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Abstract: In this paper we analyze the interval availability of a two-echelon, multi-item system. Modeling the system 
as a Markov chain we analyze the interval availability of the system. We compute in closed and exact form 
the expectation and, the variance of the availability during a finite time interval [0,T]. We use these 
characteristics together with the probability that interval availability is equal to one to approximate the 
survival function using a Beta distribution. Comparison of our approximation with simulation shows 
excellent accuracy, especially for points that are practically most relevant. 

1  INTRODUCTION 

Nowadays, the aftersales service business represents 
a considerable part of the economy and,  moreover, 
is continuously growing (AberdeenGroup 2005; 
Deloitte 2006).  

Advanced capital goods such as MRI scanners, 
lithography systems, baggage handling systems, and 
radar systems, are highly downtime critical. So the 
customers of these advanced goods are not just 
interested in acquiring these systems at an affordable 
price, but far more in a good balance between the 
resulting Total Cost of Ownership (TCO) and 
system productivity throughout the life cycle, 
including the limitation of downtime. For customers 
the system use rather than the system upkeep is their 
core business. Therefore, a major part of the system 
upkeep is preferably outsourced to the original 
manufacturer or to a service provider that can offer a 
good balance between the downtime and costs. For 
that reason, service contracts are made between the 
service provider and customers. These contracts 
specify the services provided by the supplier with 
their corresponding Service Level Agreements 
(SLAs), such as the time between system failure and 
time of fault resolution, and  the system availability.  

The SLAs are measured over a predetermined  
time window, e.g., a quarter or a year. For the 
service providers, it is essential that the service 
levels are attained, because in some cases penalties 
apply if an SLA target is violated. In case of a large 

scale service contract (the average performance over 
many systems is measured), the average 
performance should meet the target. If the number of 
systems covered by a contract is relatively small, we 
have inherent statistical variability and we need an 
additional buffer in performance to assure that the 
probability of not meeting the SLAs over the time 
window is still acceptable. We encountered such a 
situation at Thales Netherlands, a manufacturer of 
naval sensors and naval command and control 
systems. There, a service contract typically covers a 
few systems only. In the literature, this issue is 
usually neglected. In this paper, we are mainly 
interested in the logistical delay due to the 
unavailability of spare parts. Moreover, the focus 
will be on SLAs that are based on the system 
availability during a predetermined period of times.  

In service parts logistics there is usually a 
tradeoff between the cost involved in keeping the 
stocks very close to the customers sites or at a 
central depot, which can supports multiple 
customers at the same time. Due to the risk pooling 
effect, it is more desirable from the point of a service 
provider to position the stocks of spare parts 
centrally. However, having a strict SLA, e.g., 99% 
availability, with a customer forces the service 
provider to move some spare parts closer to the 
customer sites. In addition, in order to reduce the 
system downtime and its critical consequences it is 
usually the case that the repair of failed system is 
done by replacing the failed part with a new part. 
The failed part is sent to the repair shop, i.e., the 
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inventory is managed using the so-called base stock 
policy referred to as (s-1,s)-policy. (Sherbrooke 
1968) was among the first to tackle the spare part 
optimization problem. He proposed the METRIC 
model that is based on the maximization of system 
availability subject to a constraint on the invested 
budget in spare parts. METRIC model is a good 
approximation in case of multi-echelon spare part 
network and especially in case of high availability. 
(Graves 1985) extended the METRIC model and 
proposed an improved approach called VARI-
METRIC. We note that VARI-METRIC model is 
used in most commercial software tools.  

It is worth to mention that both METRIC and 
VARI-METRIC and most spare parts management 
theory are based on the maximization of the steady 
state average system availability, i.e., the fraction of 
time the system is operational during a very long 
(infinite) period of time. However, in practice we 
often see that the agreed upon availability SLA is the 
average availability during a finite period, e.g., 
month, quarter, or year. Moreover, if the availability 
during a period of time is lower than a specific 
percentage the penalty rules then apply. This 
motivates us to analyze the availability during a 
finite period of time, the so-called interval 
availability in reliability theory defined as follows 
see, e.g., (Nakagawa and Goel 1973): 
Definition: The system interval availability is 
defined as the fraction of time a system is 
operational during a period of time [0,T]. 
      Note that as opposed to the steady state average 
availability the interval availability is a random 
variable (rv) that has a distribution.  

