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Abstract: Network on Chip (NoC) based Spiking Neural Network (SNN) hardware architectures have been proposed 
as embedded computing systems for data/pattern classification and control applications. As the NoC 
communication infrastructure is fully reconfigurable, scaling of these systems requires large amounts of 
distributed on-chip memory for storage of the SNN synaptic connectivity (topology) information. This large 
memory requirement poses a serious bottleneck for compact embedded hardware SNN implementations. 
The goal of this work is to reduce the topology memory requirement of embedded hardware SNNs by 
exploring the combination of fixed and configurable interconnect through the use of fixed sized clusters of 
neurons and NoC communication infrastructure. This paper proposes a novel two-layered SNN structure as 
a neural computing element within each neural tile. This architectural arrangement reduces the SNN 
topology memory requirement by 50%, compared to a non-clustered (single neuron per neural tile) SNN 
implementation. The paper also proposes sharing of the SNN topology memory between neural cluster 
outputs within each neural tile, for utilising the on-chip memory efficiently. The paper presents hardware 
resource requirements of the proposed architecture by mapping SNN topologies with random and irregular 
connectivity patterns (typical of practical SNNs). The architectural scheme of sharing the SNN topology 
memory between neural cluster outputs, results in efficient utilisation of the SNN topology memory and 
helps accommodate larger SNN applications on the proposed architecture. Results illustrate up to a 66% 
reduction in the required silicon area of the proposed clustered neural tile SNN architecture using shared 
topology memory compared to the non-clustered, non-shared memory architecture. 

1 INTRODUCTION 

Biologically-inspired computing paradigms such as 
evolutionary computing and neural networks provide 
promising solutions for designing complex and 
intelligent embedded systems (Marrow, 2000). The 
organic central nervous system includes a dense and 
complex interconnection of neurons and synapses, 
where each neuron connects to thousands of other 
neurons through synaptic connections. Computing 
systems based on Spiking Neural Networks (SNNs) 
emulate real biological neural networks, conveying 
information through the communication of short 
transient pulses (spikes) between neurons via their 
synaptic connections. Each neuron maintains a 

membrane potential, which is a function of incoming 
spikes, synaptic weights, membrane potential, and 
membrane potential leakage coefficient (Maass, 
1997); (Gerstner and Kistler, 2002). A neuron fires 
(emits a spike to all connected synapses/neurons) 
when its membrane potential exceeds the neuron’s 
firing threshold value. Brain-inspired computing 
paradigms such as SNNs offer the potential for 
elegant, low-power and scalable methods of 
embedded computing, with rich non-linear 
dynamics, ideally suited to applications including 
data/pattern classification, dynamic control and 
signal processing. The efficient implementation of 
SNN-based hardware architectures for real-time 
embedded systems is primarily influenced by neuron 
design, scalable on-chip interconnect architecture, 
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and SNN training/learning algorithms (Maguire et 
al., 2007). 

The authors have proposed and investigated 
EMBRACE as an embedded computing element for 
implementation of large scale SNNs (Jim Harkin et 
al., 2009). The proposed EMBRACE mixed-signal 
architecture incorporates compact, low power, high-
resolution CMOS-compatible analogue neuron cells, 
interconnected using a packet switched Network on 
Chip (NoC) architecture. 

Directly connecting neuron circuits within large 
scale hardware SNN is not viable in VLSI 
architectures because of high fan-out and 
interconnection requirements. The NoC approach 
exploited within EMBRACE provides flexible, 
packet-switched inter-neuron communication 
channels, scalable interconnect and connection 
reconfigurability (Benini and De Micheli, 2002); 
(Vainbrand and Ginosar, 2010); (F. Morgan et al., 
2009). 

For hardware SNN implementations, the SNN 
topology information includes neural circuit 
connectivity data for each synapse in the system. 
Scaling of NoC-based hardware SNN systems 
requires large amounts of distributed on-chip 
memory for storage of the SNN synaptic 
connectivity (SNN topology) information. This large 
memory requirement poses a serious bottleneck for 
compact embedded hardware SNN implementation. 

