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Abstract: We propose a model to solve the disturbances which could occur during the execution of agents task schedules
in a dynamic multi-agent system. Our model is based on pooling residual resources to reallocate tasks in case
of incoming tasks or disturbances during the execution of the system. In our context, initial task schedules of
agents are defined such that, during some given time windows, agents can perform additional tasks with their
residual resources. In this paper, we propose a model for this problem. In order to validate this model, we also
propose a first resolution method attempt and an experimental study of this framework.

1 INTRODUCTION

In this paper we consider the case of task realloca-
tion over a multi-agent system, where each agent has
non shareable resources to achieve tasks. These re-
sources are still available during the execution of such
system instances, nevertheless these resources are not
used continuously by the agents. As a consequence,
we focus on the context of a resource pooling system,
where agents can achieve tasks for others by using
their own allocated resources for time periods during
which these resources are not needed by them. We
denote these kind of resources asresidual resources.
We propose to use multi-agent task allocation tech-
niques (Chevaleyre et al., 2006) to reallocate tasks
during the execution of a defined schedule. We fo-
cus on a special case of task reallocation problem for
which global schedule modification is not allowed.
We aim to propose a framework to deal with incoming
tasks or task failures by poolingresidual resources.
Considering an agent facing a loss of its allocated re-
source, our approach is based on a model and a set
of methods to find corresponding available resources
(according to other agents schedule) and insert addi-
tional tasks into another agent’s schedule, in order to
solve this problem. We assume that resource allo-
cation and task schedule are such that agents could
perform additional tasks with theirresidual resources
during given time windows. So, the main idea of
this work is to consider that agents pool theirresid-
ual resourcesin order to enable task reallocation with
a view to execute tasks for other agents. We focus on
the case of task reallocation during the execution of a

defined schedule. The main constraints of our prob-
lem are that any modification of the initial resource
allocation is forbidden and no major modification of
agents schedule is allowed. As a matter of fact, we
propose in this paper a framework for this problem.
In order to validate this model, we also propose a first
resolution method attempt and an experimental study
of this framework. Section 2 details our problem of
adaptive task scheduling within the context of a re-
source pooling system and gives a brief state of the
art. In Section 4 we propose a computational model
and procedures to deal with the problem of adaptive
task scheduling. In order to validate our model, Sec-
tion 5 concludes with an experimental study.

2 OUR PROBLEM

We consider a multi-agent system with an initial re-
source allocation amongst agents computed in order
to accomplish an associated task schedule. Each task
of this schedule has to be performed by a specific
agent within a given time window, and implies the
use of some of its allocated resources. This problem
includes situated agents moving in an environment,
agents and their allocated resources share the same
locations. Thus when agents move from a location to
another, they are accompanied by their allocated re-
sources. Furthermore, the agent schedules define a
set of tasks to execute under location constraints. In
addition, we assume that the initial resource alloca-
tion and task schedule are such that some allocated
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resources are not fully used by agents and agents can
perform additional tasks during given finite time win-
dows. Moreover, the problem occurs in a dynamic
environment where tasks appear during the execution.
These dynamic tasks are new task orders or initially
scheduled tasks that agents fail to perform due to the
system dynamics. So, the main idea of this work is
to consider that agents pool theirresidual resources
in order to execute additional tasks for others and to
be able to delegate the achievement of tasks to other
agents. As we focus on the case of task reallocation
during the execution of a defined schedule, the main
constraint of our problem is that we cannot modify
the resource allocation. We must rather use this al-
location to assign the execution of additional tasks to
agents based upon their resources and task schedule.

