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Abstract: Many industrial applications concerning pattern recognition techniques often demand to develop suited low 
cost embedded systems in charge of performing complex classification tasks in real time. To this aim it is 
possible to rely on FPGA for designing effective and low cost solutions. Among neurofuzzy classification 
models, Min-Max networks constitutes an interesting tool, especially when trained by constructive, robust 
and automatic algorithms, such as ARC and PARC. In this paper we propose a parallel implementation of a 
Min-Max classifier on FPGA, designed in order to find the best compromise between model latency and 
resources needed on the FPGA. We show that by rearranging the equations defining the adopted 
membership function for the hidden layer neurons, it is possible to substantially reduce the number of logic 
elements needed, without increasing the model latency, i.e. without any need to lower the classifier working 
frequency. 

1 INTRODUCTION 

Present Pattern Recognition applications deal with 
more and more complex patterns and often have to 
manage huge databases. Efficient solutions are based 
on Soft Computing techniques, where algorithms are 
usually characterized by a remarkable computational 
complexity. Moreover, several applications are 
thought for real-time processing, introducing very 
stringent constrains on the working frequency of a 
classification model. For this reason, it becomes 
essential the possibility of accelerating in hardware 
the functions with the higher complexity. To this 
aim, if we consider only low cost solutions, two 
different approaches are nowadays available. The 
first one relies on GPU (Graphic Processing Unit), 
powerful parallel processors on board of common 
graphics cards capable of 3D hardware 
accelerations, usually through some high level 
programming languages such as CUDA. The second 
solution consists in employing a FPGA (Field 
Programmable Gate Array) based embedded system. 
A FPGA is a user-programmable integrated circuit 
that can be thought as an array of reconfigurable 
logic blocks (LBs), linked by a hierarchy of 
reconfigurable interconnections. Programming a 
FPGA simply means to use and configure a subset of 

LBs and defining data links between them in order 
to realize a given digital system. The inherent 
parallelism of the logic resources on a FPGA allows 
for considerable computational throughputs even at 
low MHz clock rates. With respect to GPUs, FPGAs 
are much more flexible tools for parallel 
implementation of a given algorithm, without any 
need to be constrained to the predefined array of 
processors (called “Grid of Thread blocks”) in GPU 
integrated circuits. In the technical literature related 
to Soft Computing and Pattern Recognition fields 
it’s possible to find many FPGA implementations of 
complex algorithms. In particular, there are very 
interesting papers dealing with the hardware 
implementation of neural networks and fuzzy 
systems on FPGA (Jingyan Xue, 2009), (Uppalapati, 
2009), (Oliveira, 2010), (Wan De Weng, 2007). Our 
research team has successfully faced several pattern 
recognition problems using neurofuzzy classifiers, 
adopting neurofuzzy Min-Max networks trained by 
ARC (Adaptive Resolution Classifiers) and PARC 
(Pruning ARC) algorithms (Rizzi, 2002), such as the 
ones described in (Rizzi, 2008), (Rizzi, 2009), (Del 
Vescovo, 2010). In fact, among neuro-fuzzy 
classifiers, Simpson’s Min-Max networks have the 
advantage to be trained in a constructive way. ARC 
and PARC training algorithms are characterized by a 
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high automation degree and allow to synthetize Min-
Max neurofuzzy networks with a remarkable 
generalization capability. For this reason we have 
planned to adopt Min-Max neurofuzzy classifiers as 
the core of some real time pattern recognition 
applications, facing in a first step the design of 
embedded systems characterized by high 
performances. To this aim we started to implement 
Min-Max networks on FPGA, searching for the best 
compromise between parallelization degree and 
hardware resources request, in terms of the number 
of LBs. In this paper we propose an efficient 
solution representing an interesting compromise 
between the above mentioned objective functions. 

