Atay and 
Bayazit (2007)).  

This paper presents a set of equations based on 
those developed by Farmer et al. (1986) that 
represent an idiotypic immune system approach (see 
Jerne (1974)) to solving the problem of task 
allocation in the multi-robot domain. The equations 
have been adapted to include 2-dimensional 
stimulation and suppression and the use of affinity 
rather than concentration levels to select antibodies. 
This is a novel approach that allows each robot to 
solve a separate task independently so that all tasks 
can be completed simultaneously. 

The paper describes the analogy between task 
allocation and the idiotypic network theory of the 
immune system and shows how the equations can be 
applied to general ST-SR-IA problems with N robots 
looking for one task to complete and L tasks 
requiring one robot. It sets out how this approach 
differs from previous idiotypic implementations of 
MRTA and explains its advantages over them; in 
particular, other idiotypic algorithms have only been 
applicable to problems where many robots are 
required to perform one task at a time using 
swarming behaviours.  

A set of experimental results on simulated 
problems of this type is presented, initially where L 
= N, N varies between 3 and 15, and robots are 
required to organise mine diffusion tasks in a way 
that minimizes travel costs. Some preliminary results 
for the case where N ≠ L are also briefly discussed. 
The results provide empirical evidence that the 
Idiotypic Task Allocation Algorithm (ITTA) 
described here is capable of  outperforming the 
greedy approach such that mean fitness is 
significantly improved for these problem types. 

2 BACKGROUND, PRIOR WORK 
AND MOTIVATION 

2.1 Background 

The purpose of the immune system is to identify and 
neutralize the molecules or cells that are dangerous 
to the body (antigens) without damaging healthy 
cells (Barra and Agliari (2007)). This is achieved 
through the interaction of many different types of 
immune cell, which each have specific roles. The 
main constituents of the adaptive immune system are 
B-lymphocytes (B-cells) and T-lymphocytes (T-
cells), which have particular protein molecules on 

their surfaces called receptors. The receptors of B-
cells can bind to antigens that 'match' them, allowing 
the B-cells to neutralize them.  

The clonal selection theory of the immune 
system (Burnet (1958)) states that lymphocytes 
operate independently, and that once a match is 
established, B-cells proliferate (increase in 
concentration) by cloning and releasing free 
receptors known as antibodies. Binding takes place 
between a region of the antibody known as the 
paratope and a region of the antigen known as the 
epitope. In contrast, Jerne's idiotypic network theory 
of the immune system (Jerne (1974)) postulates that 
lymphocytes interact with each other so that the 
immune system functions as a global network of 
cells stimulated and suppressed by internal 
recognition and matching between themselves. This 
is because antibodies also serve as internal images of 
certain antigens and are thus themselves being 
detected and acted upon (Barra and Agliari (2007)), 
which keeps the concentrations of antibodies at 
appropriate levels. Antibody paratopes are thus not 
only matched to antigen epitopes but also to epitope 
regions on other antibodies, known as idiotopes. 
Figure 1 below shows the structure of an antibody 
and illustrates how antibody concentrations are 
suppressed by other antibodies that recognise their 
idiotope, and how concentrations are stimulated to 
increase when they recognise another antibody's 
idiotope.  

 
Figure 1: Antibody paratope and idiotope regions. 

2.2 Prior Work 

The dynamics of antibody and antigen 
concentrations are modelled computationally as 
differential equations in Farmer et al. (1986). This 
model is widely used for constructing Artificial 
Immune System (AIS) implementations of idiotypic 
networks, especially in navigational robotics, where 
the method has demonstrated flexible behaviour-
mediation properties. However, in this field artificial 
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idiotypic networks have largely been confined to 
single robot navigation problems, for example, 
Watanabe et al. (1998), Vargas et al. (2003),  Luh 
and Liu (2004), and Whitbrook et al. (2007), where 
the individual behaviours of single robots are 
modelled as antibodies and environmental 
information is modelled as antigens. 