This paper proposes clustering of neurons within 
neural tiles in order to reduce the overall SNN 
topology memory requirement by 50% compared to 
the previously reported single neuron per NoC router 
SNN architecture (Jim Harkin et al., 2009). Each 
clustered neural tile comprises a fully connected 
feed-forward SNN structure. Fixed connections 
between the neurons in the neural cluster remove the 
requirement for storage of connection topology 
memory. The paper describes the architecture of the 
neural cluster element (made-up of a two layer fully 
connected feed-forward SNN structure) and the 
neural tile. The use of fixed sized SNN structure as a 
neural element can result in constrain mapping of 
certain SNN application topology, which can be 
addressed by using additional neural clusters as 
spike repeaters. 

The paper also proposes a further architectural 
enhancement, which involves sharing the SNN 
topology memory (within each neural tile) between 
neural cluster outputs. The paper describes the 
shared SNN topology memory partitioning and 
operation. SNN topology memory blocks are 
allocated to each active cluster output based on its 
synaptic connectivity requirements. The scheme 

offers flexible synaptic connectivity for SNN 
application topologies. The proposed clustered 
neural tile, and shared topology memory hardware 
SNN architecture is analysed with a range of SNN 
application topologies exhibiting irregular 
connectivity typically seen in real-life SNN 
application topologies (Kohl and Miikkulainen, 
2008). Hardware resource requirements for each 
element of the proposed clustered neural tile SNN 
architecture using shared topology memory are 
compared to the single neuron per NoC router 
EMBRACE hardware SNN architecture reported in 
(Fearghal Morgan et al., 2009) (using recently 
reported 32nm CMOS VLSI technology). Results 
illustrate up to a 66% reduction in the required 
silicon area of the proposed clustered neural tile 
SNN architecture using shared topology memory 
compared to the reported single neuron per router 
EMBRACE hardware SNN. 

The structure of the paper is as follows: Section 
2 summarises the current research in hardware SNN 
architectures, and SNN topology memory resource 
requirements. The previously reported EMBRACE 
NoC-based hardware SNN reference architecture 
and its hardware resource requirements is described 
in section 3. The proposed neuron clustering and 
shared SNN topology memory architecture are 
presented in Section 4. Section 5 presents 
significance of the shared SNN topology memory 
scheme by mapping SNN applications representing 
practical connectivity patterns to the proposed 
architecture. Section 6 concludes the paper and 
proposes future work. 

2 STATE-OF-THE-ART 
HARDWARE SNN 
ARCHITECTURES 

Inspired by biology, researchers aim to implement 
reconfigurable and highly interconnected arrays of 
neural network elements in hardware to produce 
powerful signal processing units (Jim Harkin et al., 
2009); (Yajie Chen et al., 2006); (Furber and Brown, 
2009); (Upegui et al., 2005); (Pearson et al., 2007); 
(Ros et al., 2006); (R. J. Vogelstein et al., 2007); 
(Ehrlich et al., 2007); (B. Glackin et al., 2005); 
(Schemmel et al., 2008). For large scale hardware 
implementation of SNNs, the neuron interconnect 
imposes problems due to high levels of inter-neuron 
connectivity and often the number of neurons that 
can be realised in hardware is limited by high fan 
in/out requirements (L. P. Maguire et al., 2007). 
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Direct neuron-to-neuron interconnection exhibits 
switching requirements that grow non-linearly with 
the network size. Efficient, low area and low power 
implementations of neuron interconnect and synaptic 
junctions are key to scalable hardware SNN 
implementations (L. P. Maguire et al., 2007). 

(Ros et al., 2006) present an FPGA-based hybrid 
computing platform. The neuron model is 
implemented in hardware and the network model 
and learning are implemented in software. (B. 
Glackin et al., 2005) uses a time multiplexing 
technique to implement large SNN models (with 
>1.9M synapses and 4.2K neurons), implemented in 
software, where speed-acceleration is the key 
motivation, and the parallel capability of SNNs is 
not exploited. Clustered connections based neural 
network architecture using NoC and method for 
mapping of SNNs to the architecture has been 
proposed in (Emery et al., 2009).  

Analogue spiking neuron design approaches can 
benefit from a compact area implementation due to 
their inherent similarity with the way electrical 
charge flows in the brain (Yajie Chen et al., 2006); 
(Yajie Chen et al., 2008); (R. J. Vogelstein et al., 
2007). These architectures rely on digital 
components for a flexible communication 
infrastructure. (Ehrlich et al., 2007) and (Schemmel 
et al., 2008) present FACETS, a configurable wafer-
scale mixed-signal neural ASIC system. The work 
proposes a hierarchical neural network and the use 
of analogue floating gate memory for synaptic 
weights. (R. J. Vogelstein et al., 2007) presents a 
mixed-signal SNN architecture of 2,400 analogue 
neurons, implemented using switched capacitor 
technology and communicating via an asynchronous 
event-driven bus. The chip area is reported to be 
3mm x 3mm using 0.5µm CMOS VLSI technology. 