2 MIN-MAX NEUROFUZZY 
NETWORKS: AN OVERVIEW 

From the point of view of data driven modelling 
techniques, many practical applications concerning 
diagnostic and identification problems can be 
expressed and solved as classification problems. 
Basically a classification problem can be defined as 
follows. Let P: RN → L be an unknown oriented 
process to be modelled, where RN is the domain set 
and the codomain L is a label set, i.e. a set in which 
it is not possible (or misleading) to define an 
ordering function and, hence, any dissimilarity 
measure between its elements. Let K be the number 
of classes in L. Let Str and Sts be two sets of input-
output pairs, namely the training set and the test set, 
subject to the constrain Str ∩ Sts = Ø. Once fixed a 
target model family T, a training algorithm is in 
charge of synthetizing a particular instance T* of T, 
exclusively on the basis of the information contained 
in Str, such that the classification error of T* 

computed on Sts will be minimized. 
Once trained, a classification model should be 

able to classify correctly any N-dimensional input 
vector x belonging to the classification process 
domain (generalization capability). 

The Min-Max classification strategy consists in 
directly defining the decision regions of the 
unknown classification process to be modeled by 
covering the patterns of the training set with 
hyperboxes. This technique has been originally 
proposed in (Simpson, 1992). 

A hyperbox defined in RN is a finite polyhedral 
region delimited by 2N hyperplanes, each 
constrained to be parallel to the coordinate axes of 
the input space reference system. On the basis of 
these constraints, it is possible to establish 

univocally the size and the position of each 
hyperbox by means of two vertices, namely the 
minimum (Min) point v and the maximum (Max) 
point w, where v and w are respectively the closest 
and the farthest vertices to the origin of the domain 
reference system. Since we are facing an exclusive 
classification problem, each hyperbox is associated 
with a unique class label k. Several hyperboxes can 
be associated with the same class label k. With the 
notation HBjk we mean that the j-th hyperbox is 
associated with the class label k, and the number of 
hyperboxes associated with this class label is Jk. 
Considered as a crisp set, each hyperbox can be 
fuzzified by associating with it a membership 
function. In the following we will consider the 
membership function proposed by Simpson 
(Simpson, 1992), in which the slope outside the 
hyperbox HBjk is established by the real and positive 
fuzziness parameter γ, i.e.: 
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We define ( )γz,f  as a soft-limiter function: 
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where z is a real positive number. 
 

 

Figure 1: The hyperbox membership function with γ = 0.5. 

Figure 1 shows the typical shape of the original 
Simpson’s membership function in the case of a two 
dimensional (N = 2) support space for γ = 0.5. 

A Min-Max classification model is a feed-
forward three-layer neural network (see Figure 2). 
The first layer is a dummy one, aiming only to 
supply the input features to each neuron of the 
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second (hidden) layer. Each neuron of the hidden 
layer corresponds to a hyperbox and it computes the 
membership of the input pattern with respect to that 
hyperbox. Adopting the same notation used so far, 
we can say that the total number M of neurons in the 
hidden layer is: 
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Let J be the class represented by the higher number 
of hyperboxes, i.e: 
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The third (output) layer is composed of one neuron 
for each class. Each neuron of the output layer 
determines the fuzzy membership value of the input 
pattern with respect to the corresponding class, by 
computing the fuzzy union of the outputs of all 
neurons in the hidden layer associated with the 
corresponding class k, i.e: 
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Since the input space dimension N and the number 
of classes K are fixed by the classification problem, 
it is obvious to state that the structural complexity of 
a Min-Max network is directly represented by the 
total number M of neurons in the hidden layer. 
When dealing with exclusive classification 
problems, the class corresponding to the maximum 
membership value is selected as the output class 
label (winner takes all strategy, WTA in Figure 2), 
i.e.: 
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When computing the classification performance on a 
test set, if C is different from the target output label 
(the class label associated with the input pattern x in 
the test set), we have an error. If more than one class 
reaches the maximum membership value, we have 
an indetermination. Starting from a given training 
set, a constructive learning algorithm for a Min-Max 
network must establish the number, position and size 
of each hyperbox. To this aim, we use the Adaptive 
Resolution Classifier (ARC) and Pruning Adaptive 
Resolution Classifier (PARC) learning algorithms. A 
detailed description of ARC/PARC training 
procedure can be found in (Rizzi, 2002). 

3 FPGA TARGETED 
IMPEMENTATION 

In this work we propose an interesting 
implementation for the Min-Max classification 
model targeted to a FPGA hardware device. We 
have considered a FPGA implementation because it 
offers the best tradeoff between cost and 
customizability. The latter factor reveals to be 
essential for computational cost and hardware 
complexity to be reduced. 

 

 

Figure 2: The structure of a Min-Max neurofuzzy 
classifier. 

