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Abstract: Recently N-way Partial Least Squares (NPLS) were reported as an effective tool for neuronal signal 
decoding and BCI system calibration. This method simultaneously analyses data in several domains. It is 
based on the projection of a data tensor to a low dimensional space using all variables to create a final 
model. In the present paper the L1-Penalized NPLS is proposed for sparse BCI system calibration allowing 
to combine the projection technique with an effective selection of subset of features. The L1-Penalized 
NPLS was applied for binary self-paced BCI system calibration providing a subset of electrodes selection. 
Our BCI system is designed for animal research in particular for research in non-human primates. 

1 INTRODUCTION 

Based on neuronal activity recordings from the 
brain, Brain Computer Interface (BCI) aims to 
provide an alternative non-muscular communication 
pathway to send commands to the external world. 
Over the last decades several approaches and 
methods have been developed to improve neuronal 
signal decoding. Amongst others, recently multi-way 
analysis was reported as an effective tool for 
neuronal signal processing (Eliseyev et al., 2011; 
Fatourechi et al, 2008; Müller-Putz et al., 2010; 
Bashashati et al., 2007). Data from several domains 
are treated simultaneously (e.g. space, frequency and 
time modalities). In particular, the multi-way 
analysis was applied in a binary self-paced BCI 
designed to function in animals (rats) (Eliseyev et 
al., 2011). In the above mentioned study rats were 
trained to push a pedal to activate a food dispenser 
without any cue or external stimulus. Neuronal 
activity was monitored and intentional control 
patterns were recognized by the BCI system. To map 
the neuronal recordings to the spatial-temporal-
frequency space, continuous wavelet transform 
(CWT) was applied to form a tensor of observation. 
To identify the predictive model N-way Partial Least 

Squares (NPLS) (Bro, 1996) was applied. It projects 
the feature tensor into a low dimensional feature 
space of latent variables. In parallel, a regression 
model predicting the intentional control was created. 
As opposed to other tensor-based methods which 
recently have been applied in BCI studies 
(Nazarpour et al., 2006; Zhao et al., 2009; Mørup et 
al., 2008) the N-way PLS involves class information 
to perform the tensor decomposition which 
significantly increases the efficiency of the model. 
As the NPLS works without any prior knowledge, it 
can efficiently be applied to automatically generate a 
model predicting BCI events from recordings of the 
neuronal brain activity. That is why this method has 
been chosen as a basic approach in the present study. 
Note that the NPLS is a projection based method. It 
involves all variables generating the final model. 
Throughout BCI experiments neuronal signals of the 
brain are processed in real-time. Thus computational 
efficiency of the BCI system is of crucial 
importance. Selecting an effective subset of features 
optimizes the computational efficiency and improves 
the quality of control. In the present article we 
propose 1A -Penalized NPLS to directly include 
feature selection in the modelling process. While 
generic NPLS lead to a linear combination of all 
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features the 1A -Penalized NPLS provide a sparse 
solution in different directions of analyses (e.g. 
space, frequencies, or time modalities). In the 
present study the 1A -Penalized NPLS was applied in 
binary self-paced BCI system calibration providing 
at the same time, a subset of electrodes selection. 
Corresponding BCI experiments were done in 
nonhuman primates. 

2 METHODS 

2.1 Generic NPLS 

The N-way PLS algorithm is based on the data 
projection to a low dimensional feature space (the 
space of latent variables), with further construction 
of a linear regression. This method was introduced 
by Bro, 1996 as a generalization of the ordinary 
Partial Least Squares (PLS) (Geladi and Kowalski, 
1986) to multi-way data sets (tensors). The PLS 
regression models a linear relationship between a 
vector of output variables and a vector of input 
variables on the basis of observation matrices X  
and Y : VXCY += , where V  and C  are noise 
and coefficient matrices. To build the model, the 
observations are projected into the low dimensional 
spaces in such a way that the maximum variances of 
X  and Y  are explained simultaneously. The PLS 
approach is an iterative procedure. First, the matrices 
X  and Y  are represented as 

111 EptX += T , 111 FquY += T , 

where 1t  and 1u are the latent variables (score 
vectors), whereas   1p  and 1q  are the loading vectors. 