Background. We present the two most similar prob-
lems to our, as they include situated agents and their
solutions imply schedule such that some allocated re-
sources are unused by agents during given time pe-
riods. TheVehicle Routing Problem with Time Win-
dows(VRPTW) (Laporte and Osman, 1995) has been
widely studied in both operational research (Solomon,
1987; Cordeau et al., 2001) and multi-agent sys-
tem (Fischer et al., 1999; Barbucha and Jedrzejow-
icz, 2009). TheVRPTW concerns the design of
least cost routes over a vehicles fleet, in order to
deliver goods from a central depot to a set of geo-
graphically scattered points during given time win-
dows. The Dynamic Pickup and Delivery Problem
(DPDP) (Berbeglia et al., 2010) is another vehicle
routing problem of interest. This problem concerns
the transport of people or goods from an origin to a
destination. Now we give an overview of the differ-
ent approaches for these problems. These approaches
have led us in our study even if they differ in terms
of constraints on the modification of the resource al-
location and task schedule of agents. As a matter
of fact, they were not reusable for our work as they
imply major modification that are not allowed in our
case. In the multi-agent literature, the use of mar-
ket based allocation procedures is the main approach
adopted to solve VRPTW. These procedures are of-
ten based on Contract Net Protocol (Davis and Smith,
1983; Fischer et al., 1999) or on Vickrey auction
model (Vickrey, 1961; Gorodetski et al., 2003), but
only few propose an approach for dynamic task real-
location. Fischer et al. (Fischer et al., 1999) presented
a multi-agent simulation framework where agents in-
teractions are driven by negotiation protocols. Here,
the problem is similar to our in the sense of resource
pooling and as it proposes a procedure between com-
panies to buy and sell free loading capacities to over-
come disturbances during the execution. Outcomes of

this procedure are interesting because they can lead to
local modifications of the schedule. But these out-
comes differs from ours, since they lead to global
modification of agents schedule in the worst cases and
thus give no guarantee of minimum changes. Studies
concerning theDPDPare based on the same two steps
approach. In the first step, the problem is resolved
in its static version according to requests known be-
fore execution. The second step occurs during execu-
tion, when a new request is known. During this step,
heuristic methods such as insertion methods, inter-
change moves and deletion heuristics are performed.
As a result, the previous solution of the schedule is
updated with minor or global schedule modification.
All these approaches concern problems for which a
global modification of the schedule is allowed. But
we consider a problem where such global modifica-
tion is forbidden. So, in the next section we propose a
model to enable dynamic task reallocation under tem-
poral and location constraints without global modifi-
cation of the schedule.

3 COMPUTATIONAL MODEL

We consider a multi-agent system populated byn sit-
uated agentsa1, ..., an andm resources. The agents
and their allocated resources share the same location.
Thus when agents move from a location to another,
they are always accompanied by their allocated re-
sources. Each task must be achieve at a given loca-
tion of the environment. The knowledges of an agent
ai are represented by a tuple< E i ,S i ,R i ,O i ,D i ,P i >,
with :

• E : environment representation,

• S i : the task schedule of agentai,

• R i : finite set ofai allocated resources,

• O i : finite set ofai task offers,

• D i : finite set ofai task demands,

• P i : ai preferences to select the besttask offer
among others.

Environment and Communication. The environ-
ment of the agents is defined by a spatial grid di-
vided in small regions. This spatial grid is modeled
by an undirected graphE = (V,A), where each vertex
vn ∈V represents a small region of the grid. The edge
set is defined asA= {(i, j)|i, j ∈V, i 6= j}. Each pair
of adjacent regions are represented by a valued edge
(i, j) ∈ A. The weight of each edge(i, j) has a non-
negative valueti, j and denotes the time travel of an
agent from regioni to j. In the context of our study,
we assume that there is no communication constraint

ICAART 2012 - International Conference on Agents and Artificial Intelligence

86



between agents. In addition, we consider that agent
are able to performpoint to pointandbroadcastcom-
munication protocols.

Task Schedule. Let S i = {ti1, ..., tin} denote
the task schedule of an agentai . Each primi-
tive task tim ∈ S i is defined by a tupletim =<

Rim,Vim,SDateim,EDateim,Locim >, where :

• Rim : type of resource needed to achievetim,

• Vim : amount of resource needed to achievetim,

• SDateim : start date oftim execution,

• EDateim : end date oftim execution,

• Locim : location constraint ontim performance.

