
AN INVESTIGATION INTO THE USE OF SWARM INTELLIGENCE
FOR AN EVOLUTIONARY ALGORITHM OPTIMISATION

The Optimisation Performance of Differential Evolution Algorithm Coupled with
Stochastic Diffusion Search

Mohammad Majid al-Rifaie, John Mark Bishop and Tim Blackwell
Department of Computing, Goldsmiths College, University of London, London SE14 6NW, U.K.

Keywords: SDS, DE, EC, SI, Metaheuristics.

Abstract: The integration of Swarm Intelligence (SI) algorithms and Evolutionary algorithms (EAs) might be one of
the future approaches in the Evolutionary Computation (EC). This work narrates the early research on using
Stochastic Diffusion Search (SDS) – a swarm intelligence algorithm – to empower the Differential Evolution
(DE) – an evolutionary algorithm – over a set of optimisation problems. The results reported herein suggest
that the powerful resource allocation mechanism deployed in SDS has the potential to improve the optimisation
capability of the classical evolutionary algorithm used in this experiment. Different performance measures and
statistical analyses were utilised to monitor the behaviour of the final coupled algorithm.

1 INTRODUCTION

In the literature, nature inspired swarm intelligence
algorithms and biologically inspired evolutionary al-
gorithms are typically evaluated using benchmarks
that are often small in terms of their objective func-
tion computational costs (Whitley et al., 1996); this
is often not the case in real-world applications. This
paper is an attempt to pave the way for more effec-
tively optimising computationally expensive objec-
tive functions, by deploying the SDS diffusion mech-
anism to more efficiently allocate DE resources via
information-sharing between the members of the pop-
ulation. The use of SDS as an efficient resource allo-
cation algorithm was first explored in (Nasuto, 1999)
and these results provided motivation to investigate
the application of the information diffusion mecha-
nism originally deployed in SDS1 with DE.

In this paper, the swarm intelligence algorithm
and the evolutionary algorithm are first introduced,
followed by the coupling strategy. The results are re-
ported afterwards and the performance of the coupled
algorithm will be discussed.

1The ‘information diffusion’ and ‘randomised partial
objective function evaluation’ processes enable SDS to
more efficiently optimise problems with costly [discrete]
objective functions; see Stochastic Diffusion Search Sec-
tion for an introduction to the SDS metaheuristic.

2 STOCHASTIC DIFFUSION
SEARCH

This section introduces SDS (Bishop, 1989), a
multi-agent global search and optimisation algorithm,
which is based on simple interaction of agents (in-
spired by one species of ants,Leptothorax acervo-
rum, where a ‘tandem calling’ mechanism (one-to-
one communication) is used, where the forager ant
which finds the food location, recruits a single ant
upon its return to the nest, and therefore the location
of the food is physically publicised). A high-level
description of SDS is presented in the form of a so-
cial metaphor demonstrating the procedures through
which SDS allocates resources.

SDS introduced a new probabilistic approach
for solving best-fit pattern recognition and matching
problems. SDS, as a multi-agent population-based
global search and optimisation algorithm, is a dis-
tributed mode of computation utilising interaction be-
tween simple agents. Unlike many nature inspired
search algorithms, SDS has a strong mathematical
framework, which describes the behaviour of the al-
gorithm by investigating its resource allocation, con-
vergence to global optimum, robustness and minimal
convergence criteria and linear time complexity. In
order to introduce SDS, a social metaphorthe Mining
Game(al-Rifaie and Bishop, 2010) is used.