1E  and 1F  are the matrices of residuals. The score 
vectors are calculated to maximize the covariance 
between 1t  and 1u  (Geladi and Kowalski, 1986). The 
coefficient 1b  of a regression 1111 rtu += b  is 
calculated to minimize the norm of the residuals 1r . 
The procedure is iteratively applied to the residual 
matrices. 

Similar to the PLS, the NPLS projects the tensor 
of data into the space of latent variables. Tensors 
(multi-way arrays) are a higher-order generalization 
of vectors and matrices. Elements of a tensor 

NIIIR ×××∈ …21X  are denoted as Niii
x

,,2,1 … . Here, N is 
the order of the tensor, i.e., the number of 
dimensions (ways or modes). The number of the 
variables iI  in the mode i  shows the dimensionality 
of this mode (Kolda and Bader, 2007). Let us 

consider the case of a fourth-order tensor of 
observations 321 IIInR ×××∈X  which contains n  
samples 321 III

i R ××∈x , ni ,...,1= . Each samples 
321 III

i R ××∈x  is the tensor of the third-order (cube). 
This case corresponds to simultaneous analysis of 
neuronal activity in three domains (e.g. space, 
frequency and time). As an output a vector   nR∈y  of 
n observations of scalar variables is considered. The 
particular case of binary nR∈y  corresponds to 
binary self-paced BCI experiments. 

The NPLS method decomposes the tensor X  as: 

1
3
1

2
1

1
11 EwwwtX += DDD , (1)

where the operation “ D ” is called the outer product 
(see Kolda and Bader, 2007). The latent variable 

nR∈1t  is extracted from the first mode of the 
tensor X providing maximum of covariance between 

1t  and y . In parallel, the algorithm forms the factor, 
i.e. the set of projectors 

},,{ 321 3
1

2
1

1
1

III RRR ∈∈∈ www , 1|||| 1 =iw ,   3,2,1=i  
related to the second, the third, and the fourth modes 
of X, respectively, in such a way that the projection 
of the tensor X  on these vectors results in 1t . The 
projectors correspond to each modality of analyses 
(e.g. space, frequency and time). To build the 

projectors, a tensor of correlation   yXZ 1×=  is 
calculated ( 1×  is the first-mode vector product of the 
tensor X  and the vector y ). Then the vectors 

321 ,, www  are estimated by the tensor Z  

decomposition: EwwwZ += 321 DD , 
min321 →−

F
wwwZ DD

, where  
F⋅  is the 

Frobenius norm, which is the generalization of the 
Euclidean norm for tensors (Kolda and Bader, 
2007). To solve the optimization problem the 
Alternating Least Squares (ALS) (Yates, 1933) 
algorithm can be applied. It fixes all the projectors 
except one, which is estimated in a least square 
sense. The procedure is repeated for all projectors 
until convergence. A coefficient 1b  of a regression 

111 fty += b  is calculated with the Minimal Least 
Squares (MLS). Next, factors are calculated 
decomposing the residuals. After the stop of 
iterations all the particular regressions fff bTy =ˆ , 

Ff ,1=  are summarized into a final 

model TbbTy ==∑ =

F

f ff1
ˆ . Vector b  summarized the 
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regression coefficients for whole set of latent 
variables [ ]FttT ||1 …= . Latent variables ft , 

Ff ,1=  correspond to projectors f),,( 321 www . 