The constraintLocim, defines the location in the envi-
ronment where the tasktim must be performed by an
agentai . Thus,ai must perform the tasktim in regard
with the location constraint specified byLocim. In ad-
dition, S i = {ti1, ..., tin} is defined as a strictly ordered
set, such that:

SDatei1 < EDatei1 < SDatei2 < ... < EDatein

Agents schedule are defined such that, during some
time periods, all allocated resources are not needed
by them (i.e. residual resources). We assume that
during such periods, agents can perform additional
tasks by using theseresidual resources. Thus, each
agentai has atask offerssetO i , as a way to propose to
other agents to execute tasks for them with its residual
resources. According to the dynamics,disturbances
may occur during the execution of schedules. We de-
fine adisturbanceas a loss of one or more resources
initially allocated to an agent. So, when adisturbance
occurs, the agent is unable to perform the tasks requir-
ing these resources. To overcome such situations each
agentai has atask demandssetD i , defining the tasks
it cannot perform and needs to delegate to others. At
the beginning,D i the task demandsset of an agentai
is empty, whereas its set oftask offersO i contains ele-
ments according to itsresidual resources. These con-
tents are computed along the dynamics of the system.
We define each element ofO i andD i as finite sets of
data describing the usage constraints of the resources
associated to atask offerand to atask demand.

Task Offers Representation. Here we give a
detailed description of the finite data set used by
agents to describe theirtask offersand correspond-
ing usage constraints. Given an agentai, each
task offer oik ∈ O i , is defined by the tupleoik =<

ai ,Tk,Rk,Vk,Sdatek,Edatek,Lock,Ck >, where:

• ai : the agent proposing thetask offer,

• Tk : identifier of thetask offer,

• Rk : offered resource type,

• Vk : offered resource volume or amount,

• Sdatek : start date of resource availability,

• Edatek : end date of resource availability,

• Lock : constraint(s) onai location,

• Ck : acceptance criteria to contract a task execu-
tion for another agent with this offer.

Task Offers Acceptance Criteria. The decision
criteriaCk relative to atask offer oik ∈ O i of an agent
ai are used byai during the task reallocation proce-
dure. Given thetask demand djq ∈ D j of an agent
a j , these criteria are used byai to decide to execute a
task fora j in regard with the constraints ofoik andd jq.
Consideringoik andd jq, Pmaxk denotes the maximum
postpone total delay allowed overai schedule and in-
duced by the execution of a task for another agent,
Dmaxk denotes the maximum distance induced by the
location constraints ofoik andd jq. Let Distq the dis-
tance induced byoik andd jq location constraints and
Pq the time delay occurring inai schedule if it exe-
cutes thetask demand djq. Thus the acceptance crite-
ria used byai to execute the task associated tod jq for
a j are defined by the following condition :

(Pq 6 Pmaxk)∧ (Distq 6 Dmaxk)

Task Demands Representation. We define atask
demandas the finite data set used by agents to de-
scribe a task they can no longer perform and to de-
fine the constraints and preferences regarding its ex-
ecution by another agent. Given an agentai, each
task demand diq ∈ D i is defined by the tuplediq =<

ai , Tq, Rq, Vq, Sdateq, Edateq, Locq, Cq > where:

• ai : the agent willing to delegate a task execution,

• Tq : identifier of thetask demand,

• Rq : needed resource type,

• Vq : needed resource volume or amount,

• Sdateq : start date of task execution,

• Edateq : end date of task execution,

• Locq : location constraint(s) onTq performance,

• Cq : acceptance criteria to determine correspond-
ing feasibletask offers,

Task Demands Acceptance Criteria. Let o jk ∈ O j
the task offerof an agenta j anddiq ∈ D i the task de-
mandof an agentai. The acceptance criteriaCq rela-
tive to atask demand diq are used byai during the task
reallocation procedure to determine ifo jk satisfies the
constraints ofdiq (i.e. if o jk could be a feasibletask of-
fer in regard with the execution constraints specified
by diq). Consideringai anddiq, Pmaxq denotes the
maximum postponement allowed for the execution of
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diq, Dmaxq denotes the maximum distance induced
by the location constraints ofdiq ando jk and allowed
to contract thetask offer ojk of agent ana j . Let us
considerDistk the distance induced bydiq ando jk lo-
cation constraints, andPk the postponement induced
if a j executesdiq. Thus the decision criteria used by
ai to determine ifo jk is a feasible offer are defined by
the following condition :

(Pk 6 Pmaxq)∧ (Distk 6 Dmaxq)

