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Abstract: In this paper, we propose a system for robust and flexible command interpretation on a mobile robot in domes-
tic service robotics applications. Existing language processing for instructing a mobile robot often make use of
a simple, restricted grammar where precisely pre-defined utterances are directly mapped to system calls. This
does not take into account fallibility of human users and only allows for binary processing; either a command
is part of the grammar and hence understood correctly, or it is not part of the grammar and gets rejected. We
model the language processing as an interpretation process where the utterance needs to be mapped to a robot’s
capabilities. We do so by casting the processing as a (decision-theoretic) planning problem on interpretatory
actions. This allows for a flexible system that can resolve ambiguities and which is also capable of initiating
steps to achieve clarification.

1 INTRODUCTION

In this paper we present a system for flexible com-
mand interpretation to facilitate natural human-robot
interaction in a domestic service robotics domain. We
particularly target theGeneral Purpose Service Robot
test from the RoboCup@Home competition (Wis-
speintner et al., 2009), where a robot is confronted
with ambiguous and/or faulty user inputs in form of
natural spoken language. The main goal of our ap-
proach is to provide a system capable of resolving
these ambiguities and of interactively achieving user
satisfaction in the form of doing the right thing, even
in the face of incomplete, ill-formed, or faulty com-
mands.

We model the processing of natural spoken lan-
guage input as an interpretation process. More pre-
cisely, we first analyse the given utterance syntac-
tically by using a grammar. Then, we cast the in-
terpretation as a planning problem where the single
actions available to the planner are to interpret syn-
tactical elements of the utterance. If, in the course
of interpreting, ambiguities are detected, the system
uses decision-theory to weigh up different alterna-
tives. The system is also able to initiate clarifica-
tion to resolve ambiguities and to handle errors as to
arrive at a successful command interpretation even-
tually. Since our current high-level control already
knows about the robot’s capabilities (the actions and

the parameters that these actions need), we want to
tightly connect the interpretation with it.

2 FOUNDATIONS AND RELATED
WORK

In this section, we introduce the foundations, namely
the situation calculus and GOLOG, that our approach
builds upon. We then briefly review related work.

2.1 Foundations

The high-level control of our domestic service robot
uses a logical programming and plan language called
READYLOG. It is a dialect of GOLOG which itself is
based on the situation calculus.

2.1.1 The Situation Calculus and GOLOG

The situation calculus (McCarthy, 1963) is a sorted
second order logical language with equality that al-
lows for reasoning about actions and their effects. The
situation calculus distinguishes three different sorts:
actions, situations, and domain dependentobjects.
The state the world is in is characterised by functions
and relations with a situation as their last argument.
They are calledfunctionalandrelational fluents, re-
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spectively. The world evolves from an initial situa-
tion S0 only due to primitive actions, e.g.,s′ = do(a,s)
means that the world is in situations′ after perform-
ing actiona in situations. Possible world histories are
represented as sequences of actions. For each action
one has to specify aprecondition axiomstating un-
der which conditions it is possible to perform the re-
spective action andeffect axiomsformulating how the
action changes the world in terms of the specified flu-
ents. An action precondition axiom states when an ac-
tion can be executed. The effects that actions have on
the fluents are described by so-called successor state
axioms (Reiter, 2001).

GOLOG (Levesque et al., 1997) is a logic-based
robot programming and plan language based on the
situation calculus. It allows for Algol-like program-
ming but it also offers some non-deterministic con-
structs. ABasic Action Theory(BAT), which is a set
of axioms describing properties of the world, axioms
for actions and their preconditions and effects as de-
scribed above, and some foundational axioms, then
allows for reasoning about a course of action.

There exist various extensions and dialects to the
original GOLOG interpreter, one of which is READY-
LOG (Ferrein and Lakemeyer, 2008). It integrates
several extensions like interleaved concurrency, sens-
ing, exogenous events, and on-line decision-theoretic
planning (following (Boutilier et al., 2000)) into one
framework. In READYLOG only partially specified
programs are needed which leave certain decisions
open, which then are taken by the controller based on
an optimisation theory. This is done using a Markov
Decision Process (MDP) (Puterman, 1994); decision-
theoretic planning is initiated withsolve(p,h), where
p is a GOLOG program andh is the MDP’s solution
horizon). Two important constructs used in this re-
gard are the non-deterministic choice of actions (a|b)
and arguments (pickBest(v, l , p)), wherev is a vari-
able, l is a list of values to choose from, andp is a
GOLOG program. Then each occurrence ofv is re-
placed with the value chosen. For details we refer
to (Ferrein and Lakemeyer, 2008).