2.2 L1-Penalized N-PLS Algorithm 

The NPLS can be generalized to include additional 
opportunities of feature selection. For this purpose, 
the Alternating Least Squares algorithm can be 
substitute for its penalized version decomposing 
tensor yXZ 1×= . In this case the optimization 
problem has the form: 

{ }

),),,(P

(minargˆ,ˆ,ˆ

321

2
321

,,
321

321

zzz

zzzZzzz
zzz

λ+

+−= FDD
 (2)

where, ( )⋅P  is a penalization term, λ  is a 
nonnegative parameter of penalization. Depending 
on the penalization operator ( )⋅P , several 
optimization tasks can be considered: The Least 
Absolute Shrinkage Selection Operator (LASSO), 

1)( AA =P , (Tibshirani, 1996); the Fusion Lasso 

1)( AA DP = , where D  is a difference operator, 
(Land and Friedman, 1996); the Elastic Net (Enet) 
(Zou and Hastie, 2005) which includes weighted 1A -
norm and 2A -norm penalisations etc. 

To obtain a sparse solution, the 1A -norm penalty 
(LASSO) is often used. The LASSO can be 
implemented easily providing a sufficient level of 
selectivity. In the present study, to solve the problem 
the 1A -penalty was integrated into the ALS 
algorithm. At each step of the algorithm all the 
projectors are fixed except one leading to the 
optimization: 

( )
.3,2,1

minargˆ
1

2
321

=

+−=

i

iFi
i

zzzzZz
z

λDD
, (3)

Considering the particular case 1=i : 

( )11
2

3211
1

minargˆ zzzzZz
z

λ+−= FDD . (4)

The optimization problem (4) can be rewritten as 
matrix: 

⎟
⎠
⎞

⎜
⎝
⎛ +−= 11

2
3,211

1

minargˆ zzzZz
z

λ
F

T , (5)

where )1(ZZ =  is unfolding of the tensor Z , and 

( )323,2 vect zzz D= . 

One of the approaches to solve an optimization 
problem with the 1A -penalization is the Gauss-
Seidel algorithm (Shevade and Keerthi, 2003; 
Schmidt, 2005). The advantages of this algorithm 
are its simplicity and low iteration cost, as well as 
low memory consumption. We have applied this 
approach to solve the optimization task (5). Namely, 

the anti-gradient of 11

2

3,21 zzzZ λ+−=
F

TRSS  was 

considered: ( )TTTG 13,23,21 2)( zzZzz −=− )(sign 1zλ− . 
For the first iteration, 1z  is set equal to zero 
consequently the anti-gradient 1Zz0 λ−=+− TTG 3,22)( . 
Then, the elements of 1z  with the largest magnitude 
of the anti-gradient are added to a set of ‘free’ 
variables. These ‘free’ variables are optimized in a 
‘one at a time’ way. For details see Shevade and 

Keerthi, 2003. Note, that if ( )TT Zz 3,2max 2max=≥ λλ , 
the method returns as a solution 0z =1ˆ . 

Penalized decomposition of tensor yXZ 1×=  

results in factor { } { }321
321 ˆ,ˆ,ˆ,, zzzwww = . 

To automatically select the optimal value of λ  
different approaches can be used: Cross-validation 
(Devijver and Kittler, 1982), generalized cross-
validation (Golub et al., 1979), Akaike’s Information 
Criterion (Akaike, 1974), or Schwartz’s Bayesian 
Information Criterion (Schwartz, 1978). The L1-
Penalized NPLS algorithm combines computational 
simplicity and moderate memory consumption with 
sufficient selectivity. This method was applied for 
binary self-paced BCI system calibration and for a 
subset of electrodes selection in the context of BCI 
experiments in non-human primates. 

2.3 Influence Analysis 

The elements of the input data have an implicit 
impact on the NPLS regression model through the 
latent variables. The Modality Influence (MI) 
analysis (Cook and Weisberg, 1982) allows 
estimating the relative importance of the elements of 
each mode for the final model. In case of tensor 
input and scalar output variables, the MI procedure 
is as follows. Latent variables are normalized  

fff ttt /* =  and the regression model takes the 

form: **ˆ bTy = , fff bb t=*
, Ff ,1= . Then for 

chosen modality 3,2,1=i  coefficients *b  and 
components of all factors related to this modality 

{ }F

f
i
f 1=

w  form the matrix [ ]i
FF

ii bb wwA *
1

*
1 ||…= . 
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Figure 1: BCI system calibration results in a decision rule; )(ty  characterizes the position of the pedal at the moment t ; 

contains the signal from the brain, recorded during the experiment; X  is used for internal representation of the signal in the 
system. 