Agent Preferences. Given thetask demand diq ∈D i
of an agentai , we define a method to determine the
best offer among a set of feasible offers and with re-
gard to both of their usage constraints. Thus, the pref-
erencesPre fq associated todiq define the selection
method used in the determination of the best offer.
This selection method uses a multi-criteria aggrega-
tion function (Bellosta et al., 2008). These prefer-
ences define criteria regarding distance travel et deliv-
ery time delay. Thus, an offer inducing a short travel
distance will be preferred to a longer distance offer.
The same selection method is applied for postpone-
ments criteria. The expression of preferences over
alternative solutions is based on a preferences aggre-
gation defined on these criteria. Each alternative so-
lution o jk is defined by a pair of criteria(D jk,Rjk),
denoting the alternativeo jk which induces a distance
D jk and a delivery postponementRjk. The set of
alternatives can be represented by the set of pairs
(D jk,Rjk). Upon this set, we use a lexicographical
order to determine the best solution. Thus, we define
a total order over the alternatives set such that :

((D1,R1)≻ (D2,R2))

iff (D1 < D2)∨ ((D1 = D2)∧ (R1 < R2))

Task Reallocation Procedure. In the case ofdis-
turbancesoccurring during the system execution, the
main goal of the task reallocation procedure is to find
residual resourcesallowing the execution of a task
under temporal and location constraints. We propose
a simple heuristic method for such problems (Algo-
rithm 1delegateTask) and used to validate our model.
This heuristic method is based on a greedy algorithm
which aims to reduce the total amount of informa-
tion exchanges and to shorten the time needed to find
a solution by reducing the total number of queried
agents. This algorithm determines successive small
sets of agents to query until a feasible solution is
found. Thus, when an agent needs to delegate a task
execution, at first it makes a local search by asking
his nearest neighboring agents about theirtask offers.
If no correspondingtask offeris found, then the agent
performs a more global research by selecting and ask-
ing agents in a farther neighborhood. The notion of

Algorithm 1: delegateTask(demand).

1: contract← false
2: fSet← null
3: qSet← getQueryAgentSet(i=0)
4: while (qSet6= null) ∧ ¬ contractdo
5: fSet← feasibleOfferSet(qSet, demand)
6: contract← contractOffer(fSet, demand)
7: fSet← getQueryAgentSet(i+1)
8: end while

neighboring agents defines how to determine the suc-
cessive sets of agents to query about theirtask offers
(methodgetQueryAgentSet). The set of feasibletask
offers, corresponding to the demanddiq, is selected
upon the procedurefeasibleOfferSetand according to
the acceptance criteriaCq of diq. This set of feasi-
ble task offersis used as input of the procedurecon-
tractOffer in order to propose and conclude a task
delegation with another agent. The procedurecon-
tractOffer determines the best offero jk according to
the preferences ofdiq. Then a task delegation request
is sent toa j the agent proposingo jk. In return,a j ac-
cepts or refuses the request if the realization ofdiq im-
plies a delay in its schedule. If the request is refused,
the procedure is repeated with the next best offer, un-
til the feasible offer set is empty or a task delegation
is concluded.

4 EXPERIMENTAL STUDY

In this Section, we present an experimental study with
an implementation of our framework and two sim-
ple task reallocation methods, in order to validate our
model for dynamic task allocation.

A Transportation Network Application. This
work is a part of an industrial project for an urban
pooling capacity transportation network. Our experi-
mental study is a simulation of the multi-agent system
used to monitor the network execution. The simu-
lation is based on a set of agents representing trans-
portation vehicles. The agents schedule are computed
as the solution instance of aVRPTW. Time and space
are discretized. Time is divided in 10 minutes rounds.
The environment is described by a spatial grid di-
vided into a set of 89 non overlapping areas. During
rounds, agents travel in areas according to their sched-
ule. Agents can handle a limited amount of freight.
During the execution, the amount of freight handled
by agents evolves. Thus, at given time rounds, agent
load capacity are not fully used and freight transporta-
tion capacity is still available. During schedule ex-
ecution, failures are randomly generated in order to
observe the system behavior. These failures imply the
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inability of an agent to execute a freight delivery ini-
tially planned in it schedule. For example, truck driver
may be missing at the beginning of the day, a vehicle
may suffer of breakdown during its travel,... In the
context of our experimental study, we consider two
different failure types. Givent the time round of a
failure detection, the first type of failure induces the
inability to execute a task scheduled in roundt + n,
whereas the second induces the inability to execute
a task scheduled in roundt. Our experimentations
concern the second type of failure, which implies to
quickly find a solution.

