
 
candidates correspond to the actual abilities and the 
biography of the students. Clearly, knowing about 
the internal structures of CS knowledge is also an 
effective way of evaluating and designing CS 
courses. 
REFERENCES 
Albert, D & Steiner, C. M. 2005, 'Empirical Validation of 
Concept Maps: Preliminary Methodological Consider-
ations' in Proceedings of the Fifth IEEE International 
Conference on Advanced Learning Technologies 
(ICALT’05), ed IEEE. 
Anderson, J. R. 2005, Cognitive psychology and its impli-
cations. John R. Anderson, Worth Publishers, New 
York. 
Anderson, L. W. 2009, A taxonomy for learning, teaching, 
and assessing. A revision of Bloom's taxonomy of 
educational objectives, Longman, New York. 
Armstrong, D. J. 2006, 'The quarks of object-oriented 
development', Commun. ACM, vol. 49, pp. 123–128. 
Cordella, L. P., Foggia, P., Sansone, C. & Vento, M. 2004, 
'A (sub)graph isomorphism algorithm for matching 
large graphs', Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 26, no. 10, pp. 
1367–1372. 
Dominguez, A. K. (2010). Data Mining for Individualised 
Hints in e-Learning. In Proceedings of the interna-
tional conference of educational data mining (EDM 
2010). Pittsburgh . 
Goldsmith, T. E. & Davenport, D. M. 1990, 'Assessing 
structural similarity of graphs' in Pathfinder associa-
tive networks, Ablex Publishing Corp, pp. 75–87. 
Hubwieser, P. & Mühling, A. 2011, 'What Students 
(should) know about Object Oriented Programming' in 
ICER’11: Proceedings of the 7th International Com-
puting Education Workshop. August 8–9, Providence, 
Rhode Island, USA, ed ACM, pp. To appear. 
Hubwieser, P., Spohrer, M., Steinert, M. & Voß, S. 2008, 
Algorithmen, objektorientierte Programmierung, 
Zustandsmodellierung. Schülerbuch - Jahrgangsstufe 
10, Klett, Stuttgart. 
Inokuchi, A., Washio, T. & Motoda, H. 2000, 'An Apriori-
Based Algorithm for Mining Frequent Substructures 
from Graph Data'. Principles of Data Mining and 
Knowledge Discovery, 4th European Conference, 
PKDD 2000, Lyon, France, September 13-16, 2000, 
Proceedings, eds DA Zighed, HJ Komorowski & JM 
Zytkow, Springer, pp. 13–23. 
Kinchin, I. M., Hay, D. B. & Adams, A. 2000, 'How a 
qualitative approach to concept map analysis can be 
used to aid learning by illustrating patterns of concep-
tual development', Educational Research, vol. 42, no. 
1, pp. 43–57. 
Madhyastha, T., & Hunt, E. (2009). Mining diagnostic 
assessment data for concept similarity. Journal of 
Educational Data Mining, 1(1), 72–91. 
Mayring, P. 2000, Qualitative Content Analysis. Available 
from: http://qualitative-research.net/fqs/fqs-e/2-00inha 
lt-e.htm. 
McClure, J. R., Sonak, B. & Suen, H. K. 1999, 'Concept 
map assessment of classroom learning: Reliability, va-
lidity, and logistical practicality', Sci Teach, vol. 36, 
pp. 475\textendash492. 
Mons, B., Ashburner, M., Chichester, C., van Mulligen, 
E., Weeber, M., den Dunnen, J., van Ommen, G., Mu-
sen, M., Cockerill, M., Hermjakob, H., Mons, A., 
Packer, A., Pacheco, R., Lewis, S., Berkeley, A., Mel-
ton, W., Barris, N., Wales, J., Meijssen, G., Moeller, 
E., Roes, P., Borner, K. & Bairoch, A. 2008, 'Calling 
on a million minds for community annotation in Wi-
kiProteins', Genome Biology, vol. 9, no. 5, pp. R89. 
Mühling, A., Hubwieser, P. & Brinda, T. 2010, 'Exploring 
Teachers‘ Attitudes Towards Object Oriented Model-
ling and Programming in Secondary Schools'. ICER 
‘10: Proceedings of the Sixth International Workshop 
on Computing Education Research, ed ACM, ACM, 
New York, NY, USA, pp. 59–68. 
Norman, D. A. 1983, 'Some observations on mental mod-
els' in Mental models: eds D Gentner & AL Stevens, 
Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 7–
14. 
Pedroni, M. & Meyer, B. 2010, 'Object-Oriented Modeling 
of Object-Oriented Concepts' in Teaching fundamental 
concepts of informatics. 4th International Conference 
on Informatics in Secondary Schools - Evolution and 
Perspectives, ISSEP 2010, Zurich, Switzerland, Janu-
ary 13-15, 2010; proceedings, eds J Hromkovic, R 
Královic & J Vahrenhold, Springer, Berlin, pp. 155–
169. 
Romero, C., Romero, J. R., Luna, J. M., & Ventura, S. 
(2010). Mining rare association rules from e-learning 
data. In Proceedings of the International Conference 
of Educational Data Mining (EDM 2010). Pittsburgh 
(pp. 171–180). 
Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., 
Moström, J. E., Thomas, L. & Zander, C. (eds.) 2008, 
Student understanding of object-oriented program-
ming as expressed in concept maps, ACM, New York, 
NY, USA. 
Schank, R. C. & Abelson, R. P. 1977, Scripts, Plans, 
Goals and Understanding: an Inquiry into Human 
Knowledge Structures, L. Erlbaum, Hillsdale, NJ. 
Shavelson, R. J. & Ruiz-Primo, M. A. 1999, 'On the psy-
chomentrics of assessing science understanding.' in 
Assessing science understanding, eds J Mintzes, JH 
Wandersee & JD Novak, Academic Press, San Diego, 
pp. 304–341. 
Vanides, J., Yin, Y., Tomita, M. & Ruiz-Primo Maria 
Araceli 2005, 'Using Concept Maps in the Classroom', 
Vol. 28, No. 8, Summer 2005, Science Scope, vol. 28, 
no. 8, pp. 27–31. 
KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval
364