On the other hand, the application of idiotypic 
principles to task allocation in the multi-robot 
domain is somewhat more scarce, especially 
utilization of the Farmer-based model, despite the 
fact that its decentralized yet cooperative and 
coordinated approach to problem solving lends itself 
very elegantly to such systems.  Sathyanath and 
Sahin (2002) implement idiotypic mine detection but 
use a simplistic analogy rather than the Farmer 
model, i.e., idiotopes are not modelled and play no 
role in determining the stimulation and suppression 
levels of robots. Mitsumoto et al. (1995) implement 
swarm behaviour by using a clonal selection-based 
method rather than an idiotypic network; self-non-
self discrimination is modelled and tactics between 
the robots are secreted and proliferated until 
swarming behaviours emerge. Dioubate et al. (2008) 
use a hybrid Farmer-based idiotypic network 
coupled with  clonal selection and genetic evolution 
of lymphocytes to generate co-ordinated formation 
of robots behind obstacles. Lee and Sim (1997) use 
the Farmer model to develop idiotypic cooperative 
strategies leading to swarm behaviours; robots 
communicate their behaviours to each other on a 
local level and the behaviour (antibody) that shows 
the greatest stimulation is adopted by the whole 
group. Jun, Lee and Sim (1999) and Sun, Lee and 
Sim (2001) use an extended version of this model 
that includes additional T-cell control of 
concentrations to improve the adaptation capability. 
Razali  et al. (2009, 2010) use the same model as 
Jun, Lee and Sim (1999), but also include memory 
enhancement to achieve shepherding behaviour for 
robot dogs managing robot sheep. Li et al. (2007) 
solve the same problem, also using Farmer's 
idiotypic model, but do not include T-cell control or 
enhanced memory.  

2.3 Motivation 

In all of the examples cited above either the Farmer 
model is not implemented or the goal is to adopt 
majority behaviour patterns rather than assign 
individual behaviours to individual tasks. The 
general Lee and Sim approach is thus suited to 
problems where a number of tasks that require many 
robots to solve them are completed in sequence (ST-

MR-TE), but it is not applicable to the broader 
spectrum of problems including those that require 
instantaneous assignment (IA) of robots to different 
tasks. In essence, the Lee and Sim analogy is the 
same as for single robot navigation, i.e., behaviours 
are modelled as antibodies, and only one behaviour 
is adopted at a given time. If robots in the group are 
required to adopt different behaviours at a given 
time (as in IA problems), then a different model is 
clearly needed. Furthermore, there is a real 
requirement for IA-type assignment of 
heterogeneous tasks to heterogeneous robots within 
the military domain. In particular,  it is envisaged 
that within the next twenty-five years autonomous 
military capabilities will undergo a major shift 
toward joint, multi-mission, collaborative operations 
between manned and unmanned vehicles (US 
Department of Defence (DOD) (2009)). For 
example, fleets of unmanned aerial vehicles (UAVs) 
and unmanned ground vehicles (UGVs) will be 
required to work together to accomplish 
reconnaissance, surveillance, mine detection and 
target-designation missions. Within such operations, 
successful task allocation and coordination of the 
many heterogeneous assets will be critical to mission 
success, but will also impose a great burden on 
central command and control as the number of assets 
increases. For this reason, an autonomous, 
decentralized, self-regulating coordination system in 
which the assets are able to allocate tasks 
independently of human control would be of great 
value to the military. In addition, if progressed 
through to use in theatre, a successful framework for 
decentralized coordination and control of 
heterogeneous, multi-agent, military systems would 
represent a significant step forward for autonomy.  
Indeed, the current US DOD Unmanned Air 
Systems Roadmap (2005) cites “distributed control” 
as the main criteria for achieving an autonomy level 
of 8 in the DOD scale (range = 1 to 10) compared 
with the remotely-operated systems that are typically 
in place at present; these are measured as between 
levels 1 and 3 on the same scale. This paper sets out, 
describes and tests the Idiotypic Task Allocation 
Algorithm (ITAA), which provides a potential 
solution to the problem of autonomous, 
decentralized, distributed task allocation for IA-type 
assignment of heterogeneous tasks to heterogeneous 
robots. 

