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Abstract: Many problems common to the electrical and electronics field can be solved by finding a target function and 
its minimum or maximum. For such problems, usually an analytical solution is not implementable, and 
therefore iterative algorithms are used. One such efficient algorithm is the Genetic Algorithm (GA). The GA 
imitates the biological evolution process, finding the solution by implementing the “natural selection” 
principle, which asserts that the strong has higher chances to survive. The GA is an iterative procedure 
which operates on a population of individuals called "chromosomes" or "possible solutions" (usually 
represented by a binary code) and performs several processes on the population individuals, in order to 
produce a new population - the same as in the biological evolution. Using the algorithm on large populations 
requires substantial hardware resources. Also, naturally, the amount of time necessary to reach a solution 
increases, due to the greater number of iterations needed. In this paper, we present an FPGA pipelined based 
method designed to implement a GA, which provides a high-speed solution for large populations, with a 
minimum of resources. This outcome is obtained by a procedure which operates sequentially with parts of 
the population. In addition, an immigration unit is defined to provide an efficient communication between 
these parts in different iterations. Moreover, some possible solutions to improve our method are analyzed. 

1 INTRODUCTION 

The principal steps of the GA (Affenzeller, 2009) 
are:  

Population initialization – build a random initial 
bank of chromosomes. 

Fitness calculation – calculate the “Fitness score” 
for each chromosome in the current chromosome 
bank. The Fitness score of a chromosome is the 
amount of adjustments needed to solve the main 
problem. If a chromosome that solves the main 
problem is found, the GA is stopped. 

Selection – the GA chooses several 
chromosomes from the current bank, with respect to 
their calculated fitness score. 

Crossover – two or more of the chosen 
chromosomes randomly switch their bits and build 
up a new chromosome. 

Mutation – one random bit is toggled in the 
newly built chromosome. 

The stages are repeated until a new chromosome 
bank (population) is built and the process continues 
with the new population. 
     The software implementations of the algorithm 
convert these steps to a multi phase process. The 

FPGA (Field Programmable Gate Array) 
implementations provide special hardware blocks for 
every phase and also general blocks, which are 
common to many phases (Mao, 1999). Evidently, 
this implementation on large populations requires 
substantial hardware resources. In addition, the time 
needed until arriving to a solution increases, due to a 
greater number of iterations. The use of a parallel 
architecture improves the speed but requires many 
resources (Tatsuhiro, 2006). 

Problem–specific and also problem–independent 
designs and implementations are available (Tiago, 
2004).  

A good algorithm must provide a high speed 
solution in parallel to resources’ optimization for a 
problem - independent FPGA implementation.  

2 A NOVEL IMPLEMENTATION 
ALGORITHM 

We proposed a novel implementation algorithm 
based on a pipelined system working with parts 
(“subpopulations”) of the entire populations. These 
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subpopulations are not isolated and the best 
individuals are transferred between subpopulations.  

The initial population is divided to n 
subpopulations and a GA multi stage process is 
complete for each subpopulation by an m phases 
pipeline procedure. 

To process all these subpopulations, instead of 
using a parallel configuration with n pipelines 
(Tatsuhiro, 2006) we propose a sequential procedure 
by using this m phases pipeline. Thus, only 
resources for a single pipeline are necessary.  

Evidently, for best results, the initial population 
must be divided to n subpopulations, where n = m.  

By using a single pipeline, the working time is 
longer than using parallel pipelines, but the 
sequential operation with the subpopulations 
increases the throughput. 

A “transfer” unit is introduced, to permit an 
efficient communication between the subpopulations 
in different iterations and also to improve the fitness 
score of each subpopulation. In our method, the 
transfer is provided by added to each subpopulation 
the best p members of a previously evaluated 
subpopulation. This, except in the case of the first 
two subpopulations in the initialization phase (in this 
case p members of another subpopulations must be 
added randomly). 

In each procedure, the Fitness block will provide 
the best p candidates to be added to the next 
subpopulation procedure. 

2.1 Implementation of a Four Stages 
GA 

In the four stages GA, the pipeline contains four 
special blocks:  

M - Working memory (including the transfer 
unit), E - Evaluation, S - Selection, CM - Crossover 
and Mutation.  

P0 is our initialization population. We divide it 
to four subpopulations: P0_1, P0_2, P0_3, P0_4.  

P0_11, P0_21, P0_31, P0_41 are the new 
subpopulations after the first iteration, 

P0_12, P0_22, P0_32, P0_42 are the new 
subpopulations after the second iteration and P0_1x, 
P0_2x, P0_3x, P0_4x are the new subpopulations 
after the x-th iteration. 