2  RELATED LITERATURE 

In this section we shall the review the existing 
literature on interval availability. (Takács 1957) was 
among the first to analyze the interval availability 
distribution function of an on-off stochastic process. 
Takács result is in the form of an infinite sum of 
terms, each consisting of multiple convolutions. This 
result is hard to compute numerically. 
Approximation by fitting the on and off periods by a 
phase type distribution with two phases was proven 
to give accurate result with small computation time, 
see e.g., (van der Heijden 1988). Another 
approximation based on fitting the approximated 
first two moments and the hundred percent and nil 
probability of the interval availability in a Beta 
distribution was proposed in (Smith 1997). For an 
on-off two states Markov chain the first two 

moments of the interval availability are derived 
exactly in (Kirmani and Hood 2008). We note that in 
all these previously mentioned studies the 
underlying assumption is that the on periods are 
independent and the off periods are independent, 
moreover, all the on and off period are independent 
of each other, i.e., the on-off process can be 
represented by a renewal process. 

(De Souza e Silva and Gail 1986) derived in 
closed-form the cumulative sojourn time distribution 
in a subset of states of a Markov chain during a 
finite period of time. The subset of states may 
represent the operational states of a system. 
Therefore, the division of the cumulative sojourn 
time by the period length gives right away the 
system interval availability. We note that computing 
the full curve of the interval availability distribution 
using the result of (De Souza e Silva and Gail 1986) 
is time consuming.  (Carrasco 2004) proposed an 
efficient algorithm to compute the interval 
availability distribution for the special case of the 
systems which can be modeled  by an absorbing 
Markov chain. Note that in the latter two papers the 
renewal assumption of the on-off process is not 
anymore necessary.  

In this paper, we shall propose a numerically 
efficient approach to compute the distribution 
function of the interval availability. Our approach 
builds on the result of (De Souza e Silva and Gail 
1986) extensively in order to compute in closed-
form the first two moments of the interval 
availability. Note that these two moments were not 
derived previously in the literature for a Markov 
chain with more than two states. Moreover, we will 
follow a similar approach to (Smith 1997) to 
approximate the interval availability by a Beta 
distribution using the first two moments in addition 
to the probability that interval availability is equal 1.  

3  MODEL 

We consider a two-echelon, multi-item supply 
network. There is a single depot that supports 
multiple identical systems which are located at 
different bases. A system consists of multiple items 
that are subject to breakdown. These items are 
repairable and belong to the class of expensive slow-
movers, i.e., they have low failure rates. The depot 
and the bases hold a safety stock of spares for each 
item. Upon an item failure, the item is immediately 
sent to the depot for repair and at the same time a 
replenishment order is issued according to the (s-
1,s)-policy, where s denotes the order-up-to level. 
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Note that it is possible to extend our model by 
allowing for repair of failed items at the bases. The 
unsatisfied demand of parts is backordered. When 
the replenishment order arrives at the base it is used 
to fill backorders, if any. Otherwise, it is added to 
the base stock. The time needed to transfer a spare 
from the depot to the base is assumed to be 
exponentially distributed. This assumption was 
validated in (Alfredsson and Verrijdt 1999). In 
Section 5, we shall numerically examine the impact 
of the assumption of exponential order-and-ship 
times on the interval availability distribution. We 
say that the system is operational if all the items are 
operational. Obviously, if an item fails and no spare 
is available at the base, the system will be 
malfunctioning and unavailable for use. 

We consider a scenario inspired by a case study 
done at Thales Netherlands.  There is one naval 
radar system at each of the N bases (frigate). A 
system consists of M items. We assume that the j-th 
item fails according to a Poisson process with rate λj, 
j=1,…,M. Moreover, the failure of item j is 
independent of the rest of items.  We assume that the 
replenishment time of the i-th item at the depot is 
exponentially distributed with rate ߤ௝. The 
replenishment time includes the time to transport the 
failed item from the base to the depot and the time to 
repair the item at the depot. We model the depot 
repair shop as an ample server, i.e., it has an 
unrestricted repair capacity. We also assume that the 
transshipment time of a spare part from the depot to 
the system is exponentially distributed with rate μ0. 
Let sij, i=0,…,N, j=1,…,M, denote the stock level of 
item j at location i, where i=0 represents the depot 
and i=1,..,M represents the i-th base. Under the 
above assumption it is easily seen that the behavior 
of the system over time can be modeled as a 
continuous-time Markov chain. More precisely, 
since there is a finite number of spare parts in the 
network the continuous-time Markov chain is of 
finite size.  Comparing the assumptions of our model 
and (VARI-)METRIC the only difference is the 
exponentially distributed replenishment time and 
order-and-ship time, whereas order-and-ship times 
are deterministic and replenishment times have a 
general distribution in (VARI-)METRIC.  