2.2 Related Work

We want to build upon the theory ofspeech
acts as introduced by Austin (Austin, 1975) and
Searle (Searle, 1969). Based on these works, Cohen
and Levesque (Cohen and Levesque, 1985) already
investigated a formal theory of rational interaction.
We, restrict ourselves to command interpretation and
do not aim for a full-fledged dialogue system. Nev-
ertheless, we follow their formal theory of interpreta-
tion and we carry out our work in the context of the

situation calculus.
The use of definite clause grammars for parsing

and interpreting natural language has already been
shown in (Beetz et al., 2001). Despite being relatively
ad hoc and the fact that the small grammar only cov-
ered a constrained subset of English, their system pro-
vided a wide spectrum of communication behaviours.
However, in contrast to their approach we want to ac-
count for incomplete and unclear utterances both by
using a larger grammar as well as adding interpreta-
tion mechanisms to the system.

(Fong et al., 2003) developed a system on a robot
platform that manages dialogues between human and
robot. Similar to our approach, input to the system is
processed by task planning. However, queries are lim-
ited to questions that can either be answered with yes
or no or a decimal value. A more advanced system
combining natural language processing and flexible
dialogue management is reported on in (Clodic et al.,
2007). User utterances are interpreted as communica-
tive acts having a certain number of parameters. The
approach is missing a proper conceptual foundation
of objects and actions, though. This makes it hard
to adapt it to different platforms or changing sets of
robot capabilities.

(Görz and Ludwig, 2005), on the other hand, built
a dialogue management system well-founded by mak-
ing use of a concept hierarchy formalised in Descrip-
tion Logics (DL). Both, the linguistic knowledge as
well as the dialogue management are formalised in
DL. This is a very generic method for linking lexi-
cal semantics with domain pragmatics. However, this
comes with the computational burden of integrating
description logics and appropriate reasoning mecha-
nisms. We want to stay within our current represen-
tational framework, that is, the situation calculus and
Golog, and we opt to exploit the capabilities to reduce
computational complexity with combining program-
ming and planning.

3 METHOD & APPROACH

As mentioned before, we cast the language process-
ing of spoken commands on a domestic service robot
as an interpretation process. We decompose this pro-
cess into the following steps. First, the acoustic ut-
terance of the user is being transformed into text via
a speech recognition component which is not part of
this paper’s contribution. The transcribed utterance is
then passed on for syntactic analysis by a grammar.
After that, the interpretation starts, possibly resolving
ambiguities and generating intermediate responses. If
the utterance could be interpreted successfully, it is
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executed, otherwise it is being rejected. We will now
present the individual steps in more detail.

3.1 Syntactical Language Processing

Given the textual form of the user utterance, the first
thing we do is a syntactical analysis. This syntac-
tic operation uses a grammar. Since the entirety of
the English language is not context-free as revealed
by (Shieber, 1985) and the targeted application do-
main allows for a reasonable restriction, we con-
fine ourselves to directives. Directives are utterances
that express some kind of request. Following Ervin-
Tripp (Ervin-Tripp, 1976) there are six types of direc-
tives:
1. Need statements,

e.g., “I need the blue cup.”
2. Imperatives,

e.g., “Bring me the blue cup!”
3. Imbedded imperatives,

e.g., “Could you bring me the blue cup?”
4. Permission directives,

e.g., “May I please have the blue cup?”
5. Question directives,

e.g., “Have you got some chewing gum?”
6. Hints, e.g., “I have run out of chewing gum.”

Ervin-Tripp characterises question directives and
hints as being hard to be identified as directives even
for humans. Moreover, permission directives are
mostly used only when the asker is taking a subor-
dinate role, which will not be the case of a human in-
structing a robot. That is why we restrict ourselves to
a system that can handle need statements, imperatives
and imbedded imperatives only.

3.1.1 A Grammar for English Directives

For any of these directives what we need to make the
robot understand the user’s command is to distill the
essenceof the utterance. To eventually arrive at this,
we first perform a pure syntactic processing of the ut-
terance. An analysis of several syntax trees of such
utterances revealed structural similarities that we in-
tend to capture with a grammar. An example for a
syntax tree is given in Figure 1.