In this case, the four stages pipeline procedure 
will work in the following mode: 

 
 
 
 

 

Time Pipeline Blocks 
 M  E   S   CM

t1 P0_1  
t2 P0_2 P0_1  

best to M  
t3 P0_3 P0_2 P0_1 

+best P0_1 best to M  
t4 P0_4 P0_3 P0_2 P0_1

+best P0_2 best to M  
t5 P0_11 P0_4 P0_3 P0_2

+best P0_3 best to M  
t6 P0_21 P0_11 P0_4 P0_3

+best P0_4 best to M  
t7 P0_31 P0_21 P0_11 P0_4

+best P0_11 best to M  
t8 P0_41 P0_31 P0_21 P0_11

+best P0_21 best to M  

And so forth ad so on. 

By example, the system status at time t7 is as 
follows: 

The Memory Block M contains P0_31 which is 
the first generation of the third subpopulation (P0_3 
which already passed all the pipeline stages) and the 
best individuals of the previous evaluated P0_11. 

The Evaluation Block E evaluates the P0_21 
subpopulation (fitness calculations) to provide data 
for the Transfer unit and also for the Selection 
Block. Obviously, if a chromosome that solves the 
main problem is found, the process is stopped.  

The Selection Block S chooses the chromosomes 
of the P0_11 subpopulation to be the next parents. 

The Crossover and Mutation Block CM provides 
a new generation (P0_41) of the P0_4 
subpopulation.  

In this way at time t5 the entire population is 
evaluated and a new generation is obtained at time t4 
to t7.   

2.2 General Blocks 

The implementation of the GA requires also general 
blocks used by two or more special blocks. Thus, a 
major component of the hardware architecture of the 
GA is the source of pseudo randomly noise. Our 
pseudo randomly binary number generator (PRBG), 
based on LCA (Linear Cell Automata) is used to 
select the parents groups (from the fitness output) 
and also (in parallel) to provide the bits for the 
crossover and mutation phase (Godkin, 2010). 

The PRGB is based on 2q+1 flip-flops and their 
outputs (0 to 2q) provide a 2q+1 pseudo random bit 
sequence (PRBS). The GA uses 2q sequences: bit 0 
up to bit 2q, bit one up to bit 2q and bit 0, and so on. 

Those 2q+1  bits  sequences are then divided into 
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smaller sequences, of q bit each, using the same 
principle, bit 0 up to bit q-1, bit 1 up to bit q, and so on. 

In this manner, the PRGB provides the GA with 
many random numbers (values: 0 to 2௞	- 1) at each 
iteration.  

2.3 Implementation Parameters 

The hardware implementation of the algorithm on 
any specific FPGA device requires the user to define 
some hardware parameters, such as: 

• the size of the population members (n) 
• the number of bits of each population 

individual 
• the size of the immigration population - the 

number of the best members (p)  
• the size of the PRNG (2k+1) 
• the maximum number of generations (gn) 
• the precision used in fitness estimation  
• the number of bits of the crossover  
• the number of bits and the probability of the 

mutation 
Careful and precise definitions of the above 
mentioned parameters will provide us with a flexible 
implementation. The above hardware parameters 
depend, of course, on the nature of the problem 
needing a solution, and are restricted by the specific 
FPGA chip characteristics. 

2.4 Extended Solution 

The presented algorithm, based on a pipelined 
system working with “subpopulations” of the entire 
populations, can be adapted to any s-stages Genetic 
Algorithm (working, for example, with memory and 
transfer as separate phases and also with crossover 
and mutation as separate phases) by dividing the 
initial population to s subpopulations. 
The flip-flop array of the PRNG could easily be 
expanded if the amount of random numbers supplied 
to GA is not enough to make all the necessary 
calculations during a single iteration. Also, the 
PRNG component can be defined and implemented 
by using other algorithms, for example LFSR - 
linear feedback shift registers (Nedjah, 2007). 
Another option is using a predefined component.  
As it is usually the case with genetic algorithm 
implementations, there are no guarantees that using 
these methods will provide a better solution in the 
next generation. A simple comparator unit can be 
added to detect and store the best solution found to a 
specific point in time, and after gn generations the 
user may use this best solution, if a chromosome that 
solves the main problem wasn’t found. 

3 CONCLUSIONS 

The above portrayed method provides a flexible and 
compact implementation of a given problem, using a 
genetic algorithm and an FPGA device. 

The method allows us to work with a large size 
population by using a small amount of resources. It 
does so by dividing the initial population into 
“subpopulations”. The “transfer” step provides the 
necessary interconnection between the members of 
the entire population. 

The presented pipeline organization permits an 
implementation of a four stages algorithm. For a five 
or more stages algorithm the pipeline must be 
reconsidered and adapted to usage as a five or more 
stages pipeline. 

As it is often the case with genetic algorithm 
implementations, the runtime can’t be exactly 
calculated. However, it is certain that the time 
needed to accomplish a single iteration using a 
pipeline procedure is longer that without pipeline, 
but a considerable increase of the throughput will be 
obtained.  

To provide a flexible implementation, some 
hardware parameters should be defined prior to the 
FPGA implementation. Also, external defined 
components (as PRBG) can be used. 
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