Experimental Protocol. Our experiments have
been led over two sets of 10 delivery schedules of two
different types. Both of the delivery schedules types
involve a set of 100 agents. The first delivery sched-
ule type (denotedtype I) includes 800 delivery orders
over a 5 hours period. The second delivery schedule
type (denotedtype II) includes 1600 delivery orders
overs a 10 hours period. The delivery schedules of
type II occur in a far more congested road time pe-
riod than the schedules oftype I. For a number of fail-
ures ranging from 1 to 90 (one failure maximum per
agent), we conducted 100 random draws for each dif-
ferent range of failures. Two different task realloca-
tion procedures have been applied separately to solve
each of the schedules thus obtained.

Task Reallocation based on Contract Net Protocol.
This reallocation procedure (denotedglobal research
in the following), starts with the broadcast of a mes-
sage containing thetask demand. Then all the agents
reply with a refusal message or a proposal message
containing a non empty list of their availabletask of-
fersmatching the constraints of thetask demand. The
preferred feasible offer is selected and contracted ac-
cording to agent preferences and acceptance criteria.

Task Reallocation based on Local Research. In
regard with our applicative context, the location con-
straints oftask offersand task demandsrefer to ar-
eas of the spatial grid modeling the environment. So,
given an agentai , we define the nearest neighboring
agents ofai as the set of agents located in areas adja-
cent toai location area and agents located in the area
of ai . Starting from the nearest neighboring set, the
farther neighboring sets of agents are defined step by
step by selecting agents located in the adjacent areas
of the previous neighboring set.

Experimental Settings. The main settings used in
our experimental study concern the value of agents
acceptancetask offersand task demandsacceptance
criteria. Here we give the acceptance criteria assign-
ment used in our experiment. We consider in this
case, that given an agentai the acceptance criteria

of all its task offersandtask demandshave the same
value. More formally, given an agentai , ∀oik ∈ O i
and∀d jq ∈ D j the assignment ofai acceptance crite-
ria are defined such thatPmaxk = Pmaxq = Pmaxand
Dmaxk = Dmaxq = Dmax. Distribution of the assign-
ment values of our experiments are given in table 1.

Table 1: Acceptance criteria assignments distribution.

number of agents Pmax(minutes) Dmax(km)
33 30 5
33 60 10
34 90 ∞

4.1 Experimental Results

Proportion of Resolved Failures. For a number of
failures ranging from 1 to 10 the mean proportions
of resolved failures with the local research are sim-
ilar to those obtained with the global research. The
related ratio of the local research over the global re-
search method have almost equal values for a num-
ber of failures ranging from 1 to 20. According to
ratio values, the local research procedure is less ef-
ficient for a number of failures exceeding 30%. In
regard with the observations made upon the propor-
tion of resolved failures and their corresponding ratio,
we assume that road congestion periods have little in-
fluence on the mean proportion of resolved failures.
Indeed, the entire ratio result values are similar what-
ever the research method and type of schedule stud-
ied.
Amount of Information Exchanges. In regard
with the definition of the task reallocation procedures,
the amount of information exchanges depends on the
number of messages exchanged. This number of mes-
sages is defined by the number of agents queried
about theirtask offerand also by the number of agents
requested to accept additional task until a solution is
found. In case of a global research the number of
agents queried about theirtask offersis always equal
to 99 agents, whereas this number presents a very
high variability level in the case of a local research.
The mean number of queried agents needed to solve
a failure varies between 15 and 18 agents. Consider-
ing a number of failures evolving from 1 to 40%, the
mean number of agents requested to accept an addi-
tional task varies from 1 to 1.5 for both procedures.
Computational Cost. We define the computational
cost as the mean CPU time1 needed to solve a failure.
Local research is 6 times faster than global protocol
in the worst case and 8.5 faster in the best case. The

