
SEPARATING AND QUANTIFYING VALUE AND WASTE TO
IMPROVE OPERATIONAL PERFORMANCE IN SOFTWARE

DEVELOPMENT

Darius Khodawandi
Wilhelm-Schickard-Institute, University of Tuebingen, Sand 13, D-72076, Tuebingen, Germany

darius.khodawandi@mac.com

Keywords: Software development productivity, Productivity quantification, Lean software development, Agile software
development, Operational performance.

Abstract: Software companies choose to implement Agile software development practices to increase the frequency of
their release cycles, stabilize quality, reduce cost - or in short: improve operational performance by
increasing productivity. Yet quantifying, what productivity improvement the implementation of Agile
software development resulted or will result in is still a big challenge. This paper introduces a new concept
to quantify productivity based on the theory of Lean Management - which is closely related to Agile
software development - and the specific concept to separate value and waste in processes and products. The
author claims that consideration of three dimensions is necessary in the context of software development:
(1) the value adding share of product features, (2) the share of the product which contributes to the overall
feature set in a value adding way, and (3) the value adding share of time employees can spend when
creating software. The ideas proposed in this paper are subject to ongoing trials in an industry environment,
which the author is directly involved in. The overall contribution of this paper is a) a new concept to
quantify productivity in software development and b) results from initial application of the concept in a
large enterprise environment to quantify one of the three dimensions of the overall quantification concept.

1 INTRODUCTION

The market for On-Demand software solutions is
growing, and companies are adjusting their business
models accordingly. When looking at the changes
required more closely, they are all opportunities
which - from the authors’ point of view - will lead to
an industry-wide improvement of customer-
orientation and productivity. By offering On-
Demand software solutions, installing learning
cycles that quickly turn insights from the field into
redesigned solutions becomes more easily possible
than when solutions are deployed in a traditional
fashion. At the same time, productivity will increase
because the process by which software is developed
has to change dramatically. Based on the previous
statement, the process must be capable of handling
frequent learnings (i.e. new requirements or
changes) and turn them into useable software in a
reasonable timeframe. These capabilities are
inherent to the concepts of Agile and Lean Software
Development, since they promise shorter lead time

from idea to customer use. One reason to be able to
reduce lead time by implementing the concepts of
Agile and Lean Software Development are
productivity gains, which are achieved by e.g.
assigning all relevant roles to one team, dedicating
team members to only one team and one team to one
task at a time, and by co-locating team members to
make communication more efficient.

Even though it seems obvious that the concepts
of Agile and Lean Software Development - of which
only an extract was mentioned above - will lead to
improved productivity, there are good reasons to try
to quantify the effects of implementation. Besides
the convincing nature of figures which is relevant
from a pure organizational change view when
implementing Agile or Lean Software Development,
being able to quantify productivity improvement
long-term is regarded as an essential capability for
learning software companies. Especially when
regarding the concept of Lean Software
Development, it is an inherent objective to reduce
waste within a company, i.e. any tasks or product

189
Khodawandi D.
SEPARATING AND QUANTIFYING VALUE AND WASTE TO IMPROVE OPERATIONAL PERFORMANCE IN SOFTWARE DEVELOPMENT.
DOI: 10.5220/0004460201890192
In Proceedings of the First International Symposium on Business Modeling and Software Design (BMSD 2011), pages 189-192
ISBN: 978-989-8425-68-3
Copyright c© 2011 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

attributes which the customer would not be willing
to pay for.

Therefore the objective of this research is to
determine a method to quantify productivity of
software development from an enterprise
perspective, which helps to quantitatively
incentivize and prove that working in an Agile or
Lean Software Development Model leads to overall
improvements. This includes determining what
should be measured, and how to measure it in a way
to be meaningful and economically implementable.
This research is not intended to determine a figure of
what improvement to expect from implementing
Agile or Lean Software Development, nor how to
create a measurement method which is suitable for
industry-wide benchmarking.

Section 2 will describe relevant background
knowledge regarding Agile and Lean Software
Development, and existing quantification
approaches for productivity in the software industry.
Section 3 introduces and describes the quantification
approach in a sequence of what to measure, then
how to measure, and finally draws conclusions.
Section 4 contains next steps.

2 BACKGROUND

The relevant existing research for the scope of this
paper can be divided into the fields of Agile and
Lean Software Development, as well as Productivity
Quantification. A more generic background is seen
in the work of Drucker (1999) relating to knowledge
workers.

2.1 Agile and Lean Software
Development

The evolution of process models and concepts for
software development reach back to the traditional
waterfall and V-Models, followed by Extreme
Programming, Spiral or RUP. More recently,
approaches have emerged that claim to be more
reactive to the environment and the nature of
software development - rapid new insights leading to
frequent changes, its non deterministic nature
(maybe even as a typical attribute to development in
general), and with respect to software development
specifically, the seemingly indefinite solution space
to a given problem space.