553
al-Rifaie M., Bishop J. and Blackwell T..
AN INVESTIGATION INTO THE USE OF SWARM INTELLIGENCE FOR AN EVOLUTIONARY ALGORITHM OPTIMISATION - The Optimisation
Performance of Differential Evolution Algorithm Coupled with Stochastic Diffusion Search.
DOI: 10.5220/0003723005530558
In Proceedings of the International Conference on Evolutionary Computation Theory and Applications (FEC-2011), pages 553-558
ISBN: 978-989-8425-83-6
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

2.1 The Mining Game

This metaphor provides a simple high-level descrip-
tion of the behaviour of agents in SDS, where moun-
tain range is divided into hills and each hill is divided
into regions:

A group of miners learn that there is gold to be
found on the hills of a mountain range but have
no information regarding its distribution. To maxi-
mize their collective wealth, the maximum number
of miners should dig at the hill which has the rich-
est seams of gold (this information is not available
a-priori). In order to solve this problem, the min-
ers decide to employ a simple Stochastic Diffusion
Search.

• At the start of the mining process each miner is
randomly allocated a hill to mine (his hill hy-
pothesis,h).

• Every day each miner is allocated a randomly
selected region, on the hill to mine.

At the end of each day, the probability that a miner
is happy is proportional to the amount of gold he
has found. Every evening, the miners congregate
and each miner who is not happy selects another
miner at random for communication. If the chosen
miner is happy, he shares the location of his hill and
thus both now maintain it as their hypothesis,h; if
not, the unhappy miner selects a new hill hypothe-
sis to mine at random.

As this process is isomorphic to SDS, miners will nat-
urally self-organise to congregate over hill(s) of the
mountain with high concentration of gold.

In the context of SDS, agents take the role of
miners; active agents being ‘happy miners’, inactive
agents being ‘unhappy miners and the agent’s hypoth-
esis being the miner’s ‘hill-hypothesis’.

2.2 SDS Architecture

The SDS algorithm commences a search or optimi-
sation by initialising its population (e.g. miners, in
the mining game metaphor). In any SDS search, each
agent maintains a hypothesis,h, defining a possible
problem solution. In the mining game analogy, agent
hypothesis identifies a hill. After initialisation two
phases are followed (for high-level SDS description
see Algorithm 1):

• Test Phase (e.g. testing gold availability)

• Diffusion Phase (e.g. congregation and exchang-
ing of information)

In the test phase, SDS checks whether the agent
hypothesis is successful or not by performing a partial
hypothesis evaluation which returns a boolean value.
Later in the iteration, contingent on the precise re-
cruitment strategy employed, successful hypotheses

Algorithm 1: SDS Algorithm.

Initialising agents ()
While (stopping condition is not met)

Testing hypotheses ()
Diffusion hypotheses ()

End

diffuse across the population and in this way informa-
tion on potentially good solutions spreads throughout
the entire population of agents.

In the Test phase, each agent performspartial
function evaluation, pFE, which is some function of
the agent’s hypothesis;pFE = f (h). In the mining
game the partial function evaluation entails mining a
random selected region on the hill, which is defined
by the agent’s hypothesis (instead of mining all re-
gions on that hill).

In the Diffusion phase, each agent recruits another
agent for interaction and potential communication of
hypothesis. In the mining game metaphor, diffusion
is performed by communicating a hill hypothesis.

2.3 Partial Function Evaluation

The commonly used benchmarks for evaluating the
performance of swarm intelligence algorithms are
typically small in terms of their objective functions
computational costs, which is often not the case in
real-world applications. Examples of costly evalua-
tion functions are seismic data interpretation (Whit-
ley et al., 1996), selection of sites for the transmis-
sion infrastructure of wireless communication net-
works and radio wave propagation calculations of one
site (Whitaker and Hurley, 2002) etc.

Many fitness functions are decomposable to com-
ponents that can be evaluated separately. In partial
evaluation of the fitness function in SDS, the evalua-
tion of one or more of the components may provide
partial information to guide the subsequent optimisa-
tion process.

3 DIFFERENTIAL EVOLUTION

DE, one of the most successful Evolutionary Algo-
rithms (EAs), is a simple global numberical optimiser
over continuous search spaces which was first intro-
duced by Storn and Price (Storn and Price, 1995).

