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Abstract: Classical understandings of biological evolution inspired creation of the entire order of Evolutionary 
Computation (EC) heuristic optimization techniques. In turn, the development of EC has shown how living 
organisms use biomolecular implementations of these techniques to solve particular problems in survival 
and adaptation. An example of such a natural Genetic Algorithm (GA) is the way in which a higher 
organism’s adaptive immune system selects antibodies and competes against its complement, the 
development of antigen variability by pathogenic organisms. In our approach, we use operators that 
implement the reproduction and diversification of genetic material in a manner inspired by retroviral 
reproduction and a genetic-engineering technique known as DNA shuffling. We call this approach 
Retroviral Genetic Algorithms, or retroGA (Spirov and Holloway, 2010). Here, we extend retroGA to 
include: (1) the utilization of tags in strings; (2) the capability of the Reproduction-Crossover operator to 
read these tags and interpret them as instructions; and (3), as a consequence, to use more than one 
reproductive strategy. We validated the efficacy of the extended retroGA technique with benchmark tests on 
concatenated trap functions and compared these with Royal Road and Royal Staircase functions. 

1 INTRODUCTION 

Classical understandings of biological evolution 
served to inspire an entire order of heuristic 
optimization techniques, known generally as 
Evolutionary Computations (EC). Recent studies at 
the molecular biology and genetic level have 
conclusively shown that living organisms utilize 
biomolecular implementations of EC for solution of 
problems in survival and adaptation – for example 
the selection of antibodies in a higher organism’s 
adaptive immune system (Lewin, 2003) due to 
competition with the development of antigen 
variability in pathogenic organisms such as viruses 
(Donelson, 1995); (Barbour and Restrepo, 2000). 

The computational approach we present here is 
inspired by the biology of retroviral reproduction, in 
which genetic material is diversified through the 
alternate use of DNA and RNA (Negroni and Buc, 
2001; Galetto and Negroni, 2005). A virus entering a 
host cell contains two or more copies of its genome 

in RNA form. As part of the infection cycle, a single 
DNA molecule is synthesized from the viral RNAs. 
During the replication process the viral genome goes 
through a series of intermediate states. Replication is 
conducted by the retroviral reverse transcriptase 
enzyme, which can be directed by signal elements 
on the original RNA strands. Passing over these 
elements during replica synthesis causes the 
transcriptase to release the current template strand 
and shift to a different one. These jumps (template 
switches, strand transfers) are key events in 
retroviral recombination (and will frequently lead to 
a mutation in the replica, due to the insertion of an 
extra nucleotide). The elements triggering template 
switches are varied: breaks in the RNA molecule; 
pause sites (RNA sequences that slow down replica 
synthesis); or the local physical structure of the 
RNA (e.g. a hairpin).  

Computationally, the switch elements are 
analogous to marks or tags on a string. Molecular 
machines read these tags and interpret them as 
instructions for further string operations. We use 
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operators for reproduction following retroviral rules, 
which we term Retroviral Genetic Algorithms or 
retroGA (Spirov and Holloway, 2010). In the present 
work, we extend retroGA to include: (1) the 
utilization of tags in strings; (2) the capability of the 
Reproduction-Crossover operator to read these tags 
and interpret them as instructions; and (3), as a 
consequence, for reproduction to use more than a 
single strategy. It is commonly accepted that typical 
combinatorial optimizations and biological evolution 
fitness functions may be represented by rugged 
landscapes. We use concatenated trap functions and 
Royal Road (RR) functions to test the efficacy of the 
extended retroGA approach on such landscapes. 

2 THE retroGA APPROACH, 
WITH TAGS 

The initial implementation of retroGA (Spirov and 
Holloway, 2010) included a Reproduction-Crossover 
(RC) operator for the processes of retroviral 
recombination. Here, we extend the RC operator by 
introducing two different sets of tags that it may 
operate on. This allows us to implement template 
switching via signals in recombining sequences. In 
addition, during rearrangement tags may be 
changed, added, copied and/or moved (to another 
site on the same string or to another string 
altogether). This allows both the resultant string and 
the processing scheme itself to change over 
successive cycles of genetic rearrangement. This 
enables the retroGA operators to use more than one 
strategy for the recombination of parental sequences. 