Using common linguistic concepts, the main
structure elements are verb (V), auxiliary verb
(AUX), verb phrase (VP), noun phrase (NP), conjunc-
tion (CON), preposition (PREP), and prepositional
phrase (PP). We further introduce a structure element
object phrasewhich is a noun phrase, a prepositional
phrase, or concatenations of the two. Multiple verb
phrases can be connected with a conjunction. What
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V

Go

PP
XX��

PREP

to

NP

the kitchen

CON
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VP
XX��

V
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NP

the blue cup

Figure 1: Syntax tree for the utterance ”Go to the kitchen
and fetch the blue cup”.

is more, commands to the robots may be prefixed
with a salutation. Also, for reasons of politeness,
the user can express courtesy by saying “please”.
Putting all this together, we arrive at a base grammar
that can be expressed in Extended Backus-Naur Form
(EBNF) (Scowen, 1993) as shown in Figure 2.

s −−> s a l u t a t i o n u t t e r a n c e

s −−> u t t e r a n c e

%

u t t e r a n c e−−> n e e d s t a t e m e n t|

i m p e r a t i v e |

imbe dde d impe ra t i ve

%

n e e d s t a t e m e n t−−> np vp |

ne e dph ra s e vp

i m p e r a t i v e −−> vp

imbe dde d impe ra t i ve −−> aux np vp

ne e dph ra s e−−> ” i ” prompt ” you to ”

% verb ph ra s e

vp −−> vp ’

vp −−> vp ’ c o n j u n c t i o n vp

vp ’ −−> verb

vp ’ −−> verb obp

vp ’ −−> c o u r t e s y vp ’

% o b j e c t ph ra s e

obp −−> np | pp

obp −−> np obp | pp obp

% noun ph ra s e

np −−> noun | pronoun

np −−> d e t e r m i n e r noun

% p r o p o s i t i o n a l ph ra s e

pp −−> prep np

Figure 2: Base grammar in EBNF.

In addition to the base grammar we need a base
lexicon that provides us with the vocabulary for el-
ements such as prepositions, auxiliary verbs, cour-
tesies, conjunctions, determiners, and pronouns. To
generate a system that is functional in a specific set-
ting, we further need a lexicon containing all verbs for
the capabilities of the robot as well as all the objects
referring to known entities in the world. This depends
on the particular application, though. That is why we
couple this to the domain specification discussed later.
The base grammar, the base lexicon, and the domain
specific lexicon then yield the final grammar that is
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used for syntactical processing.
Since we are only interested in the core infor-

mation, the most relevant parts of the utterance are
verbs, objects, prepositions, and determiners. We
can drop auxiliary verbs, filler words, courtesies, and
alike without losing any relevant information. Doing
so, we finally arrive at an internal representation of
the utterance in a prefix notation depicted below, that
we use for further processing.

[and, [[Verb, [objects, [[Preposition,

[Determiner,Object]],...]] ]], ...]

The list notation contains the keywordand to con-
catenate multiple verb phrases and it uses the key-
wordobjects to group the object phrase. If an ut-
terance is missing information we fill this withnil
as a placeholder.

3.2 Planning Interpretations

After syntactic pre-processing of an utterance into
the internal representation, the system uses decision-
theoretic planning to arrive at the most likely interpre-
tation of the utterance, given the robot’s capabilities.
The interpretation is supposed to match the request
with one of the abilities of the robot (called a skill)
and to correctly allocate the parameters that this skill
requires.

In order to do that, we need to identify the skill
that is being addressed first. We are going about this
from the verb which has been extracted in the syn-
tactical processing, possibly leaving ambiguities on
which skill is referred to by the verb. Secondly, the
objects mentioned in the utterance need to be mapped
to entities in the world that the robot knows about.
Lastly, a skill typically has parameters, and the verb
extracted from the utterance has (multiple) objects as-
sociated to it. Hence, we need to decide which ob-
ject should be assigned to which parameter. To make
things worse, it might very well be the case that we
have either too many or too few objects in the utter-
ance for a certain skill.

We cast understanding the command as a pro-
cess where the single steps are interpretation actions,
that is, interpreting the single elements of the utter-
ance. At this point READYLOG and its ability to
perform decision-theoretic planning comes into play.
The overall interpretation can be modelled as a plan-
ning problem. The system can choose different ac-
tions (or actions with different parameters) at each
stage. Since we want to achieve an optimal interpre-
tation, we make use of decision-theoretic planning.
That is to say, given an optimisation theory, we try
to find a plan, i.e. a sequence of actions, which max-
imises the expected reward.