3 PROBLEM SPACE 

A mine-clearance scenario has been selected as the 
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test-bed for the ITAA as it has many properties that 
make it ideal.  In particular, there is sufficient 
flexibility within the problem space to allow more 
simple variations to be implemented in the early 
stages of research, and to build and test more 
complex instances as the work progresses, for 
example beginning with ST-SR-IA experiments, 
equal numbers of identical tasks (mines to diffuse) 
and identical robots, incrementally building up to the 
inclusion of online assignments (OA), time-extended 
assignments (TE), unequal numbers of tasks and 
robots, heterogeneous tasks and robots, multi-task 
robots (MT), multi-robot tasks (MR), and real-time, 
real-world implementations that require additional 
features such as reactive obstacle avoidance 
modules. 

In this paper, research begins with the problem 
of assigning a known number L of identical, un-
diffused mines to a known number N of 
homogenous robots in simulation.  Initially, it is 
assumed that: 

1. the robots have equal capabilities and travel at 
the same, fixed speed; 

2. the mines are equally accessible to all the 
robots, i.e., there are no obstacles to negotiate; 

3. the level of difficulty in diffusing a mine is 
equal for all mines and constant throughout the 
operation; 

4. the number of mines L does not change at any 
time during the operation;  

5. the number of robots N does not change at any 
time during the operation;  

6. the number of robots available is always equal 
to the number of mines needing diffusing, i.e., N 
≡ L. 

7. once assignment has taken place and the mines 
are diffused, all work is done. 

Note that assumptions 1 to 3 allow the distance 
between robots and mines to be used as a measure of 
affinity between them. If this were not the case, then 
a more complex measure would be needed, i.e. one 
that also considers the ability of each robot to 
complete each individual task and the additional 
time that would be needed to negotiate (possibly 
moving) obstacles. This paper is chiefly concerned 
with validating the theory set out in Section 4 so use 
of the most simplistic case in the first instance 
allows the essential theory of the ITTA model to be 
tested independently of any real-world noise. The 
results of a preliminary investigation into cases 
where N ≠ L is also briefly discussed here but more 
complex experiments will be conducted in the future 
in order to establish whether the method stands up to 

the problems associated with real-world 
implementation. 

4 THE IDIOTYPIC TASK 
ALLOCATION ALGORITHM 
(ITAA) 

In the model presented here, antibodies are 
analogous to possible robot-mine pairs, and the 
affinity U of each antibody to the current antigen  
(physical positioning of all robots and mines) is the 
distance d between the robot and mine in the 
antibody pair. This is the antibody pre-affinity, 
before stimulation and suppression from other 
antibodies are taken into consideration. The post-
affinity after stimulation and suppression is denoted 
as T.  Writing this more formally, Uij is the pre-
affinity, Tij is the post-affinity and dij is the distance 
between robot i, i = 1, …, N and mine j, j = 1, …, L. 
The pre-affinity is thus given by 

௜ܷ௝ = ݀௜௝. (1)

After pre-affinities have been calculated, the  
initial allocation of robots to mines is achieved by 
executing a simple and intuitive greedy algorithm 
where the antibody with the smallest affinity is 
repeatedly selected as an allocation and then all pairs 
that contain that robot and mine are eliminated from 
future allocations until exactly one robot is allocated 
to exactly one mine. This greedy algorithm is also 
known as the Sequential Best-Pair Algorithm 
(SBPA, see Oliver and Guerrero (2011)). Let ݆ߛ 
represent the index of the robot allocated to mine j 
based on pre-affinities. Under the ITTA model, this 
is the antigenic robot to mine j, one of a set of L 
antigenic robots (as exactly one robot is antigenic to 
each of the L mines). Similarly, let	݅ߛ represent the 
index of the mine allocated to robot i based on pre-
affinities. This is the antigenic mine to robot i, one 
of a set of N antigenic mines (as exactly one mine is 
antigenic to each of the N robots). After the 
antigenic robots and mines are known, the post-
affinity is calculated using 

