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Abstract: Comparing with other neural networks based models, CMAC is successfully applied on many nonlinear 
control systems because of its computational speed and learning ability. However, for high-dimensional 
input cases in real application, we often have to make our choice between learning accuracy and memory 
size. This paper discusses how both the number of layer and step quantization influence the approximation 
quality of CMAC. By experimental enquiry, it is shown that it is possible to decrease the memory size 
without losing the approximation quality by selecting the adaptive structural parameters. Based on Q-
learning approach, the CMAC structural parameters can be optimized automatically without increasing the 
complexity of its structure. The choice of this optimized CMAC structure can achieve a tradeoff between 
the learning accuracy and finite memory size. At last, the application of this Q-learning based CMAC 
structure optimization approach on the joint angle tracking problem for biped robot is presented. 

1 INTRODUCTION 

The Cerebellar Model Articulation Controller 
(CMAC) is a neural network (NN) based model 
proposed by Albus inspiring from the studies on the 
human cerebellum (J. S. Albus, 1975). Because of 
the advantages of simple and effective training 
properties and fast learning convergence, CMAC has 
been used in many real-time control systems, pattern 
recognition and signal processing problems 
successfully. However, besides its attractive 
features, the main drawback of the CMAC network 
in realistic applications is related to the required 
memory size. For the input space greater than two, 
on one hand, in order to increase the accuracy of the 
control the chosen quantification step must be as 
small as possible which will cause the CMAC’s 
memory size become quickly very large; on the 
other hand, generally in real world applications the 
useable memory is finite or pre-allocated. Therefore, 
for high-dimensional input cases we often have to 
make our choice between accuracy and memory 
size. 

To solve the problem relating to the size of the 
memory, generally these efforts can be classified 
into three main approaches. The first theoretical 

aspect is developed on how to modify the input 
space quantization (Hung-Ching Lu et al., 2006); (S. 
D. Teddy et al., 2007). This is based on the idea of 
the quantization method of input space is a decisive 
factor of the memory utilization and the more 
intervals we quantized, the more precise learning we 
will obtain. However, not only the quantization step 
but also number of layers determines the learning 
preciseness and the required memory size. The 
second approach involves the use of multilayered 
CMACs of increasing resolutions, demonstrating the 
properties of generating and pruning the input layers 
automatically (A. Menozzi and M. Chow, 1997); 
(Chih-Min Lin and Te-Yu Chen, 2009). 
Nevertheless they lack the theoretical proof of the 
system’s learning convergence, which is a desirable 
attribute for control and function approximation 
tasks. The third orientation which is most popular 
focuses on incorporating fuzzy logic into CMAC to 
obtain a new fuzzy neural system model called fuzzy 
CMAC (FCMAC) to alleviate the required memory 
size (M. N. Nguyen et al., 2005); (Daming Shi et al., 
2010). Yet, it rises new problem on how to design an 
optimal fuzzy sets. 

In the above CMAC literatures, there is no one 
related to the tradeoff problem of limited memory 
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size and learning quality. It is traditionally thought 
that the more exquisitely the input space is divided, 
the more accurately the output results of CMAC can 
be obtained. However, this will certainly cause 
quickly increasing of memory size, if we do not 
develop more complex CMAC structure, since the 
simplicity of structure play an important role in the 
on-line application of neural network. In fact, by 
experimental study of approximation examples, in 
which several high-dimension functions were 
selected and several combinations of structural 
parameters were tested, we found that the learning 
preciseness and the required memory size are 
determined by both of the quantization step and 
number of layers. Thus, adaptive choice of these 
structural parameters may overcome the above 
primary limitation. Our goal is that a CMAC 
structure can be optimized automatically for a given 
problem. In this way, it is possible to decrease the 
memory size according to the desired performance 
of the CMAC neural network. 

The paper is organized as follows: In section 2, 
CMAC model and its structure parameters are 
concisely overviewed. Section 3 presents the 
experimental study of the influence of structural 
parameters on the memory size and approximation 
quality. In section 4, a Q-learning based structure 
optimized approach is developed. The proposed 
approach is applied on the desired joint angel 
tracking for biped robot in section 5. Conclusion and 
further works are finally set out. 

