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Abstract: In this research, a new methodology is developed to economically design a multivariate exponentially 
weighted moving average (MEWMA) control chart for multiattribute processes. The optimum design 
parameters of the chart, i.e., the sample size, the sampling interval, and the warning/action limit coefficients, 
are obtained using a genetic algorithm to minimize the expected total cost per hour. A sensitivity analysis 
has also been carried out to investigate the effects of the cost and model parameters on the solutions 
obtained. 

1 INTRODUCTION 

In many real-world manufacturing environments the 
quality of products are of multiattribute type, where 
multiattribute control charting methods are 
recommended to deal with the existing correlations 
between the attributes. Although there are many 
applications for multiattribute control charts in 
industries and service sectors, there exists only a 
little research on this type of control chart in the 
literature. To name a few, Jolayemi (2000) proposed 
a multiattribute control chart based on both the J-
approximation and the Gibra’s model to monitor 
processes following multivariate binomial 
distribution in which there were multiple assignable 
causes. In a more recent research in this area, Niaki 
and Abbasi (2008) introduced a new method to 
monitor multiattribute processes and developed a 
multi-attribute C control chart, where a 
transformation was first proposed to eliminate the 
correlation between the attributes, and then the 
symmetric control limits were found. 

In the designing process of a control chart, three 
parameters are involved; the sample size, the 
sampling interval, and the control limit coefficient. 
Economic and/or statistical designs are the two 
common practices in this regards. In a statistical 
design, the design parameters are determined based 
on the statistical performances of the chart. These 
performances are measured either in terms of type-I 

and II errors or in terms of average run lengths 
(ARL) or average time to signal (ATS). Meanwhile, 
in an economic design, the design parameters are 
selected based on minimizing a cost model or a loss 
function. 

Duncan (1956) proposed the first economic 
design of the X-bar chart to show how cost factors 
affect the optimality. Moreover, the Lorenzen-Vance 
(1986) cost model is a widely used function in 
determining the costs of implementing a control 
chart. 

Following the investigation of the variable 
sampling interval (VSI) EWMA chart by Saccucci et 
al. (1992), Reynold and Arnold (2001) developed 
the variable sample size EWMA (VSSI EWMA) 
control chart to improve the performance of the 
fixed sample size charts on the speed of detecting 
small changes in the mean vector.  

For the first time a methodology based on the 
skewness reduction approach (Niaki and Abbasi, 
2008) and Lorenzen and Vance (1986) cost function 
is developed in this paper to economically design a 
multiattribute VSSI MEWMA control chart. 

2 THE VSSI MEWMA CHART 

Assuming vector iX
uuur

 follows a p-variate normal 
distribution with mean vector 0μ  and covariance 
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matrix 0∑ , in a sample of size n the sample mean 

iX
uuur

 follows a multivariate normal distribution with 
mean vector 0μ  and covariance matrix 0 /n∑ . In 

the MEWMA control chart, the vector iZ
uur

is first 
expressed by: 

1(1 ) ; 1,2,...i i iZ X Z iλ λ −= + − =
uuuruur uuuur

 (1) 

where 0 1λ≤ ≤  is the smoothing parameter 
and 0 0Z μ=

uur uur
. Then, the plotted values on the 

MEWMA chart are: 
2 1

ii i Z iT Z Z−′= ∑
uur uur

 (2) 

in which 
iZ∑ and 1

iZ
−∑  are the covariance matrix 

and the inverse of the covariance matrix of iZ
uur

, 
respectively.  