௜ܶ௝ = ௜ܷ௝ +෍ ௞ܸ௝ே
௞ୀଵ +෍ ௜ܹ௞௅

௞ୀଵ − ௜ܺ௝ − ௜ܻ௝, (2)

where: 

• V corresponds to suppression from the 
antibodies that represent robots competing for 
the same mine (they may suppress the antigenic 
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robot if they have a higher fitness (lower 
affinity) or are close in fitness to it). 

• X corresponds to stimulation of antibodies that 
represent robots competing for the same mine 
(the antigenic robot may stimulate other robots 
only if the other robots have a higher fitness 
(lower affinity) than it). 

• W corresponds to suppression from the 
antibodies that represent mines competing for 
use of the same robot (they may suppress the 
antigenic mine if they have a higher fitness 
(lower affinity) or are close in fitness to it). 

• Y corresponds to stimulation of antibodies that 
represent mines competing for use of the same 
robot (the antigenic mines may stimulate other 
mines only if the other mines have a higher 
fitness (lower affinity) than it). 

Equation (2) is similar to the original Farmer 
equation but differs in two important respects. First, 
concentrations of antibodies are not modelled, only 
affinities, and second, there are two stimulation 
terms and two suppression terms (rather than one of 
each as in the original). This reflects the 2-
dimensional nature of the model used here, i.e., 
stimulation and suppression are considered between 
robots and also between mines. To illustrate,  if the 
affinities between mine-robot pairs were set out as a 
matrix, for example with each row representing a 
unique mine and each column representing a unique 
robot, then stimulation and suppression are 
measured both across the columns in the x-direction 
and down the rows in the y-direction, see Figure 2, 
which shows an example of 2-dimensional 
stimulation and suppression for the 3-robot, 3-mine 
case. Note also that stimulation terms are subtracted 
from the pre-affinity and suppression terms are 
added to it. This is because, in this case, the affinity 
is based on the distance the robot has to travel, and 
thus, a reduction is seen as an improvement. 

In this model the total inter-robot suppression on 
antibody γj is given by the sum of the suppressions V 
imposed by antibodies kj (j = 1 to L, k = 1 to N) 
where  

௞ܸ௝ = ܷఊ௝݌ଵหܷ௞௝ − ܷఊ௝ห ∀൫݇ ≠ หܷ௞௝⋀ߛ − ܷఊ௝ห < ൯. (3)ߞ

The inter-robot stimulation X on antibody ij is 
imposed by antibody γj (i = 1 to N, j = 1 to L) and is 
a single term given by 

௜ܺ௝ = 	 ൫ܷఊ௝ −	 ௜ܷ௝൯݌ଵ ∀(݅ ≠ 	⋀ߛ ௜ܷ௝ < ܷఊ௝	). (4)

The total inter-mine suppression on antibody iγ is 
given by the sum of the suppressions W imposed by  

antibodies ik (i = 1 to N, k = 1 to L) where 

௜ܹ௞ = ௜ܷఊ݌ଵห ௜ܷ௞ − ௜ܷఊห ∀൫݇ ≠ ห⋀ߛ ௜ܷ௞ − ௜ܷఊห < .൯ߞ	 (5)

The inter-mine stimulation Y on antibody ij is 
imposed by antibody iγ (i = 1 to N, j = 1 to L)  and is 
a single term given by 

௜ܻ௝ = ൫ ௜ܷఊ − ௜ܷ௝൯݌ଵ ∀(݆ ≠ 	⋀ߛ ௜ܷ௝ < ௜ܷఊ). (6)

 
Figure 2: An example of 2-dimensional stimulation and 
suppression for a 3-robot, 3-mine case.  