Let Ai(T), i=1,…,N, denote the interval 
availability of system i during [0,T]. Our objective is 
to find the survival function of Ai(T), i.e., the 
complementary cumulative distribution function of 
Ai(T). For this reason, we first compute the mean and 
the second moment of the interval availability as 
well as the probability that the interval availability 
equals 1, i.e., P(Ai(T)=1). Although we may also 

compute the probability mass in the point zero, 
P(Ai(T)=0), this is not really useful: for practical 
relevant problem instances, it will be very close to 
zero. Next, using the three performance metrics as 
mentioned above we approximate the survival 
function of Ai(T) by a mixture of a probability mass 
at one and a Beta distribution. Throughout this 
paper, we shall only focus on the interval availability 
of a tagged system. For this reason, we shall drop 
the index i in Ai(T) and refer to it as A(T): the 
interval availability of a tagged system at one of the 
bases. In addition, we shall refer to the stock level of 
item j in the tagged system as sj. 

Since the failure processes of the different items 
are independent of each other and the repair capacity 
is unrestricted, the different items on the tagged 
system behave mutually independent over time. Let 
Xj(t) denote the state of item j in the tagged system at 
time t, i.e., Xj(t)=1 if the item is operational at time t 
and zero otherwise. Note that Xj(t)=0 if item j fails 
and there is no spare part available at the base to 
replace the malfunctioning item. Let  ܲܮ௜௝(ݐ) denote 
the item j pipeline of the tagged system i. That is, it 
is the total number of item j backorders of the tagged 
system at the depot or in transport from the depot to 
the tagged system. Note that the pipeline of item j 
depends on the stock on-hand at the depot. 
Furthermore, the depot stock depends on the failure 
processes of item j in all the systems in the installed 
base including the tagged system. Let us denote Nj(t) 
the total number of failed items of type j in the depot 
repair shop. Note that backorders at the depot are 
served according to FIFO discipline. Therefore, if 
Nj(t)≥s0j, i.e., on-hand stock in the depot is equal to 
zero, it is also necessary to keep track of the position 
of the tagged system backorders in the depot 
backorders list. This is a complication that arises 
when computing the interval availability distribution 
which is not encountered in (VARI-)METRIC 
model. The previous complication makes a detailed 
Markov analysis difficult. For this reason, in the 
following section we shall propose an approximate 
two-dimensional finite-size Markov chain to 
represent the state evolution of item j.  

The tagged system is operational at time t if 
Xj(t)=1, for all j=1,…,M. Let O(T) denote the total 
sojourn time of the joint process (X1(t), X2(t),…, 
XM(t)) in state (1,..,1) during [0,T]. The interval 
availability of the tagged system can be written as 
A(T)=O(T)/T. Note that the processes Xj(t), for 
j=1,…,M, are mutually independent and can be 
modeled as a Markov chain. Therefore, the joint 
process (X1(t),…, XM(t)) is also a Markov chain. 

A word on notation: Given that A is a matrix,
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A(i,j) denotes the (i,j)-entry of A. We use ⊗  as the 
Kronecker product defined as follows. Let A and B 
be two matrices then A ⊗ B is a block matrix where 
the (i,j)-block is equal to A(i,j)B. We use e to denote 
a column vector with all entries equal to one. 

4  APPROXIMATION 

In this section, we first propose an approximate  
two-dimensional continuous-time finite-state 
Markov chain to model the evolution of Xj(t) over 
time. Second, we represent the transition generator 
of the joint process (X1(t),…, XM(t)) as function of 
the generators of Xj(t), j=1,…,M. The main 
approximations are as follow: the time to satisfy an 
item j backorder at the depot is equal to its time to 
repair. This means that it is exponential distributed 
with rate ߤ௝. If there is on-hand stock of item j at 
depot the time to satisfy a backorder at the base is 
equal to the minimum of the item repair time and the 
order-and-ship time. Moreover, we shall assume that 
all the systems in the installed base, excluding the 
tagged system, are always operational. 