The RC operator: generates a child string from a 
given parent pair, combining the functions of 
reproduction and crossover (see Spirov and 
Holloway, 2010). A pair of parents is selected, as in 
standard GA, by one of several predetermined 
strategies: truncation, roulette-wheel, etc. One string 
is selected as a donor (tag γ), and the other is the 
acceptor (tag Γ). This is analogous to retroviral 
replication, with the RC operator corresponding to 
reverse transcriptase and the parent strings to the 
pair of retroviral RNA molecules. Like retroviruses, 
replicating strings are circular (the N+1th element is 
the 0th).  

When the RC operator’s string reading and 
copying procedure encounters a tag between the (i-
1)-th and i-th elements, it is interpreted, depending 
on the nature of the tag, as one of the following 
commands (tags are not copied unless explicitly 
commanded, and no more than one tag is allowed 
between regular string elements): 

1. Finish the current child string and begin a new 
one. 
2. Finish the child string and terminate 
reproduction. 
3. Move tag one position to the right. 
4. Switch template to the other parent string.  
5. Replace the i-th element of the current parent or 
child string with a copy of the j-th element of the 
other parent string. 
6. Mutate the j-th element of the donor, acceptor or 
child string. 
7. Insert an arbitrary element into the i-th position 
of the current string. 
8. Delete the j-th element from the current string. 
9. Insert tag X into the j-th position of the donor, 
acceptor, or child string. 

More complex commands can be constructed from 
these nine elementary instructions. Elementary 
commands (5-9) have arguments. 

Two different reproduction strategies are used: a) 
replace a predetermined fraction of the population 
by progeny; b) permit the operator to leave offspring 
in the population if and only if their scores are 
higher than their parents’. 
Three-tag Model: Three tags and their respective 
instructions (Table 1) are sufficient to implement 
retroviral recombination in an evolutionary search 
program. Processing of a pair of parent strings 
begins with the insertion of replication cycle control 
tags (Γ and γ). The basic operation is the generation 
of a child (or replica) string, reading from left to 
right, from the 0th to the Nth element, from one or 
two alternating parent strings. The Γ and γ tags 
model the role of viral RNA flanking regions in 
controlling replication. Tag Λ is randomly inserted 
into a certain fraction of the strings in the initial 
population. It is composed of three elementary 
instructions which together act as the entire 
mechanism of retroviral recombination. The Λ tag 
itself is analogous to a “stop-signal” on a retroviral 
RNA molecule, in that it facilitates change of the 
current template. 

Table 1: The three tags and their definitions. 

Tag Command 
Γ Finish the current child string and begin a new 

one. 
γ Finish the child string and terminate reproduction. 
Λ Insert random element into the i-th position of the 

current parent string, delete element from the (i-
1)-th position of the current parent string, and 
switch template. 
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Figure 1: The first two recombination / replication cycles 
in the 3-tag model. * indicates an arbitrary element of the 
string. 

Using the three tags, the RC operator creates a 
complex (not ‘point’) mutation in each cycle, 
inserting a random element to the right of a Λ tag, 
deleting an element to the left of a Λ tag. After N 
replication cycles, one Λ tag will change all N 
elements of the string (see Figure 1 a, b). Without Λ 
tags, the operator processes strings as in standard 
GA (only point mutation and/or crossover 
operators); with Λ tags, strings are processed with a 
local search (C.f. the RHMC algorithm, Forrest and 
Mitchell, 1993). 

Eight-tag Model: Modification and broadening of 
the list of tags and their corresponding commands 
substantially increases the complexity of the 
operator’s behaviour. We introduce an eight tag 
model (Table 2) which captures the processes of 
transposition (i.e. the behaviour of transposons, or 
mobile genetic elements, see Spirov et al., 2009).  