2 CMAC NN STRUCTURE AND 
STRUCTURAL PARAMETERS 

The outputY of the CMAC NN is computed using 
two mappings. The first mapping ( )X A  projects 

the input space point 1 2[ , , , ]nX x x x  into a binary 

associative vector 1 2[ , , , ]
CNA a a a  . Each element 

of A is associated with one detector. When one 
detector is activated, the corresponding element in A  
equals to 1, otherwise it equals to 0. The second 
mapping ( )A Y computes the output Y as a scalar 

product of the association vector A and weight 
vector 1 2[ , , , ]

CNW w w w  according to relation (1), 

where ( )TX represents the transpose of the input 

vector. 

( )TY A X W  (1)
 

The weights of CMAC neural network are 
updated by using equation (2). ( )iw t and 1( )iw t  are 

respectively the weights before and after training at 
each sample time it . lN is the generalization number 

of each CMAC and  is a parameter included 

in [0 1] . e is the error between the desired 

output dY of the CMAC and the computed 
outputY of the corresponding CMAC. 
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Due to its structure, CMAC is preferable to be used 
to approximate both linear and non-linear functions. 
If the complexity of its structure is not increased 
additionally, there are essentially two structural 
factors ruling the function approximation quality. 
The first one, called “quantization step” q , allows 

to map a continuous signal into a discrete signal. 
The second parameter, called “generalization 
parameter” lN , corresponds to the number of layers. 

These two parameters allow to define the total 
number of cells CN . 

3 IMPACT OF STRUCTURAL 
PARAMETERS ON CMAC NN  

We try to show the relation between the structural 
parameters of CMAC neural network, the quality of 
the approximation and the required memory size for 
a given function. Our study is based on an 
experimental enquiry, in which several high-
dimension functions are used in order to test the 
neural network’s approximation abilities. In this 
section, take FSIN and two dimension GUASS 
functions as examples, simulations for several step 
quantization q are carried out, when the number of 

layers increases from 5 to 50 for FSIN function, and 
from 5 to 450 for two dimension GAUSS function. 
For each of the aforementioned functions, a training 
set including 100 100  random values, selected in 
the corresponding two-dimensional space, has been 
constructed. Weights of CMAC are updated using 
equation (2). When CMAC is totally trained, three 
modeling errors: mean absolute error meanE , mean 

squared error squareE and maximum absolute 

error maxE  are carried out. The overview of the 

obtained results for only three step quantization is 
shown in Figure 1 and 2 respectively. 
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0.0025q                                  0.0050q                                 0.0075q   

Figure 1: Approximation error according to the number of layers for FSIN function with different step quantization. 

 
0.0025q                                   0.0050q                                 0.0100q   

Figure 2: Approximation error according to number of layers for GUASS function with different step quantization.  

When q is relatively small (for 

example 0.0025q  ), errors converges toward a 

constant value close to the minimum error. But, 
when the quantization is greater, results show there 
is an optimal or near optimal structure when the 
modeling errors can achieve minimum. However, it 
must be noticed that for each quantization step, the 
minimal errors are quasi-identical but for different 
number of layers. As the curve trends of the mean 
absolute error meanE , mean squared error squareE and 

maximum absolute error maxE are same, only 

take squareE as an example. 

The mean squared error squareE for FSIN function 

equals to 5.81% and 6.21% in the case 
where 0.0025q  and 0.0075q  respectively. 

These chosen results show that the approximation 
abilities of the CMAC are similar in these two cases, 
however, in the points of view of memory size, 
for 0.0025q  the required memory size is 4940, 

3.5 times greater than when 0.0075q   

( 1441CN  ). The experimental enquire simulation 

results show that by optimizing CMAC structure,  a 
nearly minimal modeling error with much smaller 
memory size can be achieved.  

4 CMAC NN STRUCTURAL 
PARAMETERS OPTIMIZATION 

4.1 Structural Parameters Optimized 
with Q-learning Approach 

In this section, our goal is to design an optimizing 
strategy allowing to adjust automatically the 
structural parameters of CMAC NN in order to make 
a tradeoff between the desirable approximation 
quality and the limited memory size. 

Q-Learning, proposed by Watkins (1992), is a 
very interesting way to use reinforcement learning 
strategy and is most advanced for which proofs of 
convergence exist. It does not require the knowledge 
of probability transitions from a state to another and 
is model-free. Here, the Q-Learning based on the 
temporal differences of order 0 is introduced, while 
in our structure optimized approach only considering 
the following step. Take the number of layers and 
quantization step[ , ]lN q as two dimension states of 

the world, while regarding the discrete actions as the 
increment of these two scalars. There are four 
possible actions when the agent searching the world: 
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where q is the incremental quantity of quantization 

step and the variation of layer is 1 for each step. 
Change of the layer number and quantization step is 
supposed to be alternated. Each discrete time step, 
the agent observes state [ , ]t t

lN q , take 

action t t
ia A ( 1, , 4)i   , observes new 

state 1 1[ , ]t t
lN q  , and receives immediate reward tr . 