DE is a population based stochastic algorithm,
proposed to search for an optimum value in the feasi-
ble solution space. The parameter vectors of the pop-
ulation are defined as follows:

xg
i =

[

xg
i,1,x

g
i,2, ...,x

g
i,D

]

, i = 1,2, ...,NP (1)

FEC 2011 - Special Session on Future of Evolutionary Computation

554

whereg is the current generation,D is the dimension
of the problem space andNP is the population size.
In the first generation, (wheng = 0), theith vector’s
jth component could be initialised as:

x0
i, j = xmin, j + r (xmax, j − xmin, j) (2)

wherer is a random number drawn from a uniform
distribution on the unit intervalU (0,1), andxmin, xmax
are the lower and upper bounds of thejth dimen-
sion, respectively. The evolutionary process (muta-
tion, corssover and selection) starts after the initiali-
sation of the population.

3.1 Mutation

At each generationg, the mutation operation is ap-
plied to each member of the populationxg

i (target vec-
tor) resulting in the corresponding vectorvg

i (mutant
vector). Among the most frequently used mutation
approaches are the following:

• DE/rand/1

vg
i = xg

r1
+F

(

xg
r2
− xg

r3

)

(3)

• DE/target-to-best/1

vg
i = xg

i +F
(

xg
best− xg

i

)

+F
(

xg
r1
− xg

r2

)

(4)

• DE/best/1

vg
i = xg

best+F
(

xg
r1
− xg

r2

)

(5)

• DE/best/2

vg
i = xg

best+F
(

xg
r1
− xg

r2

)

+F
(

xg
r2
− xg

r3

)

(6)

• DE/rand/2

vg
i = xg

r1
+F

(

xg
r2
− xg

r3

)

+F
(

xg
r4
− xg

r5

)

(7)

wherer1, r2, r3, r4 are different fromi and are distinct
random integers drawn from the range[1,NP]; In gen-
erationg, the vector with the best fitness value isxg

best
andF is a positive control parameter for constricting
the difference vectors.

3.2 Crossover

Crossover operation, improves population diversity
through exchanging some components ofvg

i (mutant
vector) withxg

i (target vector) to generateug
i (trial vec-

tor). This process is led as follows:

ug
i, j =







vg
i, j , if r ≤CR or j = rd

xg
i, j , otherwise

(8)

where r is a uniformly distributed random number
drawn from the unit intervalU (0,1), rd is randomly

generated integer from the range[1,D]; this value
guarantees that at least one component of the trial vec-
tor is different from the target vector. The value ofCR,
which is another control parameter, specifes the level
of inheritance fromvg

i (mutant vector).

3.3 Selection

The selection operation decides whetherxg
i (target

vector) orug
i (trial vector) would be able to pass to

the next generation (g+ 1). In case of a minimisa-
tion problem, the vector with a smaller fitness value
is admitted to the next generation:

xg+1
i =







ug
i , if f

(

ug
i

)

≤ f
(

xg
i

)

xg
i , otherwise

(9)

where f (x) is the fitness function.
DE is known to be relatively good in compar-

ison with other EAs and PSOs at avoiding prema-
ture convergence. However, in order to reduce the
risk of premature convergence in DE and to pre-
serve population diversity, several methods have been
proposed, among which are: multi-population ap-
proaches (Brest et al., 2009); providing extra knowl-
edge about the problem space (Weber et al., 2010);
information storage about previously explored areas
(Zhang and Sanderson, 2009) and utilising adapting
and control parameters to ensure population diversity
(Zaharie, 2003).

