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Abstract: This work presents a hybrid approach based on the Taguchi method and the Artificial Neural Networks 
(ANNs) for the modeling of surface quality characteristics in Abrasive Water Jet Machining (AWJM). The 
selected inputs of the ANN model are the thickness of steel sheet, the nozzle diameter, the stand-off distance 
and the traverse speed. The outputs of the ANN model are the surface quality characteristics, namely the 
kerf geometry and the surface roughness. The data used to train the ANN model was selected according to 
the Taguchi’s design of experiments. The acquired results indicate that the proposed modelling approach 
could be effectively used to predict the kerf geometry and the surface roughness in AWJM, thus supporting 
the decision making during process planning. 

1 INTRODUCTION 

The AWJM belongs to the non-conventional 
material removal methods and is used in industry to 
machine different materials ranging from soft, 
ductile to hard and brittle materials. This process 
does not produce dust, thermal defects or fire 
hazards. It is a good process for shaping composite 
materials and imparts almost no surface 
delamination see Momber and Kovacevic, 1997 and 
Wang and Wong, 1999. 

The primary interests in TRIP sheet steel 
processing are the kerf shape (kerf width and kerf 
taper) and surface quality (surface roughness of cut), 
as well as burrs which may be formed at the jet exit 
(Figure 1). Kerf shape and quality in slotting sheet 
materials by AWJM and the resulting surface 
roughness have been studied in recent research 
works (Gudimetla, 2002; Hascalik, Ulas and Gurun 
2007; Jegaraj and Babu, 2007; Valicek et al., 2007). 

The innovation of the present work relies on the 
use of a hybrid modeling approach based on the 
Taguchi method and the Artificial Neural Networks 
(ANNs) for the modeling of surface quality 
characteristics in Abrasive Water Jet Machining 
(AWJM). The experiments were performed on two 

transformation induced plasticity (TRIP) steel sheets 
which were processed using AWJM with three 
different diameters of the nozzle (nozzle diameter), 
three different distance values between the nozzle 
and the sheet steel (stand-off distance) and three 
different traverse speeds (also known as cutting 
speed or travel speed). The selected inputs of the 
ANN model are the thickness of steel sheets, the 
nozzle diameter, the stand-off distance and the 
traverse rate (cutting speed). The outputs of the 
ANN model are the surface quality characteristics, 
namely the kerf geometry and the surface roughness. 
The data used to train the ANN model was selected 
according to the Taguchi’s design of experiments 
(DoE). 

2 EXPERIMENTAL SETUP 

Details concerning the experimental procedure and 
the materials are given elsewhere; see Petropoulos et 
al., 2009 and Vaxevanidis et al., 2010; therefore 
only the main features are summarized below.  

TRIP multi-phase steels belong to a new 
generation of steel grades exhibiting an enhanced 
combination of strength and ductility, with extensive 
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applications in automotive and aerospace industry; 
see Olson and Azrin, (1978). The TRIP steels tested 
are designated as TRIP 800 HR-FH and TRIP 700 
CR-FH. Specimens of both materials are of square 
form (10x10 cm2) but differ in thickness, hardness 
and processing method. 

Machining was performed on a SIELMAN 
HELLENIC HYDROJET industrial AWJM system. 

In each specimen a slot of 3 cm in length was 
cut. Each slot corresponds to different machining 
conditions. After processing, each specimen was 
separated in order to allow roughness measurements 
to be performed on the machined surface. 

The pressure at which a water jet operates is 
about 400 MPa, which is sufficient to produce a jet 
velocity of 900 m/s. Such a high-velocity jet is able 
to cut materials such as ceramics, composites, rocks, 
metals etc (Momber and Kovacevic, 1997). 

 
Figure 1: Schematic representation of a typical cut in 
AWJM. 

