
A PIPELINED BASED FPGA IMPLEMENTATION
OF A GENETIC ALGORITHM

Nonel Thirer
HIT – Holon Institute of Technology, 54 Golomb Street, Holon, Israel

Keywords: Genetic Algorithm, Pipeline, Resources, Subpopulations, Flexible Implementation.

Abstract: Many problems common to the electrical and electronics field can be solved by finding a target function and
its minimum or maximum. For such problems, usually an analytical solution is not implementable, and
therefore iterative algorithms are used. One such efficient algorithm is the Genetic Algorithm (GA). The GA
imitates the biological evolution process, finding the solution by implementing the “natural selection”
principle, which asserts that the strong has higher chances to survive. The GA is an iterative procedure
which operates on a population of individuals called "chromosomes" or "possible solutions" (usually
represented by a binary code) and performs several processes on the population individuals, in order to
produce a new population - the same as in the biological evolution. Using the algorithm on large populations
requires substantial hardware resources. Also, naturally, the amount of time necessary to reach a solution
increases, due to the greater number of iterations needed. In this paper, we present an FPGA pipelined based
method designed to implement a GA, which provides a high-speed solution for large populations, with a
minimum of resources. This outcome is obtained by a procedure which operates sequentially with parts of
the population. In addition, an immigration unit is defined to provide an efficient communication between
these parts in different iterations. Moreover, some possible solutions to improve our method are analyzed.

1 INTRODUCTION

The principal steps of the GA (Affenzeller, 2009)
are:

Population initialization – build a random initial
bank of chromosomes.

Fitness calculation – calculate the “Fitness score”
for each chromosome in the current chromosome
bank. The Fitness score of a chromosome is the
amount of adjustments needed to solve the main
problem. If a chromosome that solves the main
problem is found, the GA is stopped.

Selection – the GA chooses several
chromosomes from the current bank, with respect to
their calculated fitness score.

Crossover – two or more of the chosen
chromosomes randomly switch their bits and build
up a new chromosome.

Mutation – one random bit is toggled in the
newly built chromosome.

The stages are repeated until a new chromosome
bank (population) is built and the process continues
with the new population.
 The software implementations of the algorithm
convert these steps to a multi phase process. The

FPGA (Field Programmable Gate Array)
implementations provide special hardware blocks for
every phase and also general blocks, which are
common to many phases (Mao, 1999). Evidently,
this implementation on large populations requires
substantial hardware resources. In addition, the time
needed until arriving to a solution increases, due to a
greater number of iterations. The use of a parallel
architecture improves the speed but requires many
resources (Tatsuhiro, 2006).

Problem–specific and also problem–independent
designs and implementations are available (Tiago,
2004).

A good algorithm must provide a high speed
solution in parallel to resources’ optimization for a
problem - independent FPGA implementation.

2 A NOVEL IMPLEMENTATION
ALGORITHM

We proposed a novel implementation algorithm
based on a pipelined system working with parts
(“subpopulations”) of the entire populations. These

343Thirer N..
A PIPELINED BASED FPGA IMPLEMENTATION OF A GENETIC ALGORITHM.
DOI: 10.5220/0003687703430345
In Proceedings of the International Conference on Evolutionary Computation Theory and Applications (ECTA-2011), pages 343-345
ISBN: 978-989-8425-83-6
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

subpopulations are not isolated and the best
individuals are transferred between subpopulations.

The initial population is divided to n
subpopulations and a GA multi stage process is
complete for each subpopulation by an m phases
pipeline procedure.

To process all these subpopulations, instead of
using a parallel configuration with n pipelines
(Tatsuhiro, 2006) we propose a sequential procedure
by using this m phases pipeline. Thus, only
resources for a single pipeline are necessary.

Evidently, for best results, the initial population
must be divided to n subpopulations, where n = m.

By using a single pipeline, the working time is
longer than using parallel pipelines, but the
sequential operation with the subpopulations
increases the throughput.

A “transfer” unit is introduced, to permit an
efficient communication between the subpopulations
in different iterations and also to improve the fitness
score of each subpopulation. In our method, the
transfer is provided by added to each subpopulation
the best p members of a previously evaluated
subpopulation. This, except in the case of the first
two subpopulations in the initialization phase (in this
case p members of another subpopulations must be
added randomly).

In each procedure, the Fitness block will provide
the best p candidates to be added to the next
subpopulation procedure.

2.1 Implementation of a Four Stages
GA

In the four stages GA, the pipeline contains four
special blocks:

M - Working memory (including the transfer
unit), E - Evaluation, S - Selection, CM - Crossover
and Mutation.

P0 is our initialization population. We divide it
to four subpopulations: P0_1, P0_2, P0_3, P0_4.

P0_11, P0_21, P0_31, P0_41 are the new
subpopulations after the first iteration,

P0_12, P0_22, P0_32, P0_42 are the new
subpopulations after the second iteration and P0_1x,
P0_2x, P0_3x, P0_4x are the new subpopulations
after the x-th iteration.

In this case, the four stages pipeline procedure
will work in the following mode:

Time Pipeline Blocks
 M E S CM

t1 P0_1
t2 P0_2 P0_1

best to M
t3 P0_3 P0_2 P0_1

+best P0_1 best to M
t4 P0_4 P0_3 P0_2 P0_1

+best P0_2 best to M
t5 P0_11 P0_4 P0_3 P0_2

+best P0_3 best to M
t6 P0_21 P0_11 P0_4 P0_3

+best P0_4 best to M
t7 P0_31 P0_21 P0_11 P0_4

+best P0_11 best to M
t8 P0_41 P0_31 P0_21 P0_11

+best P0_21 best to M

And so forth ad so on.