Tags Λ and λ are the only ones inserted randomly 
into strings of the initial population. Unlike the 3-tag 
model, tag Γ is now placed after the 0th element of 
the acceptor string, and tag γ after the 0th element of 
the donor string (Cf. Tables 1 and 2). With the 
increased number of tags and commands, conflicts 
may occur during tag interpretation. Specifically, a 
command to move or copy a given tag X to a 
position between elements (i-1) and i may result in a 
collision with an already-present tag. To resolve 
these conflicts, two new rules are introduced: how to 
interpret an attempt to replace tag Λ with tag φ 
(φ→Λ) or to replace tag φ with tag Λ (Λ→φ) (see 
Table 2). 

If the donor contains tag Λ in the position 
between (i-1) and i, and the acceptor contains tag λ 
in the position between (j-1) and j, then the region 
between the i-th and j-th elements (inclusive) of the 
acceptor after M recombination/replication cycles 
(M = j – i) assumes the configuration 
*Φ*Φ*Φ…*Φ*Φ*λ (* is an arbitrary element of the 
string; see Fig. 2). Beginning with cycle M+1 the 
RC operator produces progeny with random 
sequences in this index range. The configuration of 

this region in the child strings becomes 
τ*φ*φ*φ…*φ*φ*Τ. With this chance combination 
of tags, this region of the child string can function 
independently from the rest of the string.  

Table 2: The eight tags and their definitions. 

Tag Command 
γ Finish the child string and terminate reproduction. 
Γ Finish the child string and begin a new one. 
λ Switch template, mutate the i-th element of the 

current string, insert tag Φ into the (i+1)-th position 
of the current string and insert tag τ into the child 
string. 

Λ Switch template and insert tag T into the child string. 
φ Mutate element after the tag, copy the tag one step to 

the right, insert tag φ into the same position on the 
child string.  

Φ Copy this tag onto the paired string. 
φ→Λ  Transpose tag Λ one step to the right, insert tag φ in 

this position, and change the i-th element of the 
current string to the i-th element of the paired string. 

Λ→φ Cancel replacement, but switch template. 
T Switch template. 
τ Copy this tag onto the paired string. 
 
Because of this property, a situation may arise in 

a later generation where the donor string carries the 
τ*φ*φ*φ…*φ*φ*Τ fragment, and the acceptor 
string does not. In this case, the fragment gets copied 
to the second parent (acceptor) string during a 
reproductive cycle, due to combined action of tags τ, 
φ, Τ (see Table 2). 

If the arbitrary sequence between tags τ and Τ 
forms a functional sequence (or BB, see below), 
copying the fragment can be evolutionarily 
favourable. By transposing itself, this fragment can 
disseminate throughout the population (C.f. Spirov 
et al., 2009). 

GRC Operator: The fact that some retroviral 
recombinatorial events can have more than two 
parental sequences inspired us to generalize the RC 
operator (GRC operator) to N parental strings for 
each child sequence (Spirov and Holloway, 2009). 
However, the GRC operator does not currently 
process tags; this is one of our future directions. 

a)  

b)  

Figure 2: The formation of a local mutagenesis mechanism 
between tags Λ and λ. a) earlier; b) later. 
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3 RESULTS AND DISCUSSION 

Fitness Functions to Study Hard Evolutionary 
Problems: There is every reason to believe that both 
biological evolution and natural GA solve problems 
of considerable difficulty. The current literature 
provides grades and classifications for problem 
difficulty; we select several representative types of 
problem with which to benchmark our approach. 

Typical combinatorial optimization or biological 
evolution fitness functions may be described by 
rugged landscapes (Kauffman and Levin, 1987), 
with large numbers of local extrema and difficult 
elements such as plateaus and valleys. Evolving 
populations can typically get stuck on one of the 
local peaks.  

Trap Functions: Some of the simplest discrete 
analogues of fitness functions with many maxima 
are concatenated trap functions (Goldberg, 1987; 
Goldberg, Deb, and Horn, 1992). They have been 
proven to be GA hard and are of particular interest 
from an experimental point of view for testing 
algorithm improvements. Here we use fully 
deceptive trap functions (Deb and Goldberg, 1993). 
A trap function of order k is given by 