3.2.1 Domain Specification

During the interpretation process we need to access
the robot’s background knowledge. We organise this
knowledge to capture generic properties and to make
individual parts available to (only) those components
which need them. Three types of information are dis-
tinguished:linguistic, interpretation, andsystem. The
linguistic information contains everything that has to
do with natural language while interpretation infor-
mation is used during the interpretation process and
system information features things like the specific
system calls for a certain skill. The combination of
these three types is then what makes the connection
from natural language to robot abilities. We use ideas
from (Gu and Soutchanski, 2008) to structure our
knowledge within our situation calculus-based repre-
sentation.

In an ontology, for everySkill we store aNameas
an internal identifier that is being assigned to a par-
ticular skill during the interpretation. A skill further
has aCommandwhich is the denotation of the corre-
sponding system call of that skill.Synonymsis a list
of possible verbs in natural language that may refer
to that skill. Parametersis a list of objects that re-
fer to the arguments of the skill, whereNameagain
is a reference used in the interpretation process,At-
tributesis a list of properties such as whether the pa-
rameter is numerical of string data.Significancein-
dicates whether the parameter is optional or required,
andPrepositionis a (possibly empty) list of preposi-
tions that go with the parameter. For the information
on entities in the world (e.g. locations and objects)
we use a structureObject which again has aName
as an internal identifier used during the interpretation.
Attributesis a list of properties such as whether the
object “is a location” or if it “is portable”.Synonyms
is a list of possible nouns that may refer to the ob-
ject andID is a system related identifier that uniquely
refers to a particular object.

3.2.2 Basic Action Theory

Now that we have put down the domain knowledge on
skills and objects, we still need to formalise the basic
action theory for our interpretation system. We there-
fore define three actions, namelyinterpret action,
interpret object, andassignargument. For all three
we need to state precondition axioms and successor
state axioms. We further need several fluents, that de-
scribe the properties of the interpretation domain we
operate in. Let’s take a look at those fluents first. We
use the fluentsspokenverb(s) andspokenob jects(s)
to store the verb and the list of objects extracted in
the syntactic processing. Further, we use the flu-

FLEXIBLE COMMAND INTERPRETATION ON AN INTERACTIVE DOMESTIC SERVICE ROBOT

29



ents assumedaction(s) and assumedob jects(s) to
store the skill and the list of objects that we as-
sume to be addressed by the user, respectively. Both
these fluents arenil in the initial situationS0 since
no interpretation has taken place so far. The fluent
assumedarguments(s) contains a list of pairings be-
tween parameters and entities. Finally,f inished(s)
indicated whether the interpretation process is fin-
ished.

Let us now turn to the three interpretation ac-
tions. The precondition axiom forinterpret action
states thatinterpret action(k) is only possible if we
are not done with interpreting yet and the wordk
actually is a synonym of the verb spoken. Sim-
ilarly, interpret ob ject(e) is possible for an entity
e only if we are not finished and the object (from
spokenob ject(s)) is a synonym appearing fore. Fi-
nally, the precondition axiom forassignargumentfor
an entitye and parameterp checks whether the inter-
pretation process is not finished and there is no en-
tity assigned to the parameter yet. Further,p needs
to be a parameter of the assumed skill and we either
have no preposition for the object or the preposition
we have matches the preposition associated with the
parameter. Lastly, the attributes associated to param-
eterp need to be a subset of the attributes for the en-
tity. To allow for aborting the interpretation process
we additionally introduce an actionre ject which is
always possible. We omit the formal definitions here
for space reasons.

After detailing the preconditions of actions, we
now lay out how these actions change the fluents
introduced above. The fluentsspokenverb and
spokenobjectscontain the essence of the utterance to
be interpreted. The effect of theinterpret action(k)
action is to reset the fluentspokenverb to nil and
to set the fluentassumedaction to the assumed skill
k. The actioninterpret object(e) iteratively removes
the first object (in a list of multiple objects) from
the fluent spokenobjects and adds it to the flu-
ent assumedobjects along with its preposition (if
available). The actionassignargument(p) removes
the object from the fluentassumedobjects and it
adds the pair(p,e) for parameterp and entity e
to the fluentassumedarguments. Finally, the flu-
ent finished is set to true if either the action was
interpret actionand there are no more objects to pro-
cess (i.e.spokenobjectsis empty) or the action was
assignargumentand there are no more objects to as-
sign (i.e.assumedobjectsis empty). It is also set to
true by the actionreject.