By example, the system status at time t7 is as
follows:

The Memory Block M contains P0_31 which is
the first generation of the third subpopulation (P0_3
which already passed all the pipeline stages) and the
best individuals of the previous evaluated P0_11.

The Evaluation Block E evaluates the P0_21
subpopulation (fitness calculations) to provide data
for the Transfer unit and also for the Selection
Block. Obviously, if a chromosome that solves the
main problem is found, the process is stopped.

The Selection Block S chooses the chromosomes
of the P0_11 subpopulation to be the next parents.

The Crossover and Mutation Block CM provides
a new generation (P0_41) of the P0_4
subpopulation.

In this way at time t5 the entire population is
evaluated and a new generation is obtained at time t4
to t7.

2.2 General Blocks

The implementation of the GA requires also general
blocks used by two or more special blocks. Thus, a
major component of the hardware architecture of the
GA is the source of pseudo randomly noise. Our
pseudo randomly binary number generator (PRBG),
based on LCA (Linear Cell Automata) is used to
select the parents groups (from the fitness output)
and also (in parallel) to provide the bits for the
crossover and mutation phase (Godkin, 2010).

The PRGB is based on 2q+1 flip-flops and their
outputs (0 to 2q) provide a 2q+1 pseudo random bit
sequence (PRBS). The GA uses 2q sequences: bit 0
up to bit 2q, bit one up to bit 2q and bit 0, and so on.

Those 2q+1 bits sequences are then divided into

ECTA 2011 - International Conference on Evolutionary Computation Theory and Applications

344

smaller sequences, of q bit each, using the same
principle, bit 0 up to bit q-1, bit 1 up to bit q, and so on.

In this manner, the PRGB provides the GA with
many random numbers (values: 0 to 2௞	- 1) at each
iteration.

2.3 Implementation Parameters

The hardware implementation of the algorithm on
any specific FPGA device requires the user to define
some hardware parameters, such as:

• the size of the population members (n)
• the number of bits of each population

individual
• the size of the immigration population - the

number of the best members (p)
• the size of the PRNG (2k+1)
• the maximum number of generations (gn)
• the precision used in fitness estimation
• the number of bits of the crossover
• the number of bits and the probability of the

mutation
Careful and precise definitions of the above
mentioned parameters will provide us with a flexible
implementation. The above hardware parameters
depend, of course, on the nature of the problem
needing a solution, and are restricted by the specific
FPGA chip characteristics.

2.4 Extended Solution

The presented algorithm, based on a pipelined
system working with “subpopulations” of the entire
populations, can be adapted to any s-stages Genetic
Algorithm (working, for example, with memory and
transfer as separate phases and also with crossover
and mutation as separate phases) by dividing the
initial population to s subpopulations.
The flip-flop array of the PRNG could easily be
expanded if the amount of random numbers supplied
to GA is not enough to make all the necessary
calculations during a single iteration. Also, the
PRNG component can be defined and implemented
by using other algorithms, for example LFSR -
linear feedback shift registers (Nedjah, 2007).
Another option is using a predefined component.
As it is usually the case with genetic algorithm
implementations, there are no guarantees that using
these methods will provide a better solution in the
next generation. A simple comparator unit can be
added to detect and store the best solution found to a
specific point in time, and after gn generations the
user may use this best solution, if a chromosome that
solves the main problem wasn’t found.

3 CONCLUSIONS

The above portrayed method provides a flexible and
compact implementation of a given problem, using a
genetic algorithm and an FPGA device.

The method allows us to work with a large size
population by using a small amount of resources. It
does so by dividing the initial population into
“subpopulations”. The “transfer” step provides the
necessary interconnection between the members of
the entire population.

The presented pipeline organization permits an
implementation of a four stages algorithm. For a five
or more stages algorithm the pipeline must be
reconsidered and adapted to usage as a five or more
stages pipeline.

As it is often the case with genetic algorithm
implementations, the runtime can’t be exactly
calculated. However, it is certain that the time
needed to accomplish a single iteration using a
pipeline procedure is longer that without pipeline,
but a considerable increase of the throughput will be
obtained.

To provide a flexible implementation, some
hardware parameters should be defined prior to the
FPGA implementation. Also, external defined
components (as PRBG) can be used.

REFERENCES

M. Affenzeller A. O., 2009. Genetic Algorithms and
 Genetic Programming – Modern Concepts and
 Practical Applications, CRC Press, USA.
N. Nedjah, L. M. Mourelle, 2007. An efficient problem-

independent hardware implementation of genetic
algorithms., Neurocomputing 71, p.88-94.

Mao F. So, Angus Wu, 1999. FPGA Implementation of
Four –Step Genetic Search Algorithm., Electronics,
Circuits and Systems, Proc. of ICECS '99, vol.2 p.11
43-1146.

Tatshuito Tachibana A. O., 2006. Flexible Implementation
of Genetic Algorithms on FPGA, Proc. of the
ACM/SIGDA 14th International Symposium on Field
Programmable Gate Arrays, FPGA, USA, February
22-24, 2006, 9 pages

Tiago Carvalho Oliveira, Valfredo Pilla Jr, 2004. An
Implementation of Compact Genetic Algorithm on

 FPGA for extrinsic evolvable Hardware, IEEE Tran-
 sactions on Evolutionary Computation, p.1143-1146.
Godkin Andrey, Nonel Thirer, 2010. A FPGA

 Implementation of Hardware Based Accelerator for a
Genetic Algorithm, Proc. of IEEE 26-th Conv. of
Electrical and Electronics Engineers in Israel, p.578-
580.

A PIPELINED BASED FPGA IMPLEMENTATION OF A GENETIC ALGORITHM

345