F(x) = r (k-1-u(x)) / (k-1), if u(x) = k, 

where u(x) counts the number of 1-bits in string x; 
otherwise F(x) = 1. r<1 denotes the fitness ratio 
between optimal and sub-optimal solutions. A 
higher-dimensional function can be made by 
concatenating n trap functions together. The bit-
string’s fitness is computed as the sum of the 
fitnesses of the n traps. The concatenated trap 
function has 2n local optima. The global optimum is 
a string of all 1’s. 
The Royal Road Fitness Functions: Mitchell and co-
workers designed a class of fitness landscapes called 
Royal Road functions (RR): R1, R2, R3 and R4 
(Mitchell et al., 1992; 1994); (Forrest and Mitchell, 
1993). These were specifically designed to test the 
“building block” (BB) approach (Goldberg, 1989); 
(Holland, 1992), in which a solution can be 
decomposed into BBs (which may have genetic 
functional relevance), which can be searched 
independently and then combined to obtain a good 
or even optimal solution. RR have a fixed number of 
predetermined schemata, allowing for the study of 
GA performance over time. RR are a generalization 
of the MaxOnes function: rather than simple 
zero/one bitstrings in which the overall count of 
ones determines fitness, RR strings have discrete 
blocks of sub-sequences of bits, with fitness 
evaluated for each block. Royal Staircase (RS) is a 

variation of the Royal Road functions, using a 
simple landscape with clearly defined neutral layers 
(van Nimwegen and Crutchfield, 2000). 

Although RR functions were designed to study 
GA, some features of the RR functions, especially 
R3 and R4, are reminiscent of known aspects of 
molecular biological evolution (van Nimwegen and 
Crutchfield, 2000, Crutchfield and van Nimwegen, 
2001).  

3.1 Benchmark Tests 

We chose RR-type and trap functions for benchmark 
performance tests of our approach versus standard 
GA: they reflect many of the significant properties 
of biological evolutionary searches and are well-
studied and sufficiently simple to permit statistical 
analysis, allowing for comparison between 
theoretical expectation and the results of 
experimental runs. 

The same suite of programs was used to run both 
trap and RR function tests. Our package allows a 
choice of either the RC or the GRC operators, and 
also supports the two alternative reproduction 
strategies, RStr1 and RStr2. The RC operator can 
process binary strings with three tags and the 
interpretation rules listed in Table 1, or eight tags 
and the interpretation rules listed in Table 2. In the 
current version of our package, the GRC operator is 
incapable of processing tags (it ignores them). For 
each of the tested fitness functions, 5 series of 
experiments were performed: 3 tags and RStr1; 3 
tags and RStr2; 8 tags and RStr1; 8 tags and RStr2; 
and the current implementation of the GRC operator 
(tags ignored). Outcomes did not depend on the 
reproduction strategy. 
Rugged Landscapes - Trap Fitness Functions: We 
used the same parameters for trap function tests as 
van Kemenade (1997). We ran a set of experiments 
to characterize the efficiency of the different 
approaches on different BB sizes (3, 4, 5, 6, 7 and 8 
bits). The number of BBs was adjusted such that the 
total length of the bit-string was approximately 40 
bits. That is, starting from trap order 3, with 8192 
extrema, we increased the trap function to order 8, 
with 16 local extrema. We used a fitness ratio of r = 
0.7. 

In all runs, the search terminated when the 
optimal solution was obtained, or when the number 
of function evaluations exceeded 500,000. The 
initial population size was 4096 strings. All results 
(Fig. 3) are averaged over 1000 independent runs. 
As seen in Fig. 3, the 3-tag version of the retroGA 
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operator is more efficient than the algorithms 
(including ‘general’ or standard GA, GGA) 
developed by van Kemenade (1997), while the 8-tag 
results are not so impressive. To our surprise, the 
best performance was achieved by the GRC operator 
– some 20 to 50 times faster than standard GA, on 
average, for order-3 and order-4 trap functions. We 
conclude that elaborate consensus-dependent 
operators (standard GA) are not as effective on 
rugged landscapes as the more straightforward GRC 
operator. 
 

 

Figure 3: Performance of our approach versus standard 
GA. Values indicate number of function evaluations 
needed to reach optimum. The results on the mixEA, GGA 
and SSGA algorithms are from van Kemenade (1997). 