Having a warning limit w , if the last sample 
statistic, 2

1iT − , falls in the safe region ( 2
10 iT w−≤ ≤ ), 

the next sample is taken using the minimum sample 
size 1n  and the long sampling interval 1h . However, 
if 2

1iT −  falls in the warning region ( 2
1iw T l−≤ ≤ ), 

where l is the control limit, then the next sample is 
taken using the maximum sample size 2n and the 
short sampling interval 2h . Nonetheless, searching 
for an assignable cause is started when 2

1iT −  falls 
above the out-of-control limit ( 2

1iT l− ≥ ).  
For a sample size of n , Lowry et al. (1992) 

obtained the asymptotic covariance matrix of iZ
uur

, 

iZ∑ , as: 

0lim ( )
(2 )iZ Zi n

λ
λ→∞

∑ = ∑ = ∑
−

 (3) 

They also showed that 0.1λ =  is effective in 
detecting small shift in the process mean vector and 
that the ARL performance of the MEWMA chart 
depends only on the noncentrality parameter, 

2nγ δ= , and the direction of the shift, where 

1
0 0 0( ) ' ( )i iδ μ μ μ μ−= − ∑ −  (4) 

and 1
0
−∑  is the inverse of the covariance matrix of 

iX
uuur

. The smoothing parameter of the MEWMA 
chart of this research is taken 0.1 as well. 

3 NORMALIZING 
TRANSFORMATION ON 
MULTIATTRIBUTE PROCESS 
DATA 

Suppose the observations of the p-variate 
multiattribute process under consideration 

1 2, ,..., ; 1,2,...
T

pY y y y i p⎡ ⎤= =⎣ ⎦
uur

 follows a 
multivariate binomial distribution with the 
parameters ,Pr ,i iN and bΣ  where the mean vector 

is 1 2, ,..., ; Pr
T

p i i iV v v v v N⎡ ⎤= =⎣ ⎦
ur

 and the 

covariance matrix is bΣ , in which iN represents the 
fixed sample size and Pri  is the proportion non-
conforming of the ith attribute. In order to develop a 
procedure to monitor this process, the inherent 
skewness of the data, the most important factor in 
the non-normality of the multiattribute process, is 
almost removed by employing the thr  root 
transformation method proposed by Niaki and 
Abbasi (2008) to the observations taken from the 
process at hand. Despite the fact that the zero-
skewness is necessary but not sufficient condition 
for normality, we assume that the transformed 
observation vector will follow a normal distribution. 
To do the transformation, the proposed bisection 
method of Niaki and Abbasi (2008) is employed 
using 5000 simulated observation vector to find the 
root vector 1 2, ,...,

T

pr r r r⎡ ⎤= ⎣ ⎦
r

 in a way that the 
skewness of each attribute becomes almost zero. In 
other words, the powers in the vector 

1 2
1 2, ,..., p

Trr r
pY y y y⎡ ⎤= ⎣ ⎦

uur
 are found so that the 

skewness of ; 1,2,...,ir
iy i p=  is close to zero. 

Having ir
i ix y= , the transformed p-variate almost 

normal observation vector 1 2, ,...,
T

pX x x x⎡ ⎤= ⎣ ⎦
uur

 

will have a new mean vector 0μ
uur

and covariance 
matrix 0∑ . Then, to monitor the process an existing 
VSSI MEWMA control chart can be employed. This 
chart is introduced in the next Section. 

4 ECONOMIC DESIGN OF THE 
VSSI MEWMA CHART 

Since the sampling interval in the VSSI MEWMA 
chart is not fixed, it would be more appropriate to 
use   average   time  to signal (ATS), instead of ARL 
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(Lin and Chou, 2005a, 2005b). To do this, Chou et 
al. (2006) modified the Lorenzen-Vance cost model 
in optimizing the expected total quality cost of the 
VSI EWMA chart. This approach can be applied to 
different type of control charts such as the VSSI 
MEWMA chart of this research.  