Let us consider the finite-state two-dimensional 
Markov chain ቄቀܲܮ௜௝(ݐ), ௝ܰ(ݐ)ቁ : ݐ ≥ 0ቅ, referred to 
as ܥܯܣ௝. We note that the chain has a finite state 
space because of the finite number of stocks in the 
network. Recall that ܲܮ௜௝(ݐ) is the item j pipeline of 
the tagged system i and Nj(t) is the total number of j-
th items in the depot repair shop. Note that ܲܮ௜௝(ݐ) ∈ {0,⋯ , ௜௝ݏ + 1} and ௝ܰ(ݐ) ∈ {0,⋯ , ଴௝ݏ ଵ௝ݏ+ + ⋯+ ெ௝ݏ +  Figure 1 shows the transition .{ܯ
diagram of ܥܯܣ௝	with s0j=2 and sij=1. The process ܥܯܣ௝ has the following transitions: 
• A failure of item j in the tagged system. In 

Figure 1, it represents the transition from (PLij(t), 
Nj(t)) to  (PLij(t)+1, Nj(t)+1) with rate λj.  

• A failure of item j in one of the systems in the 
installed based excluding the tagged system. In 
Figure 1, it represents the transition from (PLij(t), 
Nj(t)) to  (PLij(t), Nj(t)+1), which occurs by 
assumption with rate (N-1)λj. 

• A depot repair completion of an item j that is 
used to replenish a backorder for one of the 
systems in the installed based excluding the 
tagged system. In Figure 1, it represents the 
transition from (PLij(t), Nj(t)) to (PLij(t), Nj(t)-1), 
which occurs by assumption with rate (Nj(t)- 
PLij(t))µj. 

• A depot repair completion of an item of type j 
that is used to replenish a backorder of the 
tagged system.  In Figure 1, it is the transition 
from state (PLij(t), Nj(t)) to (PLij(t)-1, Nj(t)-1), 
which occurs by assumption with rate PLij(t)µj . 

• A backorder replenishment from the stock on-
hand at depot. In Figure 1, it is the transition 
from (PLij(t), Nj(t)) to  (PLij(t)-1, Nj(t)) that is 
assumed to be equal to PLij(t)µ0. Note there is 
stock on-hand at the depot if Nj(t)≤s0j. 
 

We emphasize that the previous four transitions 
rate are an approximation. The accuracy of these 
approximations shall be validated in Section 5. 

Let Gj denote the transition generator of ܥܯܣ௝. 
Since ܥܯܣ௝	is a finite state Markov that is aperiodic 
and irreducible we deduce that ܥܯܣ௝	has a steady 
state probability. Let ߨ௠,௡(݆) denote the steady state 
probability that ܥܯܣ௝ is in state (m,n). We define 
the probability distribution row vector π as follows ߨ = ቀߨ଴,.,⋯ , .,௠ߨ  ,௦೔ೕାଵ,.ቁߨ = ቀߨ௠,௠, ⋯,௠,௠ାଵߨ , ௠,௦బೕା௦భೕା⋯ା௦ಾೕାெቁߨ ,݉ = 0,⋯ , ௜௝ݏ + 1. 

 
Figure 1: Transition diagram of ܥܯܣ௝	with s0j=2, sij=1, 
and N=6.  

In the case where ܥܯܣ௝ sojourns in states (m,n) 
with m≤sij item j in the tagged system is operational. 
This is because, for m≤ sij there is no backorder of 
item j of the tagged system in the base. On the other 
hand, when m=sij+1 there is one item j backorder in 
the base. Therefore, item j in the tagged system is 
unavailable for m> sij. Let Ω௝ denote the state space 
of ܥܯܣ௝. We split Ω௝ into to two disjoint subsets: Ω௝௢ 
subset of operational states, i.e., states (m,n) with m≤ 
sij, and Ω௝௠  subset malfunctioning states, i.e., states 
(m,n) with m=sij +1. The steady state probability that 
item j is operational in the tagged system gives  