As concerns similar works, in (Liang, Y., 2006) a 
FPGA implementation of a Min-Max neural network 
called MRC-FMMC is proposed. This classifier is a 
variant of the classical Min-Max network proposed 
by Simpson (described in the previous section) and 
it is based on the computation of a fuzzy hyperbox 
reliability. For this reason, any comparison with our 
targeted FPGA implementations is not significant.  

In this section, we will propose both a plain 
implementation and an optimized one of a classical 
Min-Max neural network. The presentation of a 
plain implementation has the only purpose to 
represent a term of comparison with the proposed 
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optimized version. Even though the two 
implementation strategies are different both the 
architectures are based on the same constituent 
blocks. Figure 3 shows a conceptual scheme of the 
implemented architecture. 

 

 

Figure 3: Min-Max classification model functional 
scheme. 

The UART block is intended for creating both 
configuration and control interfaces with an external 
PC that communicates with the system accessing it 
through the CONFIG/CTRL port. The V-MEM and 
W-MEM blocks, as their names can suggest, are 
memory blocks that contain respectively v and w 
hyperbox vertices.  

The µP block represents a microprocessor in 
charge of the following tasks: managing the memory 
accesses by the UART block in both directions; 
loading γ into the MINMAX block and v and w 
vertices respectively into the V-MEM and W-MEM 
blocks; correctly transferring the vertices v and w to 
the hyperboxes during processing; managing all the 
accesses to the MINMAX block configuration and 
performance register. 

The MINMAX block receives as input the 
feature vector (DATA IN port) that has to be 
classified, performs all the operations defined by 
equations (1), (5) and (6), returning the class label 
(DATA OUT port). 

The MINMAX block is the main processing 
element and since most of the differences between 
the plain and the optimized versions of the classifier 
are at hyperbox level we will explain it in a greater 
detail. The MINMAX block conceptual scheme is 
shown in Figure 4, that depicts the three-layer 
structure of a Min-Max neural network. 

Once the system is configured, the input data is 
ready to be processed. Each N-dimensional input 
vector requires N clock cycles to completely enter 
and feed the classification model. This is realized 
using a DELAYLINE with length J, as defined in 
Equation (4), so that all the j-th hyperboxes (each 
one belonging to a different class k) receive the 
samples from the same tap of the delayline. We 
exploited this structural choice to use just one 
comparator to calculate ( )xkμ  as in Figure 5. 

 

Figure 4: MINMAX block conceptual scheme. 

As shown in Figure 4 the K comparators (class 
comparison blocks CMP0, CMP1, CMP2) compute 
the values (5) entering the final comparator CMP 
(output layer) that produces the class label 
identifying which class x belongs to, as described in 
(6). The hyperbox architecture that we implemented 
for the plain version of the Min-Max classification 
model is shown in Figure 6. Inspecting Figure 6 it’s 
easy to recognize all the operations described in (1). 
For example, the summation is implemented using 
an accumulator as depicted within the rectangular 
dashed line.  
 

 

Figure 5: Comparator conceptual scheme. 

 

Figure 6: Hyperbox implementation scheme (plain 
version). 

NCTA 2011 - International Conference on Neural Computation Theory and Applications

54



 

As we mentioned at the beginning of this section 
we describe an efficient way to compute an 
hyperbox memebership function. As we will see in 
the following, by rearranging the terms in (1) it is 
possible to synthesize a slight variation in the 
classical Min-Max neural network architecture, in 
which both computational and hardware cost 
benefits are remarkable. 

3.1 Efficient Computation of Fuzzy 
Memberships 

Let x be the N-dimensional input vector of a Min-
Max neural network made up of M hyperboxes. Let 
v and w be, respectively, the sets of all the closest 
and farthest vertices to the origin of a defined 
reference system for all the hyperboxes. 

We can express the j-th membership function 
associated with the class label k defined in (1) as 
follows: 
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Exploiting the definition of the generic membership 
function (2), we obtain the following expressions: 
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Combining expressions (8) and (9) we can 
distinguish five adjacent and disjointed intervals 
(labeled from I to V) in which the following function 
behaves differently: 
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We rearrange the terms in (10) in order to highlight 
the dependences with the variables defined as 
follows: 
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so that: 
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To obtain the resulting value from the hyperbox 
computing block we would have to make the 
following steps: sum the value obtained in (12) for 
all the N dimensions, divide the result by N, and then 
subtract it to 1. According to (5), at this point, we 
would have to compare all the membership function 
values related to the hyperboxes associated to the 
same class k, choosing the maximum one as the 
overall class membership.  