In the above equations, ݌ଵ is a scaling constant 
that determines the overall level of stimulation and 
suppression and ߞ is a constant that governs how 
closely antibodies have to match in affinity to 
become stimulated. After post-affinities have been 
calculated the SBPA is implemented again to 
allocate the new antigenic antibodies. The post-
affinities then become the new pre-affinities and 
stimulation and suppression are calculated again. 
The algorithm proceeds in this way until some 
stopping criteria is met. The final, overall, 
theoretical fitness F of the task-allocation solution is 
determined as ܨ = 10,000∑ ݀ఊ௝௅௝ୀଵ , (7)

where ݀γj  is the distance between a final antigenic 
robot and its allocated mine. Note that a different 
measure of fitness, for example use of time taken t to 
get to the mine (instead of d in the above equation) 
should be used when attempting to demonstrate the 
practical advantages of the ITTA, rather than the 
theoretical. However, in the experiments described 
here these measures are equivalent because of 
assumptions 1 to 3. 

The ITAA, as described above, is original in its 
2-dimensional approach to stimulation and 
suppression, its focus on affinities rather than 
concentrations of antibodies, its novel suppression 
and stimulation models, and its algorithmic 
implementation, which results in the assignment of a 
unique task to each robot, rather than the global 
adoption of majority behaviours as in previous 
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idiotypic research within the multi-robot domain. 
Note that 1-dimensional models were trialled but 
failed to guarantee converge to a solution. In 
addition, a 2-dimensional model is a more accurate 
reflection of an idiotypic system, where interactions 
occur between all agents. 

5 EXPERIMENTAL DETAILS  

The ITTA was transcribed into MATLAB code and 
was programmed to store the current fittest solution 
after each iteration. The algorithm was stopped after 
a maximum of 15 iterations had elapsed and the best 
solution was accepted. In all cases, the initial 
positions of the N robots and mines were generated 
randomly on a square grid 30m by 30m in area, and 
baseline comparisons were made for each problem 
using the greedy (SBPA) algorithm (the solution 
after the first iteration). Initially, the ITTA was 
applied to 10,000 different mine diffusion problems 
for N between 3 and 10 in order to determine 
suitable values for parameters ߞ and ݌ଵ, i.e., the 
above was repeated varying the parameter ݌ଵ 
between 10 and 1,000 (values of 10, 50, 100, 150, 
250, 500, 750 and 1,000 were trialled), and varying 
the parameter ߞ between 0.5m and 4m in steps of 
0.5m. Once suitable values were found, the ITTA 
was applied to a further 10,000 mine diffusion 
problems for N ranging between 3 and 15, in order 
to assess its performance against the baseline. 

6 RESULTS 

6.1 Parameter Selection 

In all initial test cases ݌ଵvalues of 10 and 50 proved 
superior in performance to the others, with 10 
tending to work better for smaller numbers of robots 
(3 to 7) and 50 tending to work better for larger 
numbers (8 to 10). Figures 3a and 3b show how the 
mean % improvement in fitness varies with ݌ଵ. 
Figure 3a summaries the results for the different ߞ 
values and Figure 3b does the same for the numbers 
of robots N. Figure 3b also shows that mean % 
improvement in fitness tends to increase steadily 
with the number of robots; this is discussed more 
fully in Section 6.2. 

The ߞ value was more robust, demonstrating 
much less variation in performance than ݌ଵ. This can 
be seen in Figure 3a. Figures 4a and 4b also 
summarise the preliminary results for ߞ; the charts 

show how mean % fitness improvement varies with ߞ, with Figure 4a showing the results for each value 
of N and Figure 4b showing the results for each 
value of ݌ଵ. 

 
Figure 3a: Variation of mean % improvement in fitness  
with p1 for different ߞ values. 