3.2.3 Programs

Using the basic action theory described above, the

overall interpretation process can now be realised
with READYLOG programs as follows. In case of
multiple verb phrases we process each separately. For
each verb phrase, we first interpret the verb. Then, we
interpret the objects before we assign them to the pa-
rameters of the skill determined in the first step. The
procedures to do so are

proc interpret verbphrase
solve( {

( pickBest( var, AllActions,
interpret action(var) )

| re ject )
while ¬ f inisheddo

interpret ob jectphraseendwhile
}, horizon, reward function)

endproc

with

proc interpret ob jectphrase
(pickBest( var, AllEntities,

interpret ob ject(var) )
| re ject)
if f inishedthen nil
else

(pickBest( var, AllParams,
assignargument(var) )

| re ject)
endif

endproc

where AllActions, AllEntities, and AllParams are
sets of all skills of the robot, all entities known
to the robot, and all parameters of a skill in the
robot’s domain specification, respectively. We con-
sider more intelligent selection methods than tak-
ing all items available in the evaluation. Thesolve-
statement initiates decision-theoretic planning, where
pickBest(var,VarSet,prog) is a non-deterministic
construct that evaluates the programprog with every
possibility forvar in VarSetusing the underlying op-
timisation theory given mainly by the reward func-
tion, which rates the quality of resulting situations.
To design an appropriate reward function situations
that represent better interpretations need to be given
a higher reward than those with not so good interpre-
tation. A possible reward function could be to give a
reward of 10 if the assumed action is notnil and one
could further add the difference between the number
of assigned arguments and the total number of param-
eters required by the selected skill. Doing so results
in situations with proper parameter assignment being
given higher reward than those with fewer matches. If
to possible interpretation have the same reward, one
can either enquire with the user on which action to
take or simply pick one of them at random.

3.2.4 Example

Consider the exemplary utterance “Move to the
kitchen.” After syntactical processing we have the in-
ternal representation[and, [[move, [objects,
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[[to, [the,kitchen]] ]]] ] ]. Using the pro-
gram given above and a small basic action theory
as introduced before, one of the skills available to
the robot that hasgo as a synonym may begoto
which is stored inassumedaction by the action
interpret action. Then,interpret object(kitchen) will
assumekitchenas the object (along with the prepo-
sition to). However, it could also interpret “move”
as bringing some object somewhere which leads to a
lower reward, because a parameter slot remains unas-
signed. Trying to assign arguments for the skillgoto
may succeed sincekitchen is an entity that has the
Locationattribute as would naturally be required for
the target location parameter of agotoskill. Compar-
ing the rewards for the different courses of interpre-
tation the system will pick the interpretation with the
highest reward, which is executing thegoto(kitchen)
skill.

3.3 Clarification and Response

Things might not always go as smooth as in our exam-
ple above. To provide a system that has capabilities
beyond a pure interface to translate utterances to sys-
tem calls we therefore include means for clarification
if the utterance is missing information.

If the verb is missing, our grammar from the syn-
tactical processing will already fail to capture to ut-
terance. Hence, we only consider missing objects for
clarification in the following. We propose to model
clarification as an iterative process where the user is
enquired for each missing object. To generate the ap-
propriate questions to the user we make use of the in-
formation that has been extracted from the utterance
already and of the information stored in the ontology.
Assuming that we know about the skill that is being
addressed we can look up the parameters required.
Using a template that repeats the user’s request as far
as it has been interpreted we can then pose an accurate
question and offer possible entities for the missing ob-
jects.

Consider that the user said “Go!” missing the re-
quired target location. So the target location is what
we want to enquire about. This can be achieved with
using a generic template as follows:

“you want me to[assumedaction] [assumedarguments].

[preposition] which[attribute] ? [list o f entities]”

where [preposition] is the preposition associated
to the parameter in question and[attribute] is one
of the attributes associated to the parameter. Only
including one of the parameter’s attributes seems
incomplete, but suits the application, since it still
leads to linguistically flawless responses. Including
[assumedarguments] in the response indicates what

the system has already managed to interpret and addi-
tionally reminds the user of his original request. The
system would respond to the utterance “Go!” from
above with “You want me to go. To which location?
kitchen or bath?”, which is exactly what we want.