The standard L18 (21x37) orthogonal design of 
experiments (DoE) technique was applied 
(Kechagias, 2007; Kechagias et al., 2010; Pappas et 
al., 2011). Columns 1, 2, 3, and 4 are assigned to 
steel sheet thickness (A, mm), nozzle diameter (B, 
mm), stand-off distance (C, mm), and traverse speed 
(D, mm/min), respectively. The other columns were 
left vacant (Table 1).  

The measured quality indicators were the 
arithmetic mean surface roughness (Ra,) and the 
mean kerf width. 

Ra measurements were performed with a 
Surtronic 3+ stylus profilometer supported by 
Talyprof® software. The cut-off length selected was 
0.8 mm and the measurements were undertaken in 
the direction of the cut. The parameter values appear 
as averages of five measurements on each surface at 
the medium area of the cut. 

Table 1: Matrix Experiment. 

 Process Parameters Performance 
measures 

No of 
Exp. A B C D Vacant kerf 

(mm) 
Ra 

(μm) 
1 0.9 0.95 20 200     0.978 4.5 
2 0.9 0.95 64 300     1.155 6.2 
3 0.9 0.95 96 400     1.082 7.1 
4 0.9 1.2 20 200     1.351 6.2 
5 0.9 1.2 64 300     1.423 7.3 
6 0.9 1.2 96 400     1.447 8.8 
7 0.9 1.5 20 300     1.464 7.0 
8 0.9 1.5 64 400     1.792 8.7 
9 0.9 1.5 96 200     1.802 9.1 
10 1.25 0.95 20 400     0.858 5.9 
11 1.25 0.95 64 200     1.113 6.0 
12 1.25 0.95 96 300     0.952 6.3 
13 1.25 1.2 20 300     1.176 6.3 
14 1.25 1.2 64 400     1.151 6.6 
15 1.25 1.2 96 200     1.448 6.9 
16 1.25 1.5 20 400     1.385 5.8 
17 1.25 1.5 64 200     1.501 6.7 
18 1.25 1.5 96 300     1.560 6.8 

As it is illustrated in Figure 1 the kerf is of 
tapered form and to evaluate this characteristic, the 
semi-sum of the upper area width and the lower area 
width were measured by a stereoscope (Petropoulos 
et al., 2009). 

3 MODELING FRAMEWORK 

An ANN model was constructed that can predict 
mean kerf diameter and mean surface roughness 
(Ra), for every possible combination of values for 
the four studied input parameters, namely the 
thickness of steel sheet, the nozzle diameter, the 
stand-off distance and the traverse speed. However, 
the prediction capability of the model is more 
efficient while the values of the parameters are 
inside the valid ranges, which can be extracted from 
the values summarized in Table 2. 

Table 2: Parameter Design. 

Process Parameters Units 
Levels 

1 2 3 

A steel sheet thickness mm 0.9 1.25 - 

B nozzle diameter mm 0.95 1.2 1.5 

C stand-off distance mm 20 64 96 

D traverse speed mm/min 200 300 600 

steel sheet thickness

nozzle diameter

stand-off distance 

traverse speed

kerf

Ra

 
Figure 2: Architecture of the neural network model. 
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The model was created with the use of the 
Neural Network Fitting Tool of Matlab®, which is 
used for data fitting problems (Demuth and Beale, 
2001). In fitting problems, neural network is used to 
map between a data set of numeric inputs 
(independent variables) and a set of numeric targets 
(response variables). 

A two-layer feed-forward network with five (5) 
sigmoid hidden neurons and two (2) linear output 
neurons was used in the frame of this modelling 
approach. The network was trained with Levenberg-
Marquardt backpropagation algorithm. The neural 
network architecture is presented in Figure 2. 

The input data that was fed to the ANN model is 
an 18x4 matrix, representing eighteen (18) samples 
(number of experiments) of four (4) elements (steel 
sheet thickness, nozzle diameter, stand-off distance 
and traverse speed), while the target data is an 18x2 
matrix, representing eighteen (18) samples of two 
(2) elements (kerf and Ra). 