Practical SNN systems are characterised by large 
numbers of neurons and high interconnectivity 
through inter-neuron synaptic connections. Each of 
the SNN execution architectures presented in 
(Ehrlich et al., 2007); (Schemmel et al., 2008); 
(Furber and Brown, 2009); (Ros et al., 2006); 
(Upegui et al., 2005); (Pearson et al., 2007); (B. 
Glackin et al., 2005); (Vogelstein et al., 2007) aim 
for thousands of neurons and millions of synapses. 
Due to the high neuron interconnectivity, synaptic 
connectivity information is stored in off-chip 
DRAMs and is accessed using memory controllers. 
The neural computing kernel must be supplied with 
this connectivity information for calculation of spike 
generation and transfer events in the system; this 
synaptic connectivity information storage strategy 
results in high memory traffic and increased power 

consumption, unsuitable for embedded system 
implementation. 

The NoC design paradigm provides a promising 
solution for the flexible interconnection of large 
SNNs (Vainbrand and Ginosar, 2010). The 
SpiNNaker project (Furber and Brown, 2009) aims 
to develop a massively parallel computer capable of 
simulating SNNs of various sizes, topology and with 
programmable neuron models. The SpiNNaker 
architecture uses ARM-968 processor-based nodes 
for computation and an off-chip NoC 
communication infrastructure. Each NoC tile in the 
SpiNNaker system models 1000 Leaky-Integrate-
Fire neurons, each having 1000 synapse inputs. Each 
SpiNNaker  node requires approximately 4MBytes 
of memory for storing synaptic connectivity 
information (Furber et al., 2006). Hence, the 
SpiNNaker architecture stores the synaptic 
connection data in off-chip SDRAM. Due to low-
power and area requirements of embedded systems 
targeted by EMBRACE NoC-based SNN 
architecture, use of off-chip SDRAM and associated 
memory controllers is not feasible. 

3 EMBRACE: HARDWARE SNN 
ARCHITECTURE 

This section describes the previously reported 
EMBRACE NoC-based hardware SNN architecture 
and its hardware resource requirements. EMBRACE 
(Jim Harkin et al., 2009) uses a single neuron per 
neural tile (non-clustered) SNN implementation and 
provides a reference for the work of this paper. 

The EMBRACE mixed-signal architecture 
(currently prototyped digitally, Figure 1) ultimately 
aims to incorporate low-power CMOS-compatible 
analogue neural cell circuits, and a digital NoC-
based packet switching interconnect, to realise a 
scalable SNN execution architecture suitable for 
embedded systems. This architectural scheme has 
potential to offer high synaptic densities while 
maintaining compact silicon implementation area 
and low power consumption. 

The EMBRACE NoC-based SNN architecture 
(Figure 1) is a two-dimensional mesh topology array 
of neural elements (N) and NoC Routers (R). The 
architecture comprises a single neuron per NoC 
router, where each neuron within the NoC tile 
supports 64 input synapses and its output can 
connect to maximum 64 synaptic connections. (This 
architecture is referred as non-clustered EMBRACE 
architecture in the rest of the paper). 
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Figure 1: (a) EMBRACE NoC-based SNN Architecture, 
(b) Neural Tile Comprising Single Neuron, Packet 
Encoder/Decoder and SNN Topology Memory and (c) 
Synaptic Connection Information. 

The SNN topology memory within EMBRACE 
architecture defines each inter-neuron synaptic 
connection. The EMBRACE architecture template 
(Figure 1) requires 11MB of SNN topology memory 
to support 64K neuron/4M synapse hardware SNN. 