To avoid annoying the user we put a limit on the
number of entities to propose to the user. If the num-
ber of available entities exceeds, say, three we omit
it from the question. Moreover, to improve on the re-
sponse we add what we call “unspecific placeholders”
to the domain ontology. So for locations we might
add “somewhere” and for portable thing we might add
“something” which are then used in the response at
the position of a missing object.

There might be cases where information is not
missing but instead is either wrong or the skills avail-
able to the robot do not allow for execution. Our sys-
tem should provide information on rejecting faulty or
not executable requests. Depending on the type of
error, we propose the following templates for expla-
nation.
1. “I cannot [spokenverb].” if the verb could not be

matched with any skill, i.e.spokenverb 6= nil.
2. “I do not know what [next spokenobject] is.” if

the object could not be matched with any entity
known to the robot, i.e.spokenobjects6= nil.

3. “I cannot [assumedaction] [preposition] [next
assumedobject].” if the object could not be as-
signed to a parameter of the skill that is being ad-
dressed, i.e.assumedobjects6= nil.

Note that[next somelist] retrieves the next ele-
ment fromsomelist. Also note that the fluent values
we mentioned above are sound given our basic action
theory since the actionrejectsets the fluentfinishedto
true and leaves the other fluents’ values as they were
when the utterance was rejected.

4 EXPERIMENTAL EVALUATION

To investigate the performance of our system we eval-
uate it along two dimensions, namely understanding
and responsiveness.

4.1 Understanding

The aim of our approach was to provide a system that
is able to react to as many commands for a domestic
service robot given in natural language as possible.
With the generic grammar for English directives our
approach is able to handle more utterances than pre-
vious approaches based on finite state grammars such
as (Doostdar et al., 2008). To evaluate how far off we
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are from an ideal natural language interface we con-
ducted a user survey. The survey was carried out on-
line with a small group of (about 15) predominantly
tech-savvy students. A short description of the robot’s
capabilities was given and participants were asked to
provide us with sample requests for our system. Par-
ticipants took the survey without any assistance, ex-
cept the task description.

We received a total of 132 submissions. Firstly,
we are interested in the general structure of the an-
swers to see whether our grammar is appropriate.
Therefore, Table 1 shows the submissions itemised by
sentence type.

Table 1: Survey results by sentence type.

absolute relative
type frequency frequency

imperatives 114 87%
imbedded
imperatives 6 5%

need-
statements 2 2%

hints 4 3%

wh-questions 3 2%

others 3 2%

Syntactically speaking, the grammar can cover
imperatives, imbedded imperatives and need-
statements, which make for 92.37% of the survey
results. However, some of these utterances do not
possess the verb-object-structure we assumed in
our system. For example, “Make me a coffee the
way I like it” contained an adverbial (“the way I
like it”) which we did not account for neither in
the grammar nor in the interpretation process. It is
technically possible to treat adverbials as entities
and thus incorporate such utterances. A better
founded approach, however, would be to introduce
the concept of adverbials to our system as a special
case of objects that modify the mode of a skill. We
leave this for future work, though. Still, 77.01%
of the survey entries provide the assumed modular
verb-object-structure and can therefore be processed
by our system successfully.

4.2 Responsiveness

To evaluate the performance of our system in terms
of speed, we evaluated the system using the following
domain. The example agent has four different skills:
getting lost (no parameter), going somewhere (1 pa-
rameter), moving an object to some location (2 pa-
rameters) and moving an object from some location
to some location (3 parameters). Additionally, our
domain contains different entities with appropriate at-

tributes: a kitchen (location), a bath (location), a cof-
fee cup (portable object) and a football trophy (dec-
oration). Some of the synonyms for skills and enti-
ties are ambiguous, namely (1) “go” may refer to “get
lost” as well as to “go somewhere”, (2) “move” may
refer to “get lost”, “go somewhere”, “move something
somewhere” or “move something from somewhere to
somewhere”, and (3) “cup” may refer to the coffee
cup as well as to the football trophy.