 
Figure 3b: Variation of mean % improvement in fitness  
with p1 for different values of N. 

Figure 4a also illustrates a clear trend for 
increase in mean improvement in fitness as the 
numbers of robots increases (see Section 6.2). In 
general, there is a slight improvement as ߞ rises, but 
the differences are much less pronounced than for ݌ଵ. Figure 4b highlights the poorer performance 
when higher values of ݌ଵ	are used. It shows that 
values of either 10 or 50 are preferable and that 
a		݌ଵ	value of 50 has an almost constant performance 
across the ߞ spectrum, whereas a ݌ଵvalue of 10 tends 
to work better for lower values of ߞ, between about 
0.5 and 1.5.  

As it showed a consistent performance for all ߞ	and worked well with higher numbers of robots, a  ݌ଵvalue of 50 was chosen for use in the performance 
assessment, where N would rise to 15. Initially, ߞ 
values of 3.0m and 4.0m were selected, based on the 
preliminary results, but the best overall performance 
was obtained when ߞ was set to 0.5m and ݌ଵwas set 
to 50. 
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Figure 4a: Variation of mean % improvement in fitness  
with ߞ for different values of N. 

 
Figure 4b: Variation of mean % improvement in fitness  
with ߞ for different values of p1. 

6.2 Performance Assessment 

Table 1 summarises the performance of the ITTA 
(using the assigned parameters, ݌ଵ= 50, 0.5 = ߞ) 
compared with the baseline greedy SBPA algorithm. 
For all N there is an increase in the mean fitness of 
the solution, which ranges from about 3.5% (N = 3) 
to 7.2% (N = 9 and N = 11). Moreover, paired t-tests 
conducted on the mean fitness values show that 
ITTA fitness is significantly higher (at the 95% 
level) than the baseline for all values of N, for all 
results and also for the sub-set of improved cases. 
Figure 5 shows that the mean improvement in fitness 
starts off by increasing almost linearly with N but 
gradually reaches a plateau at about N = 9.  This 
may be explained as follows; the likelihood that the 
initial, greedy solution may already be the optimal 
one is higher for smaller N, and so there is less room 
for improvement. This explanation is validated by 
examination of the % of improved cases, which also 
increases steadily with N up until reaching a plateau 
at about N = 10, see Figure 6. In addition, when the 
improved cases are examined in isolation, as 
expected, the % improvement is greater for all N, but 
this is more pronounced for smaller N, for example, 

Table 1: Performance summary for ITTA and baseline. 

 
the difference is 8.25% for N = 3, but only about 
1.30% at plateau values of N, see Figure 5.  

For all N the maximum % improvement in 
solution is considerably higher than the mean, for 
example, for N = 3 it is about 76% and for N = 12 it 
is about 46%.  This variable tends to oscillate 
locally, but has a general downward trend with 
increased N, see Figure 6. For all results, the mean 
number of iterations ranges from about 2.0 for N = 3 
to about 6.5 for plateau values of N, see Figure 7, 
which is intuitive given the earlier explanation for 
plateau behaviour.  For improved cases only this 
variable is much more consistent, tending to about 
7.0 iterations.  

 
Figure 5: Variation of mean % improvement in fitness  
with N. 

The above results suggest that the ITTA is able 
to make significant improvements over greedy 
strategies, and that, as the number of robots 
increases, an improvement in the solution is more 
likely. For the particular parameters used here there 
is approximately an 85% chance of generating a 
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Figure 6: Variation of max % improvement in fitness  and 
% of improved cases with N. 

 
Figure 7: Variation of mean iterations with N. 

better solution for N greater than 8. For N greater 
than 6, a mean increase in fitness of about 7% is 
expected, although individual increases of up to 
about 70% are possible. The ITTA has also proved 
to be a fast algorithm as the mean number of 
iterations for convergence is always below eight.   