ܲ൫ ௝ܺ = 1൯ = ෍ ෍ ∑௠,௡(݆)ெା௦బೕାߨ ௦೗ೕಾ೗సభ
௡ୀ଴

௦೔ೕ
௠ୀ଴ , 
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where ௝ܺ is the steady state of the process ௝ܺ(ݐ), i.e., ௝ܺ = ௝ܺ(∞). Throughout this paper, we shall assume 
that the ܥܯܣ௝ starts in steady state at time 0. 
Therefore, for all ݐ ∈ [0, ܶ] the chain ܥܯܣ௝, ݆ = 1,…  .will remain in steady state ,ܯ,

In the following, we shall use the uniformization 
method, which is extremely useful for computational 
purposes. The uniformization method transforms a 
continuous-time Markov chain with non-identical 
states leaving rate to an equivalent process in which 
the transition are generated by a Poisson process at a 
uniform rate (Tijms 2003). Let Pj denote the 
transition probability matrix of the uniformized 
process of ܥܯܣ௝. The matrix Pj reads ௝ܲ = ܫ + ଵఔ	ܩ௝, 
where I is the identity matrix, and ν is given by: ߥ > max൫	หܩ௝(݈, ݈)ห, ݈ = 1,… , ௝ܩ|| ௝||൯, whereܩ|| || is 
the size of the matrix ܩ௝. Let Ps denote the transition 
probability matrix of the joint uniformized process 
(X1(t),…, XM(t)). Then, Ps is equal ଵܲ ⊗ …⊗ ெܲ, 
see, (Rausand and Høyland 2004). 

4.1 Performance Metric 

In this section, we derive in closed form the E[A(T)], 
Var[A(T)], and P(A(T)=1). We refer the interested 
reader for results to (Al Hanbali and van der Heijden 
2011).  
 

Theorem 1: The expected system interval 
availability during [0,T] is equal to the steady state 
system availability and is given by: 

[(ܶ)ܣ]ܧ =ෑ෍ ෍ ∑௠,௡(݆)ெା௦బೕାߨ ௦೗ೕಾ೗సభ
௡ୀ଴

௦೔ೕ		
௠ୀ଴

ெ
௝ୀ଴ .	

 

Before reporting our result on the variance of A(T), 
let us introduce some notation. Let γj denote a row 
vector that is defined as ߛ௝ = ቀߨ଴,.,⋯ , ,.,௦ೕߨ ૙ቁ, 
where 0 denote a row vector with all entries equal to 
0. Let fj denote a column vector that is defined as ௝݂ = (݁,⋯ , ݁, ૙).  

 

Theorem 2: The variance of the system interval 
availability during [0,T] is given by: 

[(ܶ)ܣ]ݎܸܽ = 2෍݁ିఔ௧	ஶ
௡ୀଵ

݊)௡(ݐߥ) + 2)!෍(݊ − ݅ + 1)ෑߛ௝൫ ௝ܲ൯௜ ௝݂ெ
௝ୀଵ

௡
௜ୀଵ+ [(ܶ)ܣ]ܧ2 ݁ିఔ௧ + ܶߥ − ଶ(ܶߥ)1 −  .ଶ[(ܶ)ܣ]ܧ

The process Xj(t) is equal to one for all  t∈[0,T] 
if the time until absorption of ACMj into the subset Ω௝௠ is larger than T, given that ACMj starts at time 0 

in ߗ௝௢. Let θj denote the row vector ቀߨ଴௜,⋯ ,  .௦೔ೕቁߨ
Let Oj denote the transient generator of AMCj under 
the assumption that the states of Ω௝௠ are absorbing. 
That is, Oj is the matrix composed of the first ൫ݏ௜௝ + 1൯ × ଴௝ݏ) + ଵ௝ݏ + ⋯+ ெ௝ݏ +  rows and (ܯ
columns of Gj. Let ௝ܶ௔ denote the time until 
absorption into a state of  Ω௝௠. It is then well known 
that, see, (Neuts 1981)  ܲ൫ ௝ܶ௔ ≥ ܶ൯ = ௝ߠ exp൫ܶ	 ௝ܱ൯ ݁. 