The average sampling interval is expressed as: 

1 2
0 1 2

1 2 1 2

( ) ( )
p p

h h h
p p p p

= +
+ +

 (5) 

where 1p  and 2p  are respectively the probabilities 
that the 2

iT  falls in the safe (state 1) and warning 
(state 2) regions. The average time to signal when 
the process is in state i ( 1 ; 1, 2

i
ATS i = ) and the 

average time to signal when the process is out-of-
control ( 2ATS ) can be obtained by: 

1 0( )
i iATS h ARL=  (6) 

2 0 1( )ATS h ARL=  (7) 

In this research, the simulation method is 
employed to estimate 0ARL , 1ARL , 1p  and 2p . As 
a result, the expected total cost per hour based on the 
Lorenzen and Vance (1986) cost model is defined 
as: 

{ }

2
1 2 2 1 1 2 2

1 1 2

1
1 1 1 1 2

1 2

2 1 1 2 2
0

1
1 1 1 1

2 1 2

/ ( )
/ ( / )

1/ (1 ) / ( / )
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1/ (1 ) / ( / )

i

i i i

i

i
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sg ATS h mp p

sT ATS h nd ATS
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a bn nd ATS T T
h

sT ATS h nd
ATS T T
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θ γ τ

=

−

−

+ − + + + +⎧ ⎫
= ×⎨ ⎬+ ++ ⎩ ⎭
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+⎨ ⎬+ +⎩ ⎭

⎛ ⎞+
− + + + + ×⎜ ⎟

⎝ ⎠

+ − − + +⎧ ⎫
⎨ ⎬+ +⎩ ⎭

∑
 

(8) 

where 
a : fixed cost per sample 
b : cost per unit sampled 

1C :  quality cost per hour while process is in-
control 

2C : quality cost per hour while process is out-
of-control ( 1C> ) 

d :  time to sample and chart one item 
g :  cost per false alarm 
m :  cost to locate and correct the assignable 

cause 
s :  expected number of samples taken while 

the process is in-control 
0

01

h

h

e
e

θ

θ

−

−

⎛ ⎞
=⎜ ⎟−⎝ ⎠

 

1 θ : mean time the process is in-control 
τ :  expected time of occurrence of assignable 

cause between two samples, while the process is in-

control 
0

0

01 (1 )
(1 )

h

h

h e
e

θ

θ

θ
θ

−

−

⎛ ⎞− +
=⎜ ⎟

−⎝ ⎠
 

0T :  expected search time when the signal is 
false alarm 

1T :  expected time to discover the assignable 
cause 

2T :  expected time to correct the process 

1

1 ; if production continues during the searches
0 ; if production ceases during searches

γ
⎧

= ⎨
⎩

 

2

1 ; if production continues during the correction
0 ; if production ceases during correction

γ
⎧

= ⎨
⎩  

Further, it is assumed the time between 
occurrences of the assignable cause is exponential 
with a mean of θ  occurrence per hour. 

Since minimizing the non-linear cost function in 
(8) is not straightforward and both non-linear 
programming techniques and traditional 
optimization approaches may be time consuming 
and inefficient, a genetic algorithm (GA) is proposed 
in the next Section to solve it. The objective is to 
find the optimal values of 1 2 1 2, , , , ,n n h h w  and 
l that minimize the expected total cost per hour 
given in (8). 

5 THE SOLUTION 
METHODOLOGY 

Genetic algorithm provides a convenient search 
procedure for minimizing the complex cost function 
such as (8) to provide a list of optimum design 
variables, without focusing on a single solution. 
With respect to the broad spectrum of GA 
parameters in relevant studies, a trial and error 
approach is taken in this research to improve them in 
generating the best results. The basic steps involved 
in the proposed GA of this research follow. 

1. Initialization: The proposed GA of this 
research starts with an initial population of 50 
chromosomes, each containing 6 genes (the design 
parameters) defined as ( )1 2 1 2, , , , ,n n h h w l .  

2. Evaluation: The fitness (the cost) 
associated with each chromosome is evaluated using 
Eq. (8). 

3. Selection: The best 30% of the 
chromosomes with the lowest cost (or the highest 
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fitness) are selected based on the "elitism" strategy 
(0.3×50=15 is the number of the elites.) 