In addition, a further set of experiments that 
varied ݌ଵ between 50 and 150 across the suppression 
and stimulation equations (3), (4), (5) and (6) has 
also been conducted for N = 4. The use of ݌ଵ = 50 in 
all equations except (3) (which used 90 instead) 
increased the overall performance by a further 0.7%.  

These results demonstrate the potential of the 
ITTA method and show that it is a good candidate 
for further investigation involving more complex 
problems (as described fully in Section 3), real-
world implementations and more rigorous parameter 
tuning. Preliminary investigations have already 
shown that the method is easily adapted to cases 

where L > N and N > L. Where there are more robots 
than mines (N > L) robots are simply marked as 
redundant when the SBPA part of the algorithm does 
not allocate them to a mine. In addition, ITTA 
consistently outperforms SBPA and, as N increases 
for a fixed number of L, performance improves. 
Conversely, when L > N absolute performance 
drops, with the algorithm having to run repeatedly as 
robots change position, but ITTA still performs 
better than the greedy algorithm. Thus, relatively 
speaking, there is no noticeable drop in ITTA's 
performance when L > N. 

7 FUTURE WORK 

Future work will aim to develop an optimum 
stopping criteria and to test the algorithm in more 
complex scenarios, where online and time-extended 
assignments are required, there are heterogeneous 
tasks and robots, multi-task robots and multi-robot 
tasks. Real-world implementations that require 
additional features such as reactive obstacle 
avoidance modules will also be carried out in an 
outdoor environment. Further work also needs to be 
done to compare performance of the ITTA with 
state-of-the-art task allocation methods (for example 
market-based approaches) and linear optimization 
techniques such as Mixed Integer Linear 
Programming (MILP).  

Note that in real-life implementations the 
algorithm would need to run independently on each 
robot in order to constitute a truly decentralized 
system. The robots would also need to communicate 
reliably in order to transmit their locations to one 
another, and there would need to be a level of 
assurance that each robot was receiving all the 
available information and compiling the same 
solution to the problem. Maintaining and sharing an 
accurate intelligence picture within an ad-hoc 
network has been the subject of a research program 
within BAE Systems Advanced Technology Centre 
(ATC), and the outputs have already produced a 
prototype data sharing framework. Future work will 
thus aim to integrate the ideas presented in this paper 
with the outputs of the data sharing programme in 
order to demonstrate decentralized multi-robot task-
allocation in a real-world environment. In addition, 
the ATC has also been working on Consensus-Based 
Bundle Algorithms (CBBA) and Max-Sum task 
allocation mechanisms (Mathews et al. (2010)), so 
work will be undertaken to assess the feasibility of 
integrating the ITTA approach with those methods 
(see also Stranders et al. (2009)). 
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8 CONCLUSIONS  

This paper has described an idiotypic AIS algorithm 
(ITAA) for solving task allocation problems in the 
multi-robot domain. The algorithm is novel since 
other idiotypic approaches have only been 
applicable to problems where many robots are 
required to perform one task at a time using 
swarming behaviours; in contrast ITTA is suited to 
problems that require members of a multi-robot team 
to act individually so that different tasks can be 
solved simultaneously. The algorithm is also original 
in its implementation of the Farmer equation, which 
ignores concentrations of antibodies and uses novel, 
2-dimensional models for stimulation and 
suppression of the antibody affinities. 

A series of initial tests have been carried out on 
the algorithm using simulated mine diffusion 
problems in MATLAB. These tests have helped to 
establish suitable parameter values for the 
stimulation and suppression terms and have 
provided statistical evidence that the ITTA is 
capable of out-performing the greedy Sequential 
Best-Pair Assignment (SBPA) algorithm in about 
85% of cases for numbers of robots N exceeding 8. 
For smaller N the likelihood of outperforming the 
greedy solution rises almost linearly as N increases. 
The ITTA has also shown fast convergence to a 
solution; for N of 8 and above the mean number of 
iterations for arrival at the best solution is about 5, 
i.e., the solution can be produced almost 
instantaneously.  
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