4 COUPLING SDS AND DE

The initial motivating thesis justifying the coupling
of SDS and DE is the partial function evaluation de-
ployed in SDS, which may mitigate the high com-
putational overheads entailed when deploying a DE
algorithm onto a problem with a costly fitness func-
tion. However, before commenting on and explor-
ing this area – which remains an ongoing research –
an initial set of experiments aimed to investigate the
scenario where the optimisation process is initialised
by n number of function evaluations (FEs) performed
within the SDS test-diffusion cycle, in order to allo-
cate the resources (agent) to the promising areas of
the search space and then passing on the agents’ po-
sitions to DE to resume the optimisation process, in
most cases as a local search.

The goal of this process is to verify whether the in-
formation diffusion and dispensation mechanisms de-
ployed in SDS may on its own improve DE behaviour.
These are the results that are primarily reported in this
paper.

AN INVESTIGATION INTO THE USE OF SWARM INTELLIGENCE FOR AN EVOLUTIONARY ALGORITHM
OPTIMISATION - The Optimisation Performance of Differential Evolution Algorithm Coupled with Stochastic Diffusion

Search

555

In this new architecture, a standard set of bench-
marks are used to evaluate the performance of the
coupled algorithm. The resource allocation (or re-
cruitment) and partial function evaluation sides of
SDS (see Section 2.3) are used to assist allocating re-
sources after partially evaluating the search space.

Each DE agent has three vectors (target, mutant
and trial vectors); and each SDS agent has one hy-
pothesis and one status. In the experiment reported
here (coupled algorithm), as stated before, SDS test-
diffusion cycle is run forn of FEs and then DE com-
mences with the optimisation, taking its target vectors
from SDS agents’ positions.

The behaviour of the coupled algorithm in its sim-
plest form is presented in Algorithm 2.

Algorithm 2: Coupled Algorithm.

Initialise Agents

x = initialInactiveErrorVector (e.g. 4)
y = initialActiveErrorVector (e.g. 1)
// x > y

n = SDS_FE_Allowed

//SDS cycle
While (FE <= n)
{

// Decreasing the error vector over time
If (FE < stoppingErrV_DecreasePoint)

iErrorV = x - (x*FE) / stoppingErrV_DecPoint
aErrorV = y - (y*FE) / stoppingErrV_DecPoint

End If
// stoppingErrV_DecPoint < SDS_FE_Allowed

// TEST PHASE
For ag = 1 to NP

r_ag = pick -random -agent()
If (F(ag) < F(r_ag))

ag.setActivity (true)
Else

ag.setActivity (false)
End If

End For

// DIFFUSION PHASE
For ag = 1 to NP

If (ag is not active)
r_ag = pick -random -agent()
If (r_ag is active)

ag.setHypo (
Gaussian (r_ag.getHypo (),iErrorV))

Else
ag.setHypo (randomHypo ())

End If
End If
Else

ag.setHypo(Gaussian (ag.getHypo (),aErrorV))
End for

}

// DE
While (FE < FE_Allowed)

For (Agent = 1 to NP)
Mutation : generate mutant vector
Crossover : generate trial vector
Selection : generate target vector

End For
Find Agent with best fitness value

End For

4.1 Test and Diffusion Phases in the
Coupled Algorithm

In the test-phase of a stochastic diffusion search, each
agent has to partially evaluate its hypothesis. The
guiding heuristic is that hypotheses that are promis-
ing are maintained and those that appear unpromising
are discarded.

In the context of the coupled SDS-DE algorithm,
it is clear that there are many different tests that could
be performed in order to determine the activity of
each agent.

A very simple test is illustrated in Algorithm 2.
Here, the test-phase is simply conducted by compar-
ing the fitness of each agent’s fitness against that of a
random agent; if the selecting agent has a better fit-
ness value, it will become active, otherwise it will be
flagged inactive. On average, this mechanism will en-
sure 50% of agents remain active from one iteration
to another.

In the Diffusion Phase, each inactive agent picks
another agent randomly, if the selected agent is active,
the selected agent communicates its hypothesis to the
inactive one; if the selected agent is also inactive, the
selecting agent generates a new hypothesis at random
from the search space.