NoC router is connected in North (N), East (E), 
South (S) and West (W) directions, forming a 
Manhattan-style, two-dimensional mesh topology 
NoC architecture. An application specific SNN is 
realised on the EMBRACE architecture by 
programming neuron configuration parameters 

(SNN synaptic weights and neuron firing threshold 
potential) and SNN connection topology. Spike 
communication within the SNN is achieved by 
routing spike information within spike data packets 
over the network of routers. The authors have 
implemented and reported EMBRACE-FPGA 
(Morgan et al., 2009c), an FPGA prototype 
implementation of the EMBRACE architecture. The 
EMBRACE-FPGA prototype has been successfully 
applied to benchmark SNN control and classifier 
applications (such as pole balancer, two-input XOR 
and Wisconsin cancer dataset classifier). 
EMBRACE-SysC, a SystemC-based, clock cycle 
accurate simulation and performance measurement 
platform for simulation and analysis of EMBRACE 
architecture has been reported (Sandeep Pande et al., 
2010). EMBRACE-SysC enables rapid NoC 
architectural exploration and analysis of the 
EMBRACE architecture.  

3.1 Hardware Resource Requirements 

Compact hardware implementation of SNN 
architectures is essential for their use in portable 
embedded systems. This section estimates the 
hardware resource requirements of the non-clustered 
EMBRACE architecture. The transistor count and 
chip area is estimated for the non-clustered 
EMBRACE architecture in recent CMOS VLSI 
implementation technology to understand the 
practicality of realising EMBRACE SoC in silicon.  

The silicon area required for implementation of 
the non-clustered EMBRACE architectural template 
(depicted in Figure 1) is estimated using recently 
reported 32nm CMOS VLSI technology. Figure 2 
presents the estimated silicon die area (in mm2) by 
scaling the non-clustered EMBRACE architecture. 

 

Figure 2: Silicon Area Estimate (using 32nm CMOS 
technology) for the EMBRACE non-clustered 
architecture. 
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The x-axis indicates the number of neurons and 
synapses (Neuron/Synapse). The stacked columns in 
the histogram denote the silicon area for each 
architectural entity described below: 

 NoC Infrastructure: The NoC infrastructure 
comprises NoC routers, packet buffers, NoC 
interconnect and associated control circuits. The 
total number of bits in all the storage elements 
within digital components is summed and the 
required number of transistor estimated based on the 
standard SRAM cell design. The transistor count for 
control circuitry within the digital components is 
proportional to the transistor count of the storage 
circuits. The NoC interconnect (point-to-point bus 
links between NoC routers) area is estimated based 
on the bus width and the metal layer routing offered 
by the VLSI implementation technology. The 
analytical estimates indicate that complete NoC 
infrastructure requires 47.27% of the total chip area.  

 SNN Infrastructure: The silicon area for the 
EMBRACE analogue neural elements (including 
synapses, synaptic weight summing and membrane 
potential threshold device), is calculated using the 
design and characterisation data reported in (Yajie 
Chen et al., 2006a); (Yajie Chen et al., 2008); (Yajie 
Chen et al., 2006b). Due to its compact 
implementation, the silicon area occupied by neural 
elements is negligible in comparison to rest of the 
SNN support infrastructure. The SNN support 
infrastructure is made-up of SNN configuration 
memory (for storing synaptic weights of 5 bits each 
and threshold values of 16 bits each) and the SNN 
topology memory (for storing synaptic connectivity 
information) (Seamus Cawley et al., 2011). Silicon 
area of the SNN infrastructure is estimated using the 
above mentioned estimation technique and requires 
52.74% of the total chip area. Figure 3 further 
enumerates the silicon area of the SNN components 
for the 64K Neuron non-clustered EMBRACE 
architecture. 
 

 

Figure 3: Estimated Silicon Area Proportion for the SNN 
Infrastructure Entities for 64K Neurons/4M Synapses 
Non-Clustered EMBRACE Architecture Configuration. 

Figure 3 illustrates that the SNN topology 
memory accounts for 81% and the SNN 
configuration memory accounts for 19% of the area 
required by the SNN components. 

4 NOVEL CLUSTERED NEURAL 
TILE HARDWARE SNN 
ARCHITECTURE 

 

Figure 4: The Proposed EMBRACE Clustered SNN 
Architecture, (b) Clustered Neural Tile Comprising Neural 
Cluster, Packet Encoder/Decoder, Shared SNN Topology 
Memory and Look-up Table, and (c) Synaptic Connection 
Entry. 