We tested four different versions of the system
with different requests involving various degrees of
complexity using the following utterances:

(i) “scram”
(ii) “go to the kitchen”

(iii) “could you please move the cup to the kitchen”
(iv) “go to the kitchen and move the cup to the bath

room”
(v) “i need you to move the cup from the bath room

to the kitchen”
Utterance (i) is a very simple request. It addresses

a skill with no parameters and the used synonym
“scram” is unambiguous. The skill addressed in ut-
terance (ii) involves one parameter and the used syn-
onym “go” is ambiguous. Utterance (iii) involves a
skill with two parameters and the synonym “move”
is also ambiguous. Utterance (iv) is the combination
of utterances (ii) and (iii) linked with an “and”. The
skill requested in utterance (v) has three parameters
and the synonym “move” is again ambiguous.

The depth of the search tree spanned in the plan-
ning process depends on the number of objects. For
example, the depth of the search tree for utterance (i)
is exactly 1 while the depth of the search tree for ut-
terance (v) is 7. Note that utterance (iv) involves two
distinct search trees, since it contains two independent
verb phrases which are interpreted separately.

The five utterances were tested with the following
versions of the system. First, we used the base sys-
tem as described in Section 3, it does not include any
explicit performance improvements speed-wise. The
first row of Table 2 shows the performance of the base
system.

4.2.1 Improvements

Second, we considered systems incorporating differ-
ent pre-selection methods. For each interpretation
step (interpreting action, entity and parameter), we
can pre-select the candidates that may be considered
by the appropriate interpretation action. This can lead
to considerably lower branching factors.

The pre-selection process forinterpret action in-
volves two criteria: synonym and parameter count.
This means that candidates are eliminated from the
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Table 2: Response times in different test scenarios.

i ii iii iv v

base 0.08 s 0.28 s 2.37 s 2.67 s 9.06 s

action
pre-select 0.08 s 0.24 s 2.10 s 2.29 s 7.15 s

entity
pre-select 0.06 s 0.19 s 2.01 s 2.16 s 7.41 s

parameter
pre-select. 0.09 s 0.19 s 1.06 s 1.20 s 4.05 s

action +
entity 0.05 s 0.16 s 1.70 s 1.85 s 6.07 s

entity +
parameter 0.05 s 0.13 s 0.99 s 1.10 s 3.75 s

action +
parameter 0.09 s 0.13 s 0.71 s 0.83 s 2.52 s

full com-
bination 0.07 s 0.10 s 0.68 s 0.76 s 2.35 s

list if the spoken verb is not one of the candidates’
synonyms or if the number of parameters the candi-
date provides is lower than the number of spoken ob-
jects. This is due to the fact that we want every spoken
object to be assigned to a parameter slot, so we only
have to consider skills that provide a sufficient amount
of parameter slots. If we would also consider skills
with fewer parameters, we would have to drop parts
of the user’s utterance. One could argue that reducing
the set of available skills is a restriction from a theo-
retical point of view. However, ignoring elements that
where uttered could easily frustrate the user. Hence,
the restriction only has little practical relevance. The
second row of Table 2 illustrates the performance of
the base system plusaction pre-selection.

Entities are pre-selected just by checking whether
the spoken object is one of the entity’s synonyms. The
third row of Table 2 shows the response times includ-
ing the base system plusentity pre-selection.

Pre-selecting parameters involves checking the at-
tributes and the preposition of the corresponding can-
didate. Hence, the attributes of the parameter slot
have to be a subset of the entities attributes, and if
a preposition was provided along with the spoken ob-
ject or entity, respectively, then it has to match the
preposition required by the parameter. The fourth row
of Table 2 lists response times of the base system plus
parameter pre-selection. Rows five, six and seven il-
lustrate the performance of different pairs of the three
pre-selection methods. The last row shows the per-
formance of the system including all three enhance-
ments. As we can see, the full combination yields an
improvement except for utterance i where the differ-
ence is negligible. The relative improvement of the
enhancements increases with the complexity of the
utterances. That is to say, the more complex the ut-
terance, the more the speed-ups pay off.

Altogether, the complexity of the search tree is af-
fected by the different branching factors at each level,
and the depth which depends on the number of spo-
ken objects. The branching factor at the first level de-

pends on the number of actions that have the spoken
verb as a synonym. The branching factor at the sec-
ond level depends on the number of entities that have
the spoken object as a synonym. At the third level the
branching factor depends on the number of parame-
ters of the respective skill. We further evaluated our
optimised system by varying the two complexity fac-
tors independently.