As outlined in the pseudo-code of the coupled al-
gorithm (see Algorithm 2), after the initialn function
evaluations during which SDS test-diffusion cylce it-
erates, DE algorithm should run.

In the next section, the experiment setup is re-
ported and the results will follow.

5 EXPERIMENTAL SETUP

In this work, a number of experiments are carried
out and the performance of one variation of DE al-
gorithm (DE/best/1) is contrasted against the coupled
SDS-DE algorithm (sDE). The algorithms are tested
over a number of standard benchmarking functions,
preserving different dimensionality and modality (see
(al-Rifaie et al., 2011a; al-Rifaie et al., 2011b) for
more information on the benchmarks used). The ex-
periments are conducted with the population of 100
agents. The halting criterion for this experiment is
when the function evaluations reaches 300,000.

There are 30 independent runs for each bench-
mark function and the results are averaged over these
independent trials.

The stopping condition for decreasing the error
vectors is reaching 80,000 FEs. DE is run after
100,000 FEs until the temination criterion which is
300,000 FEs. These values were selected merely to

FEC 2011 - Special Session on Future of Evolutionary Computation

556

Table 1: Accuracy Details.

DE sDE sDispDE

SDS-DE SDS (Disp) DE

f1 2.80E-78±2.65E-78 1.35E-37±1.06E-37 3.36E-54±2.01E-54

f2 6.31E-02±1.55E-02 8.15E-01±2.00E-01 7.58E+00±1.55E+00

f3 3.45E+01±8.04E+00 3.45E+01±4.52E+00 2.65E+01±4.08E+00

f4 4.59E+02±1.31E+02 8.55E+02±2.44E+02 6.17E+00±1.10E+00

f5 1.75E+02±8.18E+00 5.69E+01±1.80E+00 2.48E+01±1.26E+00

f6 1.87E+01±8.84E-01 2.29E+00±6.48E-02 7.52E-01±1.30E-01

f7 5.79E-02±1.77E-02 1.02E+00±4.68E-01 1.18E-02±2.99E-03

f8 1.34E+01±2.94E+00 3.80E-02±2.20E-02 1.69E-01±8.07E-02

f9 1.62E+00±3.56E-01 9.36E-02±2.50E-02 3.33E-02±1.48E-02

f10 4.90E-01±7.42E-02 1.04E-16±2.06E-17 1.18E-16±2.06E-17

f11 1.57E+02±4.21E+01 0.00E+00±0.00E+00 5.92E-17±2.80E-17

f12 5.05E+00±7.38E-17 1.06E-08±2.37E-09 2.28E+00±4.90E-01

f13 5.27E+00±0.00E+00 2.64E-07±4.22E-08 1.76E+00±4.63E-01

f14 5.36E+00±9.99E-17 2.84E-07±5.17E-08 2.85E+00±5.37E-01

Accuracy (±standard error) is shown with two decimal places after 30 trials

of 300,000 FEs. For each benchmark, the best algorithm(s) which is signif-

icantly better (see Table 2) than the others is highlighted. In caseswhere

more than one algorithm is highlighted in a row, the highlighted algorithms

do not significantly outperform each other.

provide a brief initial exploration of the behaviour of
the new coupled algorithm; no claim is made for their
optimality.

6 EXPERIMENTAL RESULTS

Table 1 shows the performance of the coupled algo-
rithm (sDE) alongside DE algorithm. For each bench-
mark and algorithm, the table shows the accuracy
measure. The overal reliability of each algorithm is
also reported.

The focus of this paper is not finding the best stop-
ping point for decreasing the error vectors or the val-
ues of the initial error vectors (for this set of bench-
marks), but rather investigate the effect of SDS algo-
rithm on the performance of DE algorithm.

As Table 2 shows, over all benchmarks, other than
f7, DE algorithm does not significantly outperform
the coupled algorithm. On the other hand, in most
cases (f5−6 and f8−14), the coupled algorithm signifi-
cantly outperforms the classical DE algorithm.