Architectural techniques for reducing the SNN 
topology and configuration memory are vital for 
compact silicon implementation of hardware SNN 
architectures suitable for embedded computing. This 
section presents clustering of neurons in the NoC tile 
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and architectural scheme for sharing of the SNN 
topology memory within the NoC tile for compact 
implementation of the proposed EMBRACE 
architecture. Silicon area requirements for the 
proposed clustered neural tile NoC architecture are 
compared with those of the non-clustered 
EMBRACE architecture. 

Figure 4 illustrates the proposed clustered SNN 
architecture, clustered neural tile architecture 
andsynaptic connection entry details. 

4.1 Neural Cluster 

Permanent interconnection between neurons within 
the neural cluster removes the need to store synaptic 
connectivity information within the cluster. For 
hardware implementations, size of the SNN structure 
formed using the direct connections can be extended 
based on the permitted fan-out of individual neuron 
circuits. Also, the metal layer routing in the VLSI 
architectures cannot efficiently accommodate large 
sized interconnect crossbars without increasing the 
inter-metal capacitance and crosstalk. A two-layered 
16:16 fully connected feed-forward SNN structure 
(shown in Figure 5) is proposed as the neural 
computing element inside each NoC tile.  
 

 

Figure 5: Two layered 16:16 Fully Connected SNN 
Structure as the Proposed Neural Cluster. 

The input and output layer of the neural cluster 
comprises 16 Leaky-Integrate-and-Fire neurons. The 
input layer neurons have 64 input synapses each, 
which receive spikes from synaptic connections 
external to the NoC tile. Each of the 16 input layer 
neurons connects directly to each of the 16 output 

layer neurons, to form a fully connected feed-
forward SNN structure. Each output layer neuron 
has 16 input synapses, which individually receive 
spikes from the corresponding input layer neurons. 
The neural cluster has 16 outputs each 
corresponding to the 16 output layer neurons.  

4.2 Shared SNN Topology Memory 
Architecture 

Figure 6 illustrates the internal organisation of the 
clustered neural tile comprising the fixed-sized 
neural cluster, SNN topology memory and the 
associated look-up table. 

The synaptic connection information for the 
neural cluster outputs is stored in the SNN topology 
memory. The synaptic connection information entry 
comprises destination tile address ([X,Y] address of 
the NoC tile), destination neuron (Nn) and synapse 
number (Sn) (see Figure 4). The SNN topology 
memory is partitioned into 64 blocks (B0 to B63), 
where each block is made-up of 16 synaptic 
connection information entries (BxSC0 to BxSC15). 
This block-wise partitioning arrangement helps 
flexible allocation of the SNN topology memory 
blocks to different neural cluster outputs on need 
basis. 
 

 

Figure 6: The Clustered Neural Tile Internal Organisation, 
Comprising Neural Cluster, SNN Topology Memory and 
the Associated Look-up Table. 

The synaptic connection information for the 
neural cluster outputs is stored in the SNN topology 
memory. The synaptic connection information entry 
comprises destination tile address ([X,Y] address of 
the NoC tile), destination neuron (Nn) and synapse 
number (Sn) (see Figure 4). The SNN topology 
memory is partitioned into 64 blocks (B0 to B63), 
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where each block is made-up of 16 synaptic 
connection information entries (BxSC0 to BxSC15). 
This block-wise partitioning arrangement helps 
flexible allocation of the SNN topology memory 
blocks to different neural cluster outputs on need 
basis. 

The lookup table maintains the SNN topology 
memory block allocation information for each neural 
cluster output. Each neural cluster output has a 
designated row in the lookup-table. Each bit in the 
64-bit lookup table row allocates the corresponding 
memory block from the SNN topology memory to 
the neural cluster output. For example, bit number 
Bx of the row number N[1,0] allocates block number 
X in the SNN topology memory to the neural cluster 
output N[1,0]. (i.e. For the row number N[1,0], 
setting the bit value Bx = 1, allocates the SNN 
topology memory block X to cluster output N[1,0]; 
whereas Bit value Bx = 0 dissociates the SNN 
topology memory block X from cluster output 
N[1,0]). The packet encoder generates spike packets 
for the cluster output based on the allocated SNN 
topology memory blocks for the cluster output. The 
process of mapping the SNN application topology 
onto the proposed clustered neural tile, shared 
memory architecture involves populating the lookup 
table and SNN topology memory entries, such that 
the correct synaptic connections are established 
between the neural clusters. If the synaptic 
connectivity for a neural cluster cannot be 
accommodated in the given SNN topology memory 
available in the NoC tile, additional neural cluster 
and NoC tiles are use as spike repeaters. 