Transitions are probabilistic, that is, 
1 1[ , ]t t

lN q  and tr are drawn from stationary 

probability distributions. In our approach, Peseudo-
stochastic method is chosen to describe the 
probability distributions. 

The reinforcement signal tr provides information 
in terms of reward or punishment. In our case, on 
one hand, the reinforcement information has to take 
into account the approximation quality of network. 
On the other hand, the required memory size needs 
to be minimized within the limitation. Taking these 
considerations, we designed the reinforcement signal 
as three cases: 
· 1t t

square squareE E  , the chosen of structural 

parameters is towards the correct direction. 
if t

squareE  and t
CN  achieve the desirable value 

1tr   

else 

1

/ 1000 10(1 )

t

t t

C square

r
N E 


 

 (4) 

· 1t t
square squareE E  , the trend of the chosen action is 

not appropriate. 

1tr    

· 1t t
square squareE E  , appropriateness of the trends of 

the chosen action is not clear. 

0tr   

In equation (4), factor 1000 and 10 are designed 
only to balance the order of magnitude for memory 
size and approximation quality.  indicates the 
weight of these two structural parameters. 

The Q matrix updates its evaluation of the value 
of the action while taking in account the immediate 
reinforcement tr and the estimated value of the new 
state 1 1( , )t t t

lV N q  , that is defined by: 

!

1 1 1 1( , ) max ( , , )
t

t t t t t

l l
b A

V N q Q N q b


   


    (5)

where b is the action chosen within 1tA  . If there is 
enough learning, the update equation could be 
written in the following form: 

1 1

( , , ) (1 ) ( , , )

[ ( , )]

t t t t t t

l l

t t t t

l

Q N q a Q N q a

r V N q



   

    

  
 (6)

 

where  is discount factor and   is the learning rate. 

If there comes up the end of a period, there is not a 
following state and the agent restarts a new sequence 
of training. The updating equation is: 
 

( , , ) (1 ) ( , , )t t t t t t t

l lQ N q a Q N q a r        (7)
 

When the mean squared error satisfies the desirable 
approximation (refers to equation (8)), and the 
memory size is within the allocated rang as well 
(presented in equation (9)), the goal state is 
achieved. 

t d
square squareE E  (8)

t d
C CN N  (9)

4.2 Simulation Results and 
Convergence Analysis 

Also, take FSIN function approximation as an 
example. Suppose that the finite number of usable 
memory size is 1500, and the approximation error 
less than 6.00% is favorable in order to maintain the 
approximation quality. In this case, we choose 

6.00%t
squareE  and 1500t

CN  as the goal state in 

the training phase. The initial state of number of 
layer 0

lN is set to be 20 and the quantization step can 

be chosen randomly within[0.0000 0.0100] , every 

0.0002 as the incremental quantity q . In this 

example, the discount factor  is set to be 0.9. 
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Figure 3: Sum of ( )Q t for each episode. 

Figure 3 shows the sum of the computing 
value ( )Q t for each episode according to the 

number of episode. This updating value, which 
depends directly on the reinforcement signal, 
converges toward 3 within 250 episodes. The 
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stability of our CMAC structure learning approach is 
theoretically guaranteed by the proof of the Q-
learning convergence. After the training phase, the 
CMAC with optimized structure 
( 12lN  , 0.0084q  ) can guarantee both of the 

desirable approximation quality and limitation 
required memory size, referring to Table 1. 

Table 1: CMAC structure with minimum mean squared 
error for FSIN function. 

Structure Optimized q  lN  squareE  CN  

NO 0.0025 41 5.81% 4940 
YES 0.0084 12 5.94% 1431 

5 THE APPLICATION OF CMAC 
STRUCTURE OPTIMIZATION 

In order to increase the robustness of control 
strategy for robot, CMAC neural network has been 
applied to learn a set of articular trajectories with 
popularity. However, the CPU of the robot has to do 
many intricacies tasks at the same time, therefore the 
useable memory size is often allocated with 
restriction or fixed number, and always the precise 
control output is favorable. In this case, the 
structural parameters optimization problem is 
needed to be considered if we do not increase the 
complexity of the CMAC NN, since the simplicity 
of structure for network is always desirable. On the 
basis of our previous work on the gait pattern 
planning strategy of biped robot (C.Sabourin et al, 
2008), CMAC structural parameters optimization 
with Q-learning approach is applied to learn the joint 
angle trajectories of biped robot. 