4. Crossover: In the crossover operation that 
is used with a rate of 60% of the population 
(0.6×50=30 is the number of the parents) three 
chromosomes are first selected randomly. The 
chromosome with the lowest cost is the first parent. 
Then, three more chromosomes are selected, where 
the one with the lowest cost represents the second 
parent. This pair of parent chromosomes takes part 
in the crossover operation, where each gene of the 
paired parents has a 50% probability to switch 
between two chromosomes. 

5. Mutation: Mutation points are randomly 
chosen with a rate of 10% (0.1×50=5 is the number 
of the muted chromosomes). The uniform selection 
provides the constant probability for each 
chromosome to enter this mechanism. Similar to the 
crossover operation, three chromosomes are selected 
randomly and the best fitness value chromosome is 
muted. Each gene of this chromosome has a 50% 
chances to mute by the mutation function that is 
defined as follows. 

Muted gene = gene + 0.1× (a uniform random 
number between 0 and 1) × (range) 

As an example, suppose the third gene ( 1h ) 
varies in the range of 13 5h≤ ≤ and has the value of 
4.351. Further, let the generated random number be 
0.8147. Then, Muted 1h =4.351+0.1×0.8147× (5-3) 
= 4.51394 

6. Stopping criterion: After the mutation 
operation, the process described above is iterated 
until the termination condition is achieved. The 
stopping criterion of this research is to iterate 30 
generations. 

In the next Section, a simulation experiment on a 
process involving 2p =  attributes is given to 
demonstrate the application of the proposed 
methodology. The simulation experiment is based 
on the generated observations of a 2-variate 
binomial distribution and then optimization through 
GA using MATLAB, version R2009b. The elapsed 
time of each run varies between 22 and 41 minutes, 
depending on the starting parameters' values. 

5.1 Simulation Experiment  

In the simulation experiment, a process with two 
correlated attributes following a multivariate 
binomial distribution with the parameters ( 1N =20, 

1p =0.2) and ( 2N =30, 2p =0.15) and correlation 

coefficient ρ
ur

=0.02 is considered. The mean vector 

0old
μ
uuuuur

, the covariance matrix 0old
∑
uuuuuur

, and the 

skewness oldskewness
uuuuuuuuuuuuur

 of 5000 in-control simulation 
data on this process is estimated as 

0old
μ
uuuuur

= [4.258, 4.5074] 3.273 0.0649
0 0.0649 3.8191old

∑ =
⎡ ⎤
⎢ ⎥⎣ ⎦

uuuuuur
, 

oldskewness
uuuuuuuuuuuuur

= [3.3155 0.3894], respectively. 
Following the described skewness reduction 

method in Section 3, the process mean 0μ
uur

, the 

covariance matrix 0∑
uur

, and the skewness of 5000 in-
control generated observations of the process that 
are transformed by the root vector r

r
 are obtained as 

0μ
uur

= [2.9662, 2.9709], 
1.2083 0.0202

0 0.0202 0.9726
∑ =

⎡ ⎤
⎢ ⎥⎣ ⎦

uuur
, 

skewness
uuuuuuuuuur

= [-0.0006, 0.0010], and r
r

= [0.7942, 
0.7366]. It can be easily seen that the transformed 
attributes have almost zero skewness. 

For an out-of-control process, let the mean of the 
first attribute increase byδσ . Hence, the 
observation vector of the out-of-control process 
follows a multivariate binomial distribution with 
parameters ( 1N =20, 1p ′ ) and ( 2N =30, 2p =0.15) in 

which 1p ′  are derived by (9). 