More results and analyses are presented in the next
section.

7 DISCUSSION

The resource allocation process underlying SDS of-
fers three closely coupled mechanisms to the algo-

rithm’s search component to speed its convergence to
global optima:

• ‘efficient, non-greedy information sharing’ in-
stantiated via positive feedback of potentially
good hypotheses between agents;

• dispensation mechanism – SDS-led random-
restarts – deployed as part of the diffusion phase;

• random ‘partial hypothesis evaluation’, whereby
a complex, computationally expensive objective
function is broken down into ‘k independent
partial-functions’, each one of which, when eval-
uated, offers partial information on the absolute
quality of current algorithm search parameters. It
is this mechanism of iterated selection of aran-
dom partial function that ensures SDS does not
prematurely converge on local minimum.

To further analyse the role of SDS in the cou-
pled algorithm, the Diffusion Phase of SDS algorithm
is modified (see Algorithm 3) to investigate the dis-
pensation effect caused by randomising a selection of
agent hypotheses (effectively instantiating the popu-
lation with SDS-led random-restarts). In other words,
after the SDS test-phase, the hypothesis of each inac-
tive agent is randomised.

As detailed in Table 1, although, information shar-
ing plays an important role in the performance of
the coupled algorithm, the significance of dispensa-
tion mechanism (in randomly restarting some of the
agents) in improving the performance of the algo-
rithm cannot be discarded.

In some cases (f4,5,7), solely the dispensation
mechanism (sDispDE), which is facilitated by the
test-phase of the SDS algorithm, demonstrates a sig-
nificantly better performance compared to the cou-
pled algorithm (see Table 1). However, in the several
cases, the coupled algorithms outperform the modi-
fied algorithm: f2,8 and f10−14, out of which f2 and
f12−14 are performing significantly better (see Table
2).

Table 1 shows that among the highlighted algo-
rithms, out of 14 bechmarks,sDE exhibits the best
performance as it is among the most significant in 9
cases;sDispDEandDE are among the best in 7 and
2 cases, respectively.

The results show the importance of coupling
the SDS-led restart mechanism (dispensation mecha-
nism) and the information sharing which are both de-
ployed in SDS algorithm.

The third SDS component feature, which is cur-
rently only implicitly exploited by the coupled algo-
rithm, is ‘randomised partial hypothesis evaluation’
(see (al-Rifaie et al., 2011b) for a detailed explana-
tion on the implicit deployment of this feature).

AN INVESTIGATION INTO THE USE OF SWARM INTELLIGENCE FOR AN EVOLUTIONARY ALGORITHM
OPTIMISATION - The Optimisation Performance of Differential Evolution Algorithm Coupled with Stochastic Diffusion

Search

557

Table 2: TukeyHSD Test Results for Accuracy.

DE - sDE DE - sDispDE sDE - sDispDE
f1 – – –

f2 – X–o X–o

f3 – – –

f4 – – o–X

f5 o–X o–X o–X

f6 o–X o–X –

f7 X–o – o–X

f8 o–X o–X –

f9 o–X o–X –

f10 o–X o–X –

f11 o–X o–X –

f12 o–X o–X X–o

f13 o–X o–X X–o

f14 o–X o–X X–o

Based on TukeyHSD Test, if the difference between each pair of algorithms

is significant, the pairs are marked. X–o shows that the left algorithm is

significantly better than the right one; and o–X shows that the right algorithm

is significantly better than the one, on the left.

Algorithm 3: SDS Dispensation coupled with DE
(sDispDE).