1The computer used to run the experimentations is
equipped with a 2.66GHz Intel Core i7 processor and a 4Go
1067MHz memory
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very high CPU time needed by the global research and
compared to the local research, comes with the size of
thetask offersset used to find a solution.
Solution Quality. The quality of the solutions is
characterized by three different indicators: the total
postponement over agents initial schedule, the delay
of resolved freight deliveries and the additional travel
distance. Here we focus our study and observations
for a failure proportion varying from 1 to 30%. In-
deed, we consider that for any failure proportion su-
perior to 30% the simulation results concerns excep-
tional cases of disturbances in a transportation net-
work. Under this assumption and according to results
obtained, the mean total postponement induced by ad-
ditional tasks in agents schedule is higher with the
global protocol than with the local protocol. In ad-
dition, the mean value of postponement is higher with
scheduletype II than withtype I, this observation rely
on the differences of road congestion characterizing
the two types of delivery schedules. Concerning the
mean postponement of resolved freight deliveries, we
observe higher mean postponement result values with
the global research procedure (from 17 to 27 min-
utes) than with the local research procedure(from 13
to 21 minutes). The mean additional travel distance
of agents obtained with the local research is higher
(from 1.5 km to 2,2 km) than with the global research
procedure (from 1,3 km to 1,5 km). In short, and with
regard to the global research, the local research max-
imizes the additional travel distances, but enables to
minimize the postponement over the delegated deliv-
eries and the agents task schedule.

5 CONCLUSIONS

In this paper, after the presentation of a task reallo-
cation problem and a state of the art, we proposed a
computational model that allows agents to delegate
the execution of tasks to others. This model aims to
capture all the the descriptors needed for task delega-
tion. It gives a description of the various constraints
for the performance of tasks under location and tem-
poral constraints by a set of situated agents. In or-
der to validate our model, we introduced a method
to enable the exploitation ofresidual resourcesin
a multi-agent system where agents have non share-
able resources to execute a defined task schedule. To
overcomedisturbancesduring the execution of such
schedule, we propose to reallocate tasks to agents
over time periods where they can perform additional
tasks without modifying their initial schedule. Our
first experimental results show that the use of lo-
cal research is more efficient than global search and

gives solutions of equivalent quality, in term of addi-
tional distance and postpone delay. The main lines of
our future research will focus on optimizing the re-
search method by introducing a negotiation protocol.
We also aim to propose a task reallocation procedure
which enable the use of multipletask offersto solve
one failure. Another part of our work will concern
the influence of acceptance criteria on the method ef-
ficiency and the solution quality.
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de l’Industrie et de l’Emploi” and ADVANCITY.

REFERENCES

Barbucha, D. and Jedrzejowicz, P. (2009). Agent-based ap-
proach to the dynamic vehicle routing problem. In7th
International Conference on PAAMS’09, pages 169–
178. Springer-Verlag.

Bellosta, M.-J., Kornman, S., and Vanderpooten, D. (2008).
A unified framework for multiple criteria auction
mechanisms. Web Intelligence and Agent Systems,
6(4):401–419.

Berbeglia, G., Cordeau, J.-F., and Laporte, G. (2010). Dy-
namic pickup and delivery problems.European Jour-
nal of Operational Research, 202(1):8–15.

Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J.,
Lemaı̂tre, M., Maudet, N., Padget, J. A., Phelps, S.,
Rodrı́guez-Aguilar, J. A., and Sousa, P. (2006). Is-
sues in multiagent resource allocation.Informatica,
30(1):3–31.

Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon,
M. M., and Soumis, F. (2001).VRP with Time Win-
dows, pages 157–193. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, USA.

Davis, R. and Smith, R. G. (1983). Negotiation as a
metaphor for distributed problem solving.Artificial
Intelligence, 109:20–63.

Fischer, K., Chaib-draa, B., Müller, J. P., Pischel, M., and
Gerber, C. (1999). A simulation approach based on
negotiation and cooperation between agents: A case
study.IEEE Trans. on Systems, Man, and Cybernetics,
29:531–545.

Gorodetski, V. I., Karsaev, O., and Konushy, V. (2003).
Multi-agent system for resource allocation and
scheduling. In Marı́k, V., Müller, J. P., and Pechoucek,
M., editors,CEEMAS, volume 2691 ofLecture Notes
in Computer Science, pages 236–246. Springer.

Laporte, G. and Osman, I. H. (1995). Routing prob-
lems: A bibliography.Annals of Operations Research,
61(1):227–262.

Solomon, M. M. (1987). Algorithms for the vehicle rout-
ing and scheduling problems with time window con-
straints.Operations Research, 35:254–265.

Vickrey, W. (1961). Counterspeculation, auctions and com-
petitive sealed bids.Journal of Finance, 16:8–37.

ICAART 2012 - International Conference on Agents and Artificial Intelligence

90