The vector of leverages 
  ( ) ⎟

⎠
⎞⎜

⎝
⎛=

Tiii diag AAh
 shows the 

summarized influence of elements of this modality 
on the predicted output. 

The MI analysis can be applied to estimate the 
importance of electrodes, frequency bands, and time 
intervals related to control events (Eliseyev, 2011). 

3 RESULTS 

3.1 Data Description 

Data was collected from behavioral experiments in 
non-human primates based on a simple reward-
oriented task. During the experiment the monkey is 
sitting in a custom made primate chair minimally 
restrained, its neck collar hooked to the chair. The 
monkey has to push a pedal which can be mounted 
in for different positions (‘left’, ‘right’, ‘up’, and 
‘down’) on a vertical panel facing the monkey. 
Every correct push event activates a food dispenser. 
We used no cue or conditioning stimulus to tell the 
monkey when to push the pedal. A set of ECoG 
recordings was collected from 32 surface electrodes 
chronically implanted in the monkeys brain. 
Simultaneously, information about the state of the 
pedal was stored. One recording of each position 
was used to calibrate the BCI system. Training data 
sets included all event-related epochs and randomly 
selected ‘non-event’ epochs. 

3.2 BCI System Calibration 

To calibrate the BCI system the brain activity signal  

of the training recording was mapped to the 
temporal–frequency–spatial space to form a tensor 
of observation. For each epoch j  (determined by its 
final moment t ), electrode c , frequency f  and 
time shift τ , elements cfjx ,,,τ  of the tensor X  were 
calculated as norm of CWT of ECoG signal (see 
Fig. 1). Frequency band ]300,10[  Hz with step 

2=fδ  Hz and sliding windows [ ]tt ,τΔ− , 
5.0=Δτ  s with step 01.0=δτ  s were considered 

for all electrodes 23 ,1=c . The resulting dimension 
of a point is ( )3251146 ×× . Meyer wavelet was 
chosen as the mother wavelet taking into account its 
computational efficiency (Sherwood and 
Derakhshani, 2009). The binary dependent variable 
was set to one, 1=jy , if the pedal was pressed at 

the moment t , and 0=jy , otherwise. 
The resulting tensor and the binary vector, 

indicating the pedal position, were used for 
calibration. Five factors (the number is defined by 
the cross-validation procedure) and the 
corresponding latent variables ,it  5,1=i  were 
extracted by the NPLS algorithm for each pedal 
position. Due to computational restrictions, the L1-
penalized version of the NPLS algorithm 
( max9.0 λλ = ) was applied to find a subset of 
electrodes impacting most the final model. The 
coefficients *

ib , of the normalized predictive model 

0
5

1
**ˆ bbty i ii +∑= =  correspond to weights of the 

related factors in the final decomposition: 
‘left’: 0.346, 0.273, 0.232, 0.111, 0.038; 
‘right’: 0.346, 0.217, 0.195, 0.138, 0.104; 
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‘up’: 0.383, 0.263, 0.158, 0.151, 0.045; 
‘down’: 0.278, 0.210, 0.194, 0.182, 0.138. 
Resulting predictive models are based on subsets 

of few electrodes: 6, 6, 7, and 9 for ‘left’, ‘right’, 
‘up’, and ‘down’ positions of the pedal, respectively. 
MI analysis revealed the leverages of the elements 
of each modality (Fig. 2).  

3.3 Comparison to Generic NPLS 

To compare the L1-Penalized NPLS method with 
the generic NPLS recordings corresponding to one 
of positions of the pedal (‘up’ position) were used. 
The BCI system was calibrated with both 
algorithms. Resulted models were applied to the test 
recording. The computational experiment has 
demonstrated that the L1-Penalized NPLS 
outperformed the generic NPLS approach for all 
tested number of factors from 1 to 5 (Fig. 3). 