Along the rows of Table 3 we varied the number
of spoken objects. Along the columns we varied the
number of actions that have the spoken verb as a syn-
onym and the number of entities that have the spoken
object as a synonym. The number of parameters of
the appropriate skill are not varied, since this num-
ber already depends on the amount of spoken objects.
In this test scenario the parameters of a skill became
distinguishable for the system by providing distinct
prepositions for each parameter. Different entities be-
came distinguishable through their attributes and the
skills were distinguishable by the number of parame-
ters. So we had five skills with 1, 2, 3, 4 and 5 param-
eters, respectively.

Table 3: Response times (in seconds) depending on the two
types of difficulty.

# of tree #actions/#entities
obj. depth 1/1 1/5 5/1 5/5

1 3 0.15 0.32 0.48 1.27

2 5 0.47 0.96 1.61 3.50

3 7 2.54 4.83 7.40 13.92

4 9 18.77 34.00 39.72 68.19

5 11 153.40 267.55 154.97 276.20

Table 3 shows that the number of spoken objects
has a greater influence on the computation time than
has ambiguity. This is indicated by the last two rows
which only contain measurements greater than 10 sec-
onds. That is unacceptable for fluent human-robot
interaction. We can also observe that action pre-
selection performs very well in this test scenario. All
tests in the last row address a skill with five param-
eters. In this test scenario there was no other skill
involving five or more parameters. As a consequence,
the action pre-selection can rule out the other four
skill candidates which implies nothing less than re-
ducing the branching factor of the top node from 5 to
1 and thus reducing the computation time by a factor
of approximately 5. This also results in comparable
computation times for the combinations 1/1 (153.40
sec) and 5/1 (154.97 sec) as well as 1/5 (267.55 sec)
and 5/5 (276.20 sec).

Finally, we analysed whether the lexicon size
poses a computational problem. Therefore, we sim-
ply added 50,000 nouns to the lexicon and used the
full combination test setup from Table 2. Now, Ta-
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ble 4 indicates that the additional computational effort
to process the utterances with a large lexicon plays no
significant role.

Table 4: Response times with different lexicons.

small lexicon large lexicon
utt. i 0.07 sec 0.08 sec
utt. ii 0.10 sec 0.14 sec
utt. iii 0.68 sec 0.90 sec
utt. iv 0.76 sec 1.15 sec
utt. v 2.35 sec 2.51 sec

4.3 Discussion

An important point towards successful human-robot
interaction with respect to the user’s patience is the
system’s reaction time. The average human atten-
tion span (for focused attention, i.e. the short-term
response to a stimulus) is considered to be approx-
imately eight seconds (Cornish and Dukette, 2009).
Therefore, the time we require to process the utter-
ance of a user and react in some way must not exceed
8 seconds. Suitable reactions are the execution of a
request, rejection, or to start a clarification process.

Hence, the question whether computation times
are reasonable is in fact the question whether the com-
putation times exceed eight seconds. Nonetheless, the
answer is not as easy as the question. The optimised
system performs well in a realistic test scenario as
shown by the last row of Table 2. In turn, complex test
scenarios can lead to serious problems as Table 3 in-
dicated. However, we saw that ambiguity is a smaller
problem than the length of an utterance1. Skills that
have more than three parameters are rare in the field of
mobile service robots. In fact, the skills with four or
five parameters we used in the tests of Table 3 needed
to be created artificially in lack of realistic examples.

5 CONCLUSIONS & FUTURE
WORK

We presented a system for interpreting commands
issued to a domestic service robot using decision-
theoretic planning. The proposed system allows for
a flexible matching of utterances and robot capabili-
ties and is able to handle faulty or incomplete com-
mands by using clarification. It is also able to provide
explanations in case the user’s request cannot be exe-
cuted and is rejected. The system covers a broader set

1By the length of an utterance, we mean the number of
spoken objects.

of possible requests than existing systems with small
and fixed grammars. Also, it performs fast enough to
prevent annoying the user or loosing his or her atten-
tion.

Our next step is to deploy the system in a
RoboCup@Home competition to test its applicability
in a real setup. A possible extension of the approach
could be to include a list of then most probable in-
terpretations and to verify with the user on which of
these should be executed. Moreover, properly inte-
grating the use of adverbials as qualifiers for nouns
both in the grammar and the interpretation process
would further improve the system’s capabilities.
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