Usually, after footstep planning strategy, the 
position of the two stance feet can be calculated. 
Therefore, it is not difficult to derive the trajectory 
of the joint angle by inverse kinematics or bio-
inspired approach. The geometrical relationship 
between stance leg and swing leg of biped robot is 
described in Figure 4. Based on our control strategy, 
each reference gait is characterized by both of the 
step length and step height. Joint trajectory 
associated to one gait is memorized into one CMAC 
neural network. The biped robot is walking with a 
weighted average of several reference trajectories. 
Regarding the coordinate of swinging 
foot 3 3( , )x yP P as the two inputs, two CMAC neural 

networks are utilized for training hip joint angle 2  

and knee joint angle 3  separately for each gait 

pattern. The weights of CMAC are updated based on 

the difference between the output of CMAC and 
reference hip or knee joint angle of swinging leg. 

3 3( , )x yP P

0 0( , )x yP P  

1 2l l
1l

2l
1  

2

3

 

Figure 4: Geometrical relationship between stance leg and 
swing leg. 

Figure 5 shows the results of swinging leg joint 
angle approximation with CMAC, in which blue 
curve stands for the reference joint angle profile, red 
and green curves represent the output of CMAC 
approximating hip and knee joint angle respectively. 
In the first two simulations the structural parameters 
are chosen randomly and we do not know if they are 
appropriate. In the third experiment, the CMAC 
structural parameters are learned based on the 
developed Q-learning approach. We hope that the 
approximation error of reference gait less 
than 1.10% is better and the pre-assigned memory 
size for each CMAC NN is 1000. 

1.10%d
squareE  and 1000d

CN  are set to be the goal 

state according to equation (8) and (9),. After the 
learning phase, the optimized parameters 
are 20lN  , 1 2 0.0051q q    (refers to 

Figure5(b)). The required memory size and 
approximation errors for both of the hip and knee 
angles are listed in Table 2 for these three 
experiments. In the first experiment, the calculated 
mean squared error 

( 2 1.16%squareE  , 3 1.19%squareE  ) is very near to the 

desirable value, but the utilized memory 
size 3589CN  is 3.5 times bigger than the structure 

optimized example. Since in this biped robot 
application case, several reference pattern gaits have 
to be stored, the total number of memory size 
becomes quickly very large. In the second example, 
the memory size is desirable, however, the 
approximation quality of CMAC neural network 

( 2 1.52%squareE  , 3 1.56%squareE  ) is much worse 

than the structure optimization case 

( 2 1.07%squareE  , 3 1.03%squareE  ). However, the 

precise desired gait tracking is important in the case 
of biped robot walking in the unknown environment. 
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                                               (a) CMAC structure without learning                       (b) CMAC structure after learning 

Figure 5: Joint trajectory tracking with CMAC Neural Network. 

Table 2: Memory size and mean square error with randomly chosen and after learning CMAC structural parameters. 

CMAC structure lN  1 2q q    2
squareE

 3
squareE

 CN  

Randomly chosen 30 0.0021 1.16% 1.19% 3598

Randomly chosen 10 0.0080 1.56% 1.52% 795

After learning 20 0.0051 1.07% 1.03% 993

6 CONCLUSIONS 

Besides the appealing advantages of CMAC NN, 
such as simple and effective training properties and 
fast learning convergence, a crucial problem to 
design CMAC is related to the choice of the neural 
network’s structural parameters. In this paper, we 
have shown how both the number of layers and step 
quantization influence the approximation qualities of 
CMAC neural networks. The presented simulation 
results show that by optimizing CMAC structure, a 
nearly minimal modeling error with much smaller 
memory size can be achieved. Consequently, a 
CMAC structure optimization approach which is 
based on Q-learning is proposed. The stability of our 
proposed approach is theoretically guaranteed by the 
proof of the learning convergence of Q-learning. 
This Q-learning based structure optimization method 
is applied on generating the joint angle of biped 
robot. Simulation results show that the choice of an 
adaptive structure of CMAC allows on one hand 
decreasing the memory size and on the other hand 
achieving the desirable approximation quality. 
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