1 1 1 1 1 1 1 1 1(1 )n p n p n p n p pδσ δ′ = + = + −      → 

1 1 1 1 1
1

1

(1 )n p n p p
p

n
δ+ −′ =                     

(9) 

6 SENSITIVITY ANALYSIS 

A sensitivity analysis is carried out in this Section to 
study the effects of the cost parameters on the 
solution of the proposed economic design of VSSI 
MEWMA chart. Table (1) shows twelve cost and 
process parameters for the cost model detailed in 
equation (8). By combining the sampling cost 
parameters into a single parameter Q a b= +  and 
the expected times to search and discover and 
correct assignable cause into a single parameter 

0 1 2T T T T= + + , the number of factors used in the 
experiment are reduced to nine. The sensitivity 
analysis is conducted using a 29-4 fractional factorial 
design with five center points. 
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Table 1: The cost and process parameter ranges. 

 a  b  1C  2C  g  m  d  0T  1T  2T  θ  δ  

low 25 5 100 250 50 25 0.05 0 16 16 0.03 0.5 
center 137.5 27.5 150 375 275 137.5 0.275 1 18 18 0.04 0.75 
high 250 50 200 500 500 250 0.5 2 20 20 0.05 1 

Table 2: Experimental cost and process parameter values. 

Run a  b  1C  2C  g  m  d  0T  1T  2T  θ  δ  

1 25 5 100 250 50 25 0.5 2 20 20 0.05 1 
2 25 5 100 250 50 250 0.05 0 16 16 0.03 0.5 
3 25 5 100 250 500 25 0.05 0 16 16 0.03 1 
4 25 5 100 250 500 250 0.5 2 20 20 0.05 0.5 
5 25 5 100 500 50 25 0.05 0 16 16 0.05 0.5 
... … … … … … … … … … … … … 
33 137.5 27.5 150 375 275 137.5 0.275 1 18 18 0.04 0.75 
34 137.5 27.5 150 375 275 137.5 0.275 1 18 18 0.04 0.75 
35 137.5 27.5 150 375 275 137.5 0.275 1 18 18 0.04 0.75 
36 137.5 27.5 150 375 275 137.5 0.275 1 18 18 0.04 0.75 
37 137.5 27.5 150 375 275 137.5 0.275 1 18 18 0.04 0.75 

Table 3: The results of experiments. 

Run 1n 2n 1h 2h w
 

l
 

Cost 

1 5.01 11.828 4.719 1.688 6.422 14.007 208.697 
2 7.29 10.377 2.594 0.819 6.454 13.856 175.809 
3 7.05 10.526 2.161 1.420 7.234 13.603 143.436 
4 5.27 14.155 3.963 0.602 6.810 16.249 225.998 
5 7.19 10.794 2.648 0.565 6.553 13.739 382.654 
… … … … … … … ... 
33 5.59 11.782 4.998 2.001 7.147 15.044 346.350 
34 6.78 10.177 4.998 1.947 6.342 13.954 399.155 
35 6.01 12.658 4.692 1.403 7.028 14.284 351.331 
36 5.90 10.716 4.768 1.558 7.925 13.676 351.194 
37 5.91 14.089 4.696 1.940 6.043 13.505 348.986 

 
Table (2) shows the experimental design with 

actual values used for the cost and process 
parameters for 32+5=37 runs. Five replicates at the 
design center (shown at the bottom of the table) are 
used to check the adequacy of the first order model 
(Montgomery, 1996). The final objective of fitting 
an adequate estimation function for the cost model is 
to determine the optimum values of the parameters. 
The independent variables of the estimation function 
are considered the cost parameters along with the six 
design parameters ( )1 2 1 2, , , , ,n n h h w l . The expected 
total cost per hour is treated as the dependent 
variable.  

The results of the 37 experiments for the p =2 
attributes process are shown in Table (3), where for 
each cost parameter combination the proposed GA 
has been executed to find the near optimal values of 
the design parameters.  

Since a single replication of the 29-4 fractional 
factorial design was run, in order to have an estimate 
of the variance of the error term some interaction 

terms that do not have significant effect may be 
pooled. A simple approach to determine these 
effects is to provide a normal probability plot of the 
effects. The points lying close to the straight line in 
a reasonable way indicate non-significant effects 
(with mean zero) (Montgomery, 1996). The normal 
probability plot (not shown here) indicates all 
interaction terms do not have significant effect and 
can be pooled in the error term. Moreover, the plot 
reveals that there is no acute symptom of 
nonnormality, nor is there any indication pointing to 
possible outliers. 