4.3 Architectural and SNN Application 
Significance 

This section compares the proposed clustered neural 
tile architecture with the non-clustered EMBRACE 
architecture for silicon area requirements and 
number of synapses supported. 

4.3.1 Silicon Area Requirements 

The silicon area for implementation of the proposed 
clustered neural tile NoC architectural template 
(shown in Figure 4) is estimated using 32nm CMOS 
VLSI technology. Figure 7 illustrates the 
comparison of silicon area by scaling the non-
clustered EMBRACE and the proposed clustered 
neural tile NoC architecture.  
 

 

Figure 7: Silicon Area Estimate Comparison for the Non-
Clustered EMBRACE Architecture and the proposed 
Clustered Neural Tile SNN Architecture. 

Each NoC tile in the clustered architecture 
comprises 32 neurons served by a NoC router as 
compared to the non-clustered architecture (which 
has a single neuron for each NoC router). Thus, the 
total number of NoC routers in the system are 
decreased by a factor of 32 (i.e. the number of 
neurons in the neural cluster) as compared to the 
non-clustered architecture. In the proposed clustered 
neural tile NoC architecture, the packet buffers 
inside each NoC router are increased by a factor of 
16 to accommodate higher spike packet traffic 
density in the NoC. Due to the reduced number of 
NoC routers, the area occupied by the NoC 
infrastructure in the proposed clustered neural tile 
NoC architecture is decreased by 89% as compared 
to the previously reported non-clustered architecture. 

The fixed interconnection within the neural 
cluster removes the need for storing the output 
synaptic connectivity information for the input layer 
neurons within the neural cluster. The regularly 
structured interconnect requires much less area than 
the SRAM-based synaptic connectivity storage and 
the associated control circuitry. Hence, the SNN 
topology memory for the proposed clustered neural 
tile NoC architecture is reduced by 54.05%. The size 
of the complete chip is approximately 33% of the 
previously reported non-clustered EMBRACE chip 
area estimation.  

4.3.2 Number of Synapses Supported 

The input layer neurons in the proposed neural 
cluster can have maximum 16 output synaptic 
connections (each connecting to an output layer 
neuron within the same cluster). Also within the 
neural cluster, the input layer neurons cannot 
directly connect to synapses external to the tile and 
the output layer neurons cannot receive spikes 
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directly from the synapses external to the tile. These 
constraints affect the maximum number of synapses 
that can be supported by the proposed architectural 
scheme. 

Figure 8 compares the maximum number of 
synapses that can be supported by the proposed 
clustered neural NoC architecture with the 
previously reported EMBRACE architecture. 
 

 

Figure 8: Number of Synapses Supported by the 
Non-Clustered and Clustered EMBRACE Architecture. 

The proposed clustered neural tile NoC 
architecture supports 37.5% less synapses as 
compared to the previously reported EMBRACE 
architecture for the same number of neurons in the 
system. As the proposed architecture requires 
approximately 1/3rd area as compared the non-
clustered architecture, the number of neural tiles in 
the architecture can be increased to achieve the 
synaptic density required by the SNN application. In 
other words, the proposed clustered neural tile SNN 
architecture offers 200% increase in number of 
neurons and 87.5% increase in number of synapses 
compared to single neuron NoC architecture, for the 
same silicon area.  

5 PRACTICAL SNN TOPOLOGY 
IMPLEMENTATION RESULTS 

Practical SNN application topologies exhibit a 
variety of connectivity patterns. Through clustering 
of neurons and flexible sharing of the SNN topology 
memory within the neural cluster outputs, the 
proposed architecture addresses diverse connectivity 
requirements of the practical SNN application 
topologies while maintaining compact silicon area. 

This section presents and compares hardware 
resource requirements for the proposed clustered 
neural tile architecture with shared and non-shared 
SNN topology memory scheme for SNN application 

topologies with irregular and random connectivity 
patterns (Kohl and Miikkulainen, 2008). (The non-
shared SNN topology memory scheme uses fixed 
allocation of 4 blocks to each neural cluster output.) 
Additional clustered neural tiles are used for 
relaying spikes, if the synaptic connectivity 
requirement of the cluster cannot be accommodated 
in the SNN topology memory in the NoC tile. 