These recent approaches go by the name of Agile
or Lean Software Development. Both approaches
have large commonalities with respect to their basic
motivation (e.g. accelerate delivery, build quality in,

customer orientation) - and even though there are
some differences (e.g. Agile does not explicitly ask
for a separation of value and waste, nor does it
define how continuous improvement should work),
the author will refer to the two in combination for
the purpose of this paper, as it makes no difference
in this context. For further reading, Poppendieck
(2008) is a frequently cited source for Agile and
Lean Software Development

2.2 Productivity Quantification

Quantification of productivity is not a new challenge
within the software industry (Scacchi, 1994). A
commonly accepted approach is to put the input in
relation to the output when calculating productivity.
Input can be regarded as the resources utilized and
output as what the result is worth. The most difficult
aspect is the quantification of output, as it should not
be a measure dependent on technical complexity or
size (e.g. lines of code), but dependent on the “size”
of the customer problem which it solves. The most
commonly used and cited approaches are Function
Points and User Stories and the corresponsing Story
Points. These approaches are also utilized to
estimate effort based on expected complexity of
code.

The existing approaches do not yet fully fit the
intentions of Agile and Lean Software Development
in respect to their contribution to productivity
improvement:
1. Instead of coding efficiency or speed, the
question is how efficiently the knowledge worker
e.g. a developer can use his/her available time in
total (i.e. 100%) - this means what occupies the
developer, e.g. rework or creative work
2. An aspect not considered at all in alternative
productivity quantification approaches is the
question, how much of the assets created by
knowledge workers are actually important from the
customer point of view.

In this paper, a concept is introduced which
attempts to adress the above mentioned weaknesses
of existing productivity quantification approaches in
the industry. Parts of the concept have been applied
in practice and are subject to further research.

3 QUANTIFICATION APPROACH

The first question this paper attempts to answer is
what to measure. Compared to existing research, the
author proposes to go down a different path than the

BMSD 2011 - First International Symposium on Business Modeling and Software Design

190

popular approaches. Instead of a white-box view, the
author proposes a more black-box oriented selection
of criteria to measure. The reasoning for this is to
avoid trying to replicate the complexity of a
knowledge worker organization in its cause and
effect relationships within a productivity figure.

3.1 Overall Concept

Considering the identified weaknesses of the
existing approaches and also the strategies which
Boehm (2007) identified to improve software
productivity (get the best people, make development
steps more efficient, eliminate development steps,
eliminate rework, build simpler products, and reuse
components), the following 3 dimensions should be
considered to determine the value-adding share
(from the customer point of view) and thus the
productivity of software development: (1) feature
value add, (2) product value add, and (3) process
value add. The order chosen is based on the
perceivable sequence of the dimensions from the
customers perspective, has no further relevance.

The result of this quantification approach is an
overall percentage, resulting from the multiplication
of the individual dimensions’ value adding share.
The overall value adding share is an indicator for the
operational performance of software development,
as it considers the share of resources on the input
side spent value adding, as well as a differentiated
view on the output side by distinguishing the
customer relevance and the product architecture.

A benefit of the chosen approach is seen in the
fact that the unit is percent. Maybe one of the most
trivial issues is that a ratio is hard to relate to from
an employees perspective (what does a productivity
improvement from 2.3 to 3.1 really mean?). The
percent figure gives an easy to understand value.
The next section describes the concept of separating
value and waste focusing on dimension 3 (process
value add), as this is the dimension for which trial
results are already available.

3.2 Separating Value and Waste

The remaining paper focuses on how to measure
productivity. The main question of dimension 1 -
process value add is: how much of an employees
time can be spent on tasks, which are of value to the
customer? In order to measure this dimension, the
disctinction of value adding compared to non value
adding tasks needs to be clarified, as well as the
level of measurement.

The most reliable distinction criteria for value

add from non value add is - according to Lean
Management theory: value adding activities are
those activities, which the (end) customer is willing
to pay for and thus should be maximized. Non value
adding tasks are the remaining activities which
should either be minimized (necessary non value
adding - e.g. testing) or eliminated (obvious non
value adding - e.g. rework). According to this
definition, testing as a task is non value adding - a
definition which is unusual at first sight but makes
sense when one considers the business rationale not
to maximize testing, but to try to achieve better
quality from the customer point of view with less
testing.

Regarding the dimensions (1) feature value add
and (2) product value add, research is still required
to determine adequate measurement concepts.
Dimension (1) can be based on direct customer
feedback, in a form where product features are listed
and customers are able to rank or classify features
(or feature groups) according to their perceived
value. Dimension (2) can be based on the concept of
target-costing or the quality function deployment
method, by which the value of features from the
customers point of view is determined and then their
cost of creation is put into relation.