These 18 samples were randomly divided into 
three subsets, namely the training, the validation and 
the testing samples. The training subset that uses the 
70% of the data (12 samples) is presented to the 
network during training, and the network is adjusted 
(define weight factors and bias) according to its 
error. The validation subset that contains the 15% of 
the data (3 samples) is used to measure network 
generalization, and to halt training when 
generalization stops improving. The testing subset 
that uses the 15% of the data (3 samples) has no 
effect on training and so provides an independent 
measure of network performance during and after 
training. This subset is used to compare output 
(simulated data) and target (experimental data). 

Training automatically stops when generalization 
stops improving, as indicated by an increase in the 
mean square error of the validation samples. Mean 
Squared Error (MSE) is the average squared 
difference between outputs and targets. Lower 
values are better. Zero means no error. The MSE of 
training of the created ANN was equal to 0.0425 and 
its training took 12 epochs to complete. The best 
validation performance is 0.10429 at epoch 6. 

Regression values measure the correlation 
between outputs and targets. An R value of 1 means 
a close relationship, 0 a random relationship. The 
regression analysis of the created ANN model 
resulted to R values for training, validation and 
testing, which were very close to 1, means a very 
close relationship between the output (simulated 
values) and the target (experimental values). 

4 MODELING RESULTS 

Based on the design variables for AWJM modeling 
presented in Table 1, the performance measures 
(surface quality characteristics) are tabulated in 
Table 3. In the same Table the simulated results 
obtained by the created ANN model as well as the 
deviation between experimental (measured) and 
simulated by ANN values are presented.  

The correlation between experimental and 
simulated data (neural network output) for kerf and 
Ra is shown in Figure 3 and 4 respectively.  

A good correlation between experimental data 
and simulated data (neural network output) both for 
kerf and Ra (R2 close to 0.7) is evident. 

Table 3: Experimental and simulated by ANN values of 
the performance measures (kerf and Ra). 

 Experimental Simulated Deviation 
No 
of 

Exp 

kerf 
(mm) 

Ra 
(μm) 

kerf 
(mm) 

Ra 
(μm) 

kerf 
(mm) 

Ra 
(μm) 

1 0.978 4.5 1.231 6.9 0.253 2.4 
2 1.155 6.2 0.946 6.0 -0.209 -0.2 
3 1.082 7.1 1.035 7.5 -0.047 0.4 
4 1.351 6.2 1.155 6.4 -0.196 0.2 
5 1.423 7.3 1.391 7.5 -0.032 0.2 
6 1.447 8.8 1.485 8.3 0.038 -0.5 
7 1.464 7.0 1.525 7.0 0.061 0.0 
8 1.792 8.7 1.734 8.8 -0.058 0.1 
9 1.802 9.1 1.842 9.0 0.040 -0.1 

10 0.858 5.9 1.092 6.4 0.234 0.5 
11 1.113 6.0 0.865 5.6 -0.248 -0.4 
12 0.952 6.3 1.094 6.4 0.142 0.1 
13 1.176 6.3 1.217 6.2 0.041 -0.1 
14 1.151 6.6 1.300 6.6 0.149 0.0 
15 1.448 6.9 1.223 6.8 -0.225 -0.1 
16 1.385 5.8 1.321 5.9 -0.064 0.1 
17 1.501 6.7 1.516 6.5 0.015 -0.2 
18 1.560 6.8 1.467 7.6 -0.093 0.8 

R² = 0,71
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Figure 3: Correlation between experimental data and 
simulated data (neural network output) for kerf. 
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Figure 4: Correlation between experimental data and 
simulated data (neural network output) for Ra. 

5 CONCLUSIONS 

The proposed hybrid approach based on Artificial 
Neural Networks and Taguchi methodology was 
used for AWJM mean kerf width and surface 
roughness modelling purpose. 

The Taguchi approach was used in order to 
optimize the experimental effort whitout loosing the 
prediction accuracy of the ANN model. 

The acquired results indicate that the proposed 
modelling approach could be effectively used to 
predict the kerf geometry and the surface roughness 
in AWJM, thus supporting the decision making 
during process planning. 
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