A large SNN application topology made-up of 
64, individual SNN clusters (of 16:16 neurons) is 
mapped to the proposed clustered neural tile NoC 
architecture. The proposed architecture is tested 
under non-shared and shared SNN topology memory 
configuration. (The non-shared SNN topology 
memory scheme uses fixed allocation of 4 blocks to 
each neural cluster output). 

The neural clusters in the example SNN 
application topology are configured such that 8 
neural outputs from each individual neural cluster 
(within the 64 cluster application topology) are kept 
inactive by configuring zero synaptic connections. 
The number of required NoC tiles and the size of the 
NoC is measured by varying the synaptic connection 
density of the remaining 8 active neural cluster 
outputs. Figure 9 illustrates the NoC tile requirement 
for the clustered neural NoC architecture under non-
shared and shared topology memory architecture 
executing the SNN application topology with 
irregular synaptic connectivity pattern.  
 

 

Figure 9: NoC Tile Requirements for Non-Shared and 
Shared SNN Topology Memory Schemes for the 
Irregularly Connected Example SNN Topology. 

For 2048 connections from each of the 8 active 
neural cluster outputs in the proposed example SNN 
topology, the non-shared topology memory scheme 
requires 320 NoC tiles, whereas the shared topology 
memory scheme requires 192 NoC tiles (see Figure 
9). The SNN topology memory in the NoC tile can 
hold 1K synaptic connection entries. When the 
synaptic connectivity requirement of each cluster 
increases by a fold of 1k, additional set of tiles are 
used for relaying spike packets. This can be seen in 

ADDRESSING THE HARDWARE RESOURCE REQUIREMENTS OF NETWORK-ON-CHIP BASED NEURAL
ARCHITECTURES

135



 

the step wise ascending graph in Figure 9. 
The SNN topologies evolved using Genetic 

Algorithm (GA) based search methods often exhibit 
random connectivity patterns (Kohl and 
Miikkulainen, 2008). The SNN application topology 
described above is configured for random number of 
output synaptic connections from each of the 64 
individual neural clusters. This SNN application 
representing random synaptic connectivity pattern is 
mapped to the proposed clustered neural tile NoC 
architecture and tested under non-shared and shared 
SNN topology memory configuration. Figure 10 
illustrates the NoC tile requirement for the clustered 
SNN NoC architecture under non-shared and shared 
topology memory architecture executing the SNN 
application topology with random synaptic 
connectivity pattern. 

The proposed shared SNN topology memory 
architecture facilitates allocation of the SNN 
topology memory blocks to the neural cluster 
outputs based on the synaptic connectivity 
requirement. The look-up table based shared SNN 
topology memory architecture offers a flexible 
number of synaptic connections from the neural 
cluster outputs resulting in efficient usage of each 
NoC tile. As seen in the Figure 9 and Figure 10, the 
shared SNN topology memory scheme requires less 
number of NoC tiles for SNNs with irregular and 
random synaptic connectivity patterns (observed in 
practical SNN application topologies). This 
facilitates accommodation of larger SNN application 
topologies in the given architectural configuration. 

 

Figure 10: NoC Tile Requirements for Non-Shared and 
Shared Topology Memory Schemes for the Randomly 
Connected Example SNN Topology. 

6 CONCLUSIONS AND FUTURE 
WORK 

This paper presents the clustered neural tile NoC 
architecture for compact hardware implementation 
of practical SNN applications for embedded 
systems. The proposed architectural scheme for 

clustering of neurons within the NoC tiles reduces 
the SNN topology memory requirement of the 
system by approximately 50% compared to the 
single neuron per NoC router SNN architecture. A 
look-up table based SNN topology memory sharing 
scheme is presented that allows efficient utilisation 
of the SNN topology memory for practical SNN 
application topologies with irregular and random 
synaptic connectivity patterns. The silicon area of 
the proposed clustered neural tile, shared topology 
memory SNN architecture is nearly 33% of the 
previously reported non-clustered EMBRACE 
architecture. This paper presents a new approach to 
addressing the hardware resource challenges of SNN 
architectures using a combination of fixed-sixed 
cluster of neurons and NoC-based reconfigurable 
interconnect. 

Future work includes realisation of the proposed 
clustered neural tile NoC architecture in silicon and 
performance evaluation using benchmark and large 
practical SNN applications. 
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