3.3 Results to Date

So far, three trials have been executed in an attempt
to quantify the process value add axis. Figure 1
shows the task types and their categorization into the
classes value add, necessary non value add, and
obvious non value add.

Task categories Value Add

Necessary
Non-Value

Add
Obvious Non-

Value Add
e.g. Code Development X
Creating reports X
Design compliance checking X
Fixing X
Handover and review X
Information Exchange X
Office Activities X
Project planning and setup X
Reviewing content X
Searching X
Testing X
Travelling X
Waiting X
Meetings X

Categorization

Figure 1: Task categories applied in trials.

The first method applied to quantify the value
adding share of the process is based on individuals
submitting data on a daily basis, about which time
was spent for which predefined task category in a
granularity of 15 minute intervals. The application

SEPARATING AND QUANTIFYING VALUE AND WASTE TO IMPROVE OPERATIONAL PERFORMANCE IN
SOFTWARE DEVELOPMENT

191

of this method was on-top to regular tasks of the day
and for 5 days in a row to eliminate day-specific
patterns (e.g. dedicated meeting or travel days). The
submitted data was normalized in a way that the
length of an individuals work day did not have an
impact on the results, i.e. only the calculated
percent-figures per individual where considered
during aggregation. The second method applied is
the integration of the above mentioned task
categories into a time tracking system. This way, the
generation of data was expected not to be on-top but
part of the routine to track working hours. Also, the
method allowed continuous generation of data. The
third method applied was a simple daily indication,
which requested from users their opinion on the
value add share of the day. This daily submission
was handled by a small tool, which collected the
input in a database.

The trial application of the quantification concept
follows the definition of measurement as “a
quantitavely expressed reduction of uncertainty
based on one or more observations” (Hubbard ,
2010, p. 23), as it was rather pragmatic. The next
section will elaborate on the learnings from the
trials.

3.4 Evaluation and Conclusions

Overall, the following modifications were identified
during the initial trials to be considered moving
forward. (1) The duration of sampling should be
aligned to the duration of development sprints. If
sprints take e.g. 4 weeks, the duration to collect data
should be at minimum 1 or a multiple of the sprint
length. This is due to the fact, that otherwise the
reported tasks would be biased due to the nature that
e.g. at a beginning of a sprint there is more meeting
time to discuss the expected outcome. The
hypothesis moving forward is that data collection for
one sprint is sufficient for a measurement, and that
longer data collection would not lead to the
equivalent of more informational value. (2)
Measuring at the level of tasks may have disguised
relevant productivity losses, which occur on the
level of activities (i.e. inside tasks). Tadhani (1984)
also suggests that limiting measurement to one level
is insufficient. It is proposed to distinguish: the level
of tasks and the (lower) level of activities. The
necessity of this distinction is made clear by the
following example: when considering the amount of
time spent on testing, taking a closer look reveals
that even if an employee spends 4 hours on testing,
the actual net productive time is typically less due to
necessary test infrastructure setup time, finding and

loading of test cases, initializing the test - all activity
level steps that need to occur before the actual test
can be conducted. Moving forward, the hypothesis is
that at least another 25% of productivity is lost on
the level of activities, and that especially system
performance is a major contributor for this. (3)
Regarding the general measurement method, a
comparison of the three trials conducted shows that
an improved version of method one seem to be most
promising. Method two (work hour tracking) seems
to deliver better quality data (based on a bigger
sample size and a continuous generation), but has
turned out to increase daily complexity of data entry
because the number and granularity of task
categories is higher than before. Adding the level of
activities will even further worsen this situation.
Method three seemed to be a simple approach for a
large sample size, but the informational value is
insufficient (only the value adding share is
determined, with no data on the share of time spent
on non value adding activities).

4 NEXT STEPS

The measurement method to determine the process
value add will be revaluated in another trial,
incorporating the insights described above, first in a
university environment, then in a large enterprise
environment. In parallel, research to determine
adequate measurement concepts for the feature and
product axes will continue.

REFERENCES

Boehm, B. W. (2007), Improving Software Productivity.
In Selby R. W., Software Engineering: Barry W.
Boehm's Lifetime Contributions to Software
Development, Management, and Research, John Wiley
& Sons.

Tadhani, A. J. (1984). Factors Affecting Programmer
Productivity During Application Development. In
IBM Systems Journal, Vol. 23(1), 19-35.

Scacchi, W. (1994). Understanding Software Productivity.
In Advances in Software Engineering and Knowledge
Engineering, D. Hurley (Ed.), Vol. 4, 37-70.

Hubbard, D. (2010). How to Measure Anything: Finding
the Value in Intangibles in Business (2nd ed.). John
Wiley & Sons.

Poppendieck, M. and T. (2008). Lean software
development: An agile toolkit. Addison-Wesley.

Drucker, P. F. (1999). Management Challenges of the 21st
Century. New York: Harper Business.

BMSD 2011 - First International Symposium on Business Modeling and Software Design

192