4 DISCUSSION 

Clinical application of BCI is one of the most 
challenging tasks in neuroengineering. Over the last 
decades, promising results were obtained both in 
animal (Chapin et al., 1999; Wessberg et al., 2000) 
and in human (Leuthardt et al., 2004; Wolpaw et al., 
2002) studies. Nevertheless, an effective solution 
does not exist yet. Most BCI experiments were made 
in the context of cue-paced (synchronized) 
approaches where subjects wait for an external cue 
that drives the interaction (Wolpaw et al., 2002). As 
a consequence, users are supposed to generate 
commands only during specific periods. Only the 
last years an increasing number of laboratories 
started to apply self-paced BCI paradigms (Leeb et 
al., 2007; Scherer et al., 2008; Fatourechi et al., 
2008; Müller-Putz et al., 2010, Qian et al., 2010). 
Users control a self-paced BCI at their own intention 
making these devices more suitable for real-life 
applications. However, the BCI performances 
reported by the authors are still not suited for 
practical application. Our study addresses the 
problem of neuronal signal decoding in self-paced 
BCI experiments. 
A common approach in brain signal processing 
intended for event detection/prediction consists in 
extraction of event related features from neuronal 
activity. Information from spatial (Rakotomamonjy 
et al., 2005), frequency (Schlögl et al., 2005), and 
temporal (Vidaurre et al., 2009) domains is 
analysed. Note that standard methods are designed 
for vector input variables which generally represent 
only one domain (modality) of analysis. However, 

using only one domain often does not provide 
satisfactory results. In most cases two or  
 three ways of analyses are applied sequentially. 
From the other hand, a tensor-based approach allows 
simultaneous treatment of several domains. Recently 
this approach was reported as a prospective tool for 
neuronal signal processing. 
However simultaneous signal processing in several 
domains increases the dimension of feature space. 
Reported methods of the multimodal analysis are 
based on tensor factorization and projection of the 
data into the low dimensional feature space. They 
keep all the variables in a final model. Sparse 
solutions, excluding non-informative electrodes 
and/or frequency bands will provide better 
computational efficiency and quality of control. This 
was the particular objective of the present study. 

To do so, we have applied the Penalized NPLS 
which combines the advantages of the projection 
technique, the variable selection as well as the 
advantage of the integrated regression model. The 
penalized version NPLS was applied to real data 
collected during BCI experiments in non-human 
primates to calibrate the self-paced BCI system. 
Penalization was applied to the spatial modality 
only. BCI system calibration resulted in predictive 
models based on subsets of few electrodes (6 - 9 
electrodes among 32) in all experimental protocols. 
The Modality Influence analysis indicates that the 
electrode #22 located in the primary motor cortex 
has the highest impact on the decision rule (84%, 
97%, 89%, and 75% of extracted information for 
‘left’, ‘right’, ‘up’, and ‘down’ positions of the 
pedal, respectively). High frequencies ( 100≥  Hz) 
significantly contribute to the decision in the 
frequency modality, however, the influence of the 
lower frequencies ( 100<  Hz) is also considerable, 
especially for the ‘left’ position of the pedal. In the 
time domain the interval [−0.2, 0] s before the event 
is the most significant for all positions of the pedal. 

Comparison of the L1-Penalized NPLS with the 
generic NPLS algorithm demonstrated that the 
proposed method outperformed the generic 
approach. This advantage can be explained by the 
overfitting effect suppression. Additional 
computational experiments including different tasks 
will allow better comparison of methods. 

Application of sparse predictive models in on-
line real-time experiments will be the next step of 
this study. 
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Figure 2: Impact on the predictive model of the components of different modalities (weights) according to the MI analysis 
for each pedal position; spatial modalities are represented by the graphs and the corresponding color map. 

 
Figure 3: Comparison of prediction errors (root mean 
squared error, RMSE) for the NPLS and the PNPLS 
algorithms on the test set for different number of factors. 
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