The results of the analysis of variance (ANOVA) 
are given in Table (4) to investigate the effects of 
multiple model parameters on the expected total cost 
per hour. The results indicate that while Q , 1C , 

2C , θ , and δ  have significant effects, the effect of 
T on the expected total cost per hour is not 
significant. Moreover, the results show that the 
response surface has no significant curvature and a 
first  order   model   is   appropriate  to  estimate  the 
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Table 4: ANOVA table for the expected total cost per hour 

Resource Sum sq. d.f Mean sq. F Prob>F 

( )Q a b= +  136478.6 1 136478.6 197.12 < 0 

1C  
18171.3 1 18171.3 26.25 < 0 

2C  
128410.2 1 128410.2 185.47 < 0 

g  16.1 1 16.1 0.02    0.8801 
m  91.1 1 91.1 0.13    0.7197 
d  17 1 17 0.02    0.8768 

0 1 2( )T T T T= + +  2417.1 1 2417.1 3.49    0.073 

θ  27623.9 1 27623.9 39.9 < 0 

δ  5432.2 1 5432.2 7.85 < 0.0095 
Pure quadratic 1968.738 1 1968.738 2.84    0.1039 
Error 18001.2 26 692.4   
Total 338627.4 36    

 

expected cost per hour in terms of the significant 
factors.  

Based on the significant factors and using a first 
order regression model, the estimated response 
function is obtained in equation (10), where cos (2)tf  
denotes the expected cost per hour for the 2-attribute 
process at hand.  

1

2

78.836 0.484 0.477cos (2)
0.507 2938.106 52.116

f Q Ct
C θ δ

= − + + +

+ −
 (10) 

Using equation (10), the estimated minimum cost is 
146.0646 by the LINGO80 software, in which the 
parameter values are 30( 25, 5)Q a b= = = , 1 100C = , 

2 250C = , 0.03,θ =  and 1δ = .  

The following can be inferred based on equation 
(10): 

• The number of occurrences of the assignable 
cause per hour (θ ) has the greatest effect on the 
expected total cost per hour. 

• Increase in the sampling costs ( , )a b , in the 
expected costs when the process is in and out-
of-control ( 1 2,C C ), or in the number of 
occurrences of the assignable cause per hour 
(θ ) cause the expected total cost per hour to 
increase as well. 

• A larger shift size (δ ) in the process mean 
cause the expected total cost per hour to 
decrease. 

• The minimum value of the expected total cost 
per hour is obtained based on low levels of 
( , )a b , 1C , 2C  and θ  and high level of θ  given 

in Table (2). 

7 CONCLUSIONS 

An economic design of VSSI MEWMA control 
chart to monitor multiattribute processes was 
proposed in this research using skewness reduction 
approach, the Lorenzen-Vance cost function, and 
GA. Simulation experiments were performed in a 
sensitivity analysis of sampling cost, expected costs 
per hour, and the number of occurrences of the 
assignable cause on the total expected cost of the 
chart. Results showed that when these parameters 
increase, the total expected cost per hour increase as 
well. By contrast, a larger shift size in the process 
mean caused a decrease in the total expected total 
cost per hour. While these parameters were shown to 
significantly affect the total expected cost per hour, 
the other cost parameters were found insignificant. 
Moreover, based on the estimated multiple linear 
regression function of the total expected cost per 
hour, the number of occurrences of the assignable 
cause per hour was the most significant parameter 
that affects the expected total cost per hour.  

For future research, the proposed model can be 
extended for a situation where the process mean may 
experience shifts by increase in one or more attribute 
means so that it will be able to first identify which 
attribute(s) have caused the shift. Furthermore, a 
DOE approach can be utilized to determine the 
optimum GA parameters. Moreover, the multivariate 
CUSUM control chart can replace the MEWMA 
chart for a comparison purpose.   
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