 

Theorem 3: The Probability that A(T)=1is given by: ܲ(ܣ(ܶ) = 1) = ݁ି்∑ ఔ೔ಾ೔సభ 	ෑߠ௝ ෍ !௡݊(௜ܶߥ) ൫ ௝ܲ௔൯௡݁,ஶ
௡ୀ଴

ெ
௝ୀଵ  

where	 ௝ܲ௔ = ܫ + ௝ܱ/ߥ௝,  and ߥ௝ > max൫ห ௝ܱ(݈, ݈)ห, ݈ =1,… , || ௝ܱ||൯. 
Note that the infinite sum in the previous 

Theorem 2 and 3 can be truncated with a 
predetermined truncation error bounds, see (De 
Souza e Silva and Gail 1986; Tijms 2003).  

4.2 Approximation of (ࢀ)࡭)ࡼ ≥   (࢟
Until now we have computed E[A(T)], Var[A(T)], 
and P(A(T)=1). We shall report now how to fit these 
metrics in a probability distribution that is a mixture 
of probability mass at one and a Beta distribution. 
The choice for Beta distribution is made for the main 
reason that: the interval availability and a Beta rv 
both have finite support. The interval availability has 
probability mass at 0 and 1. However, in most 
practical cases with high expected interval 
availability P(A(T)=0) is almost zero. For that 
reason, we shall neglect it in the following. We 
approximate the interval availability as follows: ܣ(ܶ) = (1 − (ܶ)ܣ)ܲ = 1) ∗ ߀ + (ܶ)ܣ)ܲ = 1), 
where B is a Beta distributed rv bounded between 0 
and 1. From the latter equation it readily seen that ܧ[Β] = [(ܶ)ܣ]ܧ − (ܶ)ܣ)ܲ = 1)1 − (ܶ)ܣ)ܲ = 1) [Βଶ]ܧ , = [ଶ(ܶ)ܣ]ܧ − (ܶ)ܣ)ܲ = 1)1 − (ܶ)ܣ)ܲ = 1) . 
      The probability density of a Beta rv reads ݂(ݔ; ,ߙ (ߚ = ,ߙ)ܤ1 (ߚ ఈିଵ(1ݔ −  ,ఉିଵ(ݔ
where ߙ)ܤ,  is the Beta function. Given that (ߚ
expectation and the variance of Β is known a simple 
algebra gives that ߙ = (1 − ([Β]ܧ ∗ [Β]ݎଶܸܽ[Β]ܧ − ,[Β]ܧ and	ߚ = ߙ ൬ [Β]ܧ1 − 1൰. 
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Finally, we conclude that ܲ(ܣ(ܶ) ≥ (ݕ = 	 (1 − (ܶ)ܣ)ܲ = 1) ׬ ;ݔ)݂ ,ߙ ଵ௫ݔ݀(ߚ (ܶ)ܣ)ܲ																																+ = 1).  
5 NUMERICAL VALIDATION 

In this section, we compare the results of our model 
with the simulation as function of the average 
system availability. Moreover, we consider different 
cases with different number of items per system (M). 
The main scenario is as follows: One depot that 
serves six bases. We note this scenario and its input 
parameters value are inspired from a case study done 
at Thales Netherlands. A base is a system that is 
composed of M=10,30,50 items. All stocks are 
available at the depot and there is no possible repair 
at the bases. The repair time of item j is 
exponentially distributed with rate ߤ௝ =1/MTTRj, 
where MTTRj is the mean time to repair item j. The 
order of magnitude of the MTTRj is between few 
month to more than a year. The order-and-ship time 
is exponentially distributed with mean 120 hours. In 
the simulation, we shall assume that the order-and-
system time is deterministic. Item j fails according to 
a Poisson process with mean time between failures 
,௝ߣ/equal to 1 (௝ܨܤܶܯ) ݆ = 1,⋯  The order of .ܯ,
magnitude of ߣ௝ is between few times per year to 
few times per hundred years. We are interested in 
the interval availability of a system during one year, 
i.e., T=8760 hours. The implementation of the 
simulation is done in Plant Simulation v8.2. We 
used Matlab v7.8 for the approximations. For details 
on the stock allocations see the Appendix. 