Since, by definition  
 

( ) 1w',v',x' ijkijki ≤ijkρ  (13)
 

we can surely say that: 
 

( )jk jk', ' , 'jk Nρ ≤x v w  (14)
 

As a consequence, we can compare the membership 
values of the two hyperboxes HBjk and HB(j+1)k, 
associated with the same class k, relaying on the 
following simplification: 
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Neglecting the division by N and the subtraction 
to 1 we have only rescaled and inverted the ordering 
of ρjk functions related to the same class k.  

Using this property we obtained a more efficient 
hyperbox implementation that will be used in the 
optimized version of the Min-Max classifier, as 
described in Figure 7. 

3.2 Optimized Implementation 

The main structural difference between the plain and 
the optimized versions resides obviously on the 
implementation of the hyperbox, as it can be seen 
comparing Figure 6 to Figure 7.  
 

 

Figure 7: Hyperbox implementation scheme (optimized 
version). 

Moreover the V-MEM and W-MEM blocks in 
Figure 3, in the optimized version will contain 
respectively v’ and w’ vertices, that are the pre-
multiplied by γ versions of the hyperboxes vertices v 

and w (11). We also have to add a multiplier to the 
beginning of the DELAYLINE in Figure 4, so that 
hyperboxes will receive x’ instead of x. Finally, 
according to the result obtained in (15), we have to 
change the order relation that comparison blocks C0, 
C1, …, CK-1 and WTA represented in Figure 2 
respectively perform in (5) and (6), from maximum 
to minimum. 

3.3 Performance Comparison 

The latency of the system D, expressed in number of 
clock cycles necessary to calculate the output class 
is  
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where J is the length of the DELAYLINE (input 
layer), N + 1 is the number of clock cycles necessary 
for a hyperbox to calculate its result, 1 clock cycle of 
delay due to class comparison blocks (hidden layer) 
and K is the number of the class labels, 
corresponding to the number of clock cycles 
necessary to calculate the last comparison (output 
layer). The latency value is exactly the same in both 
versions. 

Looking at the differences in term of 
combinational resources, from Figure 6 and Figure 7 
we find that to implement an hyperbox in the plain 
version we need 4 adders and 4 multipliers, while in 
the optimized version we only need 3 adders. In this 
computation we considered that a subtraction 
operation is performed by an adder and a division 
operation is performed by a multiplier. Since the 
number of the hyperboxes in the system is M, we 
can say that to implement a complete Min-Max 
classification system in the plain version we need 
4M adders and 4M multipliers, while in the 
optimized version we only need 3M adders and 1 
multiplier (the one at the top of the DELAYLINE). 

As a further result it is possible to observe that 
by construction, for all i, j, k, we have: 
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hence, obtaining: 
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This result means that γ has a lower limit that 
depends on the choice of the vertices that describe 
the hyperboxes belonging to every class. Choosing 
its value below threshold highlighted in (18) doesn’t 
have any effect on changing the slope of the 
membership function defined by (1) and (2). This 
constrain should be taken into consideration in any 
tweaking procedure for the γ parameter aimed at 
selecting a suited fuzziness degree for the 
neurofuzzy classifier behavior.  

4 CONCLUSIONS 

Min-Max neural networks together with ARC/PARC 
training procedures constitute a powerful, effective 
and automatic classification system, well suited to 
deal with complex diagnostic and identification 
tasks to be performed in real-time. In this paper we 
propose both a plain implementation and an 
optimized one of a classical Min-Max neural 
network, targeted to FPGA. The main structural 
difference between the plain and the optimized 
versions concerns the implementation of the 
hyperbox block. We have shown that by rearranging 
the fuzzy membership function expression, it is 
possible to obtain a circuit characterized by the same 
latency, with a significant saving in terms of FPGA 
resources. 

We plan to develop specific embedded systems 
based on the proposed optimized implementation to 
be used in a wide range of possible applications. In 
particular we are designing a dedicated appliance for 
real-time fault diagnosis in electric machines and for 
on the fly TCP/IP application flows identification. 
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