Subbasin-portal Architecture - The RR Fitness 
Functions: We tested our approaches on four RR 
functions (R1-R4), highlighting different levels of 
efficiency to the different functions (Fig. 4). RC, 3-
tag was very efficient for R1-R3, but did not reach 
R4-5th level or RS. RC, 8-tag was very impressive 
for solving all test functions. In R1-R4, this 
approach outperformed standard GA: it was twice as 
effective in R1, and even more so in R2 and R3. R4 
is well-known to be hard to reach for many 
optimization approaches, both evolutionary and non-
evolutionary (Mitchell et al., 1992); (Forrest and 
Mitchell, 1993); (Mitchell et al., 1994). The RC, 8-
tag approach, however, achieved the fourth level of 
R4 in approximately 30% of runs. Neither Standard 
GA, nor Random-Mutation Hill-Climbing (RMHC) 
reached the 4th (or 5th) level within the maximum of 
106 function evaluations (Forrest and Mitchell, 
1993). In 4% of cases, RC, 8-tag reached the fifth 
level of the R4 test, a success rate unprecedented in 
the EC literature.  

Surprisingly, it was the GRC operator that ended 
up being the most effective of all the strategies 
tested. Notably, its performance on R1 approached 
the non-evolutionary RMHC algorithm (which is not 

successful on the higher test functions). For R1, it 
was only three times less effective than RMHC (or 
even two times, depending on operator parameters), 
while RMHC outperformed standard GA by a factor 
of 10. The GRC operator achieved the fourth level 
of the R4 test in 98% of the runs, and the fifth level 
in 67%. With the GRC operator, we have found an 
evolutionary approach that outperforms standard GA 
by a factor of 3 to 4 on all RR functions. GRC 
operator success rates on R4 were unprecedented. 
For the RS test function, the 8-tag strategy found the 
answer twice as fast, on average, than standard GA, 
while the GRC operator was more than three times 
faster than GA (Fig. 4). 

 

Figure 4: Performance of our approaches (RC & GRC 
operators) versus standard GA (Std. GA) and Random-
Mutation Hill-Climbing (RMHC) on the Royal Road 
family functions. Values indicate number of function 
evaluations needed to reach optimum, averaged over 1000 
runs. R4L4 and R4L5 are the 4th and the 5th level of the R4, 
respectively. It takes >500,000 evaluation to solve the RS 
problem by Std. GA and RC, 3-tag.  

Comparison of Figs. 3 and 4 indicates that the 
retroGA-with-tags approaches are more effective on 
subbasin-portal functions (RR-type, versus trap 
functions). We can hypothesize that these models 
have picked up some of the crucial features of real 
molecular recombinatorial mechanisms which 
operate within such architectures. 

We conclude that there is a fundamental 
difference in the quality of artificial recombination 
implemented by the GRC operator and by the 
standard GA crossover operator. The positions of the 
sites of crossover and exchange between two strings 
in computational GA are chosen randomly. 
However, in biology, crossover occurs at sites of 
high homology between two molecules of nucleic 
acid. These regions of high homology may be 
naturally interpreted as BBs. As such, crossover 

 R1  R2  R3     R4L4   R4L5   RS

RETROVIRAL GENETIC ALGORITHMS - Implementation with Tags and Validation Against Benchmark Functions

237



 

operations in the natural world do not destroy BBs, 
but instead conserve them wholly; it is the material 
between the BBs that undergoes crossover 
exchanges and point mutations. It is well-known that 
the destruction of already-discovered BBs by 
crossover operators is one of the major problems 
with standard GA (originally shown through 
experiments with RR functions). Because of this, the 
ability of homology-based mechanisms (e.g. sex-
based polymerase chain reaction) to conserve 
already located BBs is of tremendous interest to us. 

The longer-term goals of our project are to 
develop the retroGA approaches such that we can 
more clearly gauge their utility to computer science 
in general, as well as in such practical applications 
as in vitro molecular evolution and biomolecular 
computation. In recent decades, computational GA 
has become an effective mathematical instrument for 
modelling and analyzing the processes and 
mechanisms of biological evolution. As retroGA is 
for the most part domain-independent, it can readily 
be applied to all forms of EC, for example greatly 
assisting in solving problems on the selection of 
macromolecules with properties that do not exist in 
the natural world. 
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