In Figure 3, 4 and 5, we show the survival 
function of the interval availability using our model 
and the simulation with M=10, 30, 50, respectively. 
Note that the discontinuity points in the tail of A(T) 
using simulation are due to the deterministic 
assumption of the order-and-ship time.  Observe that 
our model has the highest accuracy for the cases 
where M=10 and 30 and where E[A(T)] is larger 
than 80%. Our model predicts very well E[A(T)] for 
all the cases, see the second row in Table 1, and 2 
for details. However, our model predicts Var[A(T)] 
with less accuracy. Moreover, it seems that the 
accuracy of Var[A(T)] has less impact on the 
survival function than the accuracy of E[A(T)], see 
for example the results of cases 3, 6, and 9. Note that 
for all the different cases considered the difference 
of ܲ(ܣ(ܶ) ≥ ݔ with ,(ݔ ≥  obtained using ,[(ܶ)ܣ]ܧ
the simulation and our model is larger than -0.04 and 
smaller than 0.07, as indicated in Table 1, and 2. 

Finally, note that the run time of our approximation 
is less 100ms for the considered cases.   

 
Figure 2: Interval availability survival function with M=10 
in case: 1. E[A(T)] = 63%, 2. E[A(T)] = 79%, and 3. 
E[A(T)] = 92%. 

 
Figure 3: Interval availability survival function with M=30 
in case: 4. E[A(T)] = 64%, 5. E[A(T)] = 81%, and 6. 
E[A(T)] = 90%. 

 
Figure 4: Interval availability survival function with M=50 
in case: 7. E[A(T)] = 66%, 8. E[A(T)] = 79%, and 9. 
E[A(T)] = 92%. 

Table 1: Relative absolute difference of E[A(T)] (resp., 
Var[A(T)]) obtained using our model and simulation for 
case 1,2, 3, and 4. 

Case 1 2 3 4 
Relative absolute 

difference E[A] (%) 3.68 0.17 0.35 3,67 
Relative absolute 

difference Var[A(T)] (%) 8.08 12.42 20.45 7,39 
Min difference of 

P(A(T)>x), x<=E[A(T)] -0.04 -0.01 0 -0,04 
Max difference 

P(A(T)>x), x<=E[A(T)] 0.01 0.02 0.02 0,01 
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Table 2: Relative absolute difference of E[A(T)] (resp., 
Var[A(T)]) obtained using our model and simulation for 
case 5, 6, 7,8 and 9. 

Case 5 6 7 8 9 
Relative absolute 

difference E[A] (%) 0,49 0,11 0,34 0,17 0,22 
Relative absolute 

difference 
Var[A(T)] (%) 

12,83 7,01 6,77 4,22 1,51 

Min difference of 
P(A(T)>x), 

x<=E[A(T)] 
-0,01 -0,01 -0,03 -0,02 -0.01 

Max difference 
P(A(T)>x), 

x<=E[A(T)] 
0,03 0,03 0,04 0,03 0.07 

6 CONCLUSIONS 

In this paper we analyzed the interval availability of 
a two-echelon network that supports multi-item 
systems. We proposed an analytical approximation 
that is based on a Markov chain analysis. We 
computed in closed and exact form the expected, the 
variance, and the probability of hundred percent 
interval availability of the system. Using the 
previous metrics we approximate the survival 
function of the interval availability. The simulation 
result shows that our model has accurate results 
especially for high expected interval availability.   
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APPENDIX: SIMULATION 
DETAILS 

Case 1: M=10, depot stock =(0   0   0   0  0  0   0   0   0   
0). Case 2: M=10, depot stock =(1   0   0   0  1  0   0   0   0   
0). Case 3: M=10, depot stock =(2   1   1   1   2   1   0   0   
0   0). Case 4: M=30, depot stock =(0    1   2   2   0   1   1   
1   1   0   1   1   1   1   1   1   1   0   1   0   0   0   0   1   0   0   
0   0   0   0). Case 5: M=30, depot stock =(1   1   2   2   1   
1   1   1   1   0   1   1   1   1   1   1   1   0   1   0   0   0   0   1   
0   0   0   0   0   0). Case 6: M=30, depot stock =(7   1   2   
2   2   1   1   1   1   0   1   1   1   1   1   1   1   0   1   0   0   0   
0   1   0   0   0   0   0   1). Case 7: M=50, depot stock =(1 0   
0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0). Case 8: M=50, depot stock 
=(7  1  2   2   2   1   1   1   1   1   1   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0). Case 9: M=50, 
depot stock =(7   1   2   2   4   1   1   1   1   1   1   1   1   1   
1   1   1   0   1   0   0   0   0   1   0   0   0   0   0   1   1   1   0   
0   0   0   0   4   4   4   1   1   1   1   1   1   2   1   1   0).  
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