// DIFFUSION PHASE
For ag = 1 to No_of_agents

If (ag is not active)
ag.setHypo (randomHypo ())

Else
ag.setHypo (Gaussian (ag.getHypo (),aErrorV))

End If
End For

7.1 Conclusions

This paper presents a brief overview about the poten-
tial of coupling of DE with SDS. Here, SDS is pri-
marily used as an efficient resource allocation and
dispensation mechanism responsible for facilitating
communication between the agents at the early stages
of the optimisation. Results reported in this paper
have demonstrated that initial explorations with the
coupled sDE algorithm outperform the performance
of (one variation of) classical DE architecture. We
believe similar techniques (e.g. (Omran et al., 2011))
can be applied to other swarm intelligence and evo-
lutionary algorithms. As reported in (al-Rifaie et al.,
2011a; al-Rifaie et al., 2011b) SDS has been also suc-
cessfully integrated (vs. coupled) into PSO and DE
in a different framework. In ongoing research, fur-
ther theoretical work seeks to develop the core ideas
presented in this paper on problems with significantly
more computationally expensive objective functions.

This reinforces the idea of the integration of SI
algorithms with EAs as a potential future approach in
Evolutionary Computation.

REFERENCES

al-Rifaie, M. M. and Bishop, M. (2010). The mining game:
a brief introduction to the stochastic diffusion search
metaheuristic.AISB Quarterly.

al-Rifaie, M. M., Bishop, M., and Blackwell, T. (2011a). An
investigation into the merger of stochastic diffusion
search and particle swarm optimisation. InGECCO
’11: Proceedings of the 2011 GECCO conference
companion on Genetic and evolutionary computation,
pages 37–44, New York, NY, USA. ACM.

al-Rifaie, M. M., Bishop, M., and Blackwell, T. (2011b).
Resource allocation and dispensation impact of
stochastic diffusion search on differential evolution al-
gorithm; in nature inspired cooperative strategies for
optimisation (NICSO 2011) proceedings.Studies in
Computational Intelligence. Springer.

Bishop, J. (1989). Stochastic searching networks. pages
329–331, London, UK. Proc. 1st IEE Conf. on Artifi-
cial Neural Networks.

Brest, J., Zamuda, A., Boskovic, B., Maucec, M., and
Zumer, V. (2009). Dynamic optimization using self-
adaptive differential evolution. InIEEE Congress
on Evolutionary Computation, 2009. CEC’09., pages
415–422. IEEE.

Nasuto, S. J. (1999).Resource Allocation Analysis of the
Stochastic Diffusion Search. PhD thesis, University
of Reading, Reading, UK.

Omran, M., Moukadem, I., al-Sharhan, S., and Kinawi,
M. (2011). Stochastic diffusion search for continu-
ous global optimization.International Conference on
Swarm Intelligence (ICSI 2011), Cergy, France.

Storn, R. and Price, K. (1995). Differential
evolution - a simple and efficient adaptive
scheme for global optimization over continu-
ous spaces. TR-95-012, [online]. Available:
http://www.icsi.berkeley.edu/ storn/litera.html.

Weber, M., Neri, F., and Tirronen, V. (2010). Parallel Ran-
dom Injection Differential Evolution.Applications of
Evolutionary Computation, pages 471–480.

Whitaker, R. and Hurley, S. (2002). An agent based ap-
proach to site selection for wireless networks. In
1st IEE Conf. on Artificial Neural Networks, Madrid
Spain. ACM Press Proc ACM Symposium on Applied
Computing.

Whitley, D., Rana, S., Dzubera, J., and Mathias, K. E.
(1996). Evaluating evolutionary algorithms.Artificial
Intelligence, 85(1-2):245–276.

Zaharie, D. (2003). Control of population diversity and
adaptation in differential evolution algorithms. In
Proc. of 9th International Conference on Soft Com-
puting, MENDEL, pages 41–46.

Zhang, J. and Sanderson, A. (2009). JADE: adaptive
differential evolution with optional external archive.
Evolutionary Computation, IEEE Transactions on,
13(5):945–958.

FEC 2011 - Special Session on Future of Evolutionary Computation

558

