
THOUGHTS ABOUT STRUCTURALIZATION, SPECIALIZATION,
INSTANTIATION, AND METAIZATION

Lothar Hotz and Stephanie von Riegen
Hamburger Informatik Technology Center, Department Informatik, University of Hamburg, Hamburg, Germany

Keywords: Metamodeling, Knowledge representation.

Abstract: In knowledge engineering, ontology creation, and especially in knowledge-based configuration often used
relations are: aggregate relations (has-parts, here called structural relations), specialization relation (is-a),
and instantiation (instance-of). A combination of the later is called metaization, which denotes the use
of multiple instantiation layers. Structural and specialization relations are mainly used for organizing the
knowledge represented on one layer. Instantiation layers model different kind of knowledge, i.e. knowledge
about sets, individuals, and knowledge about knowledge (metaknowledge). By applying reasoning techniques
on each layer, reasoning on metaknowledge is enabled.

1 INTRODUCTION

For configuration-based inference tasks, like con-
structing a description of a specific car periphery sys-
tem (Hotz et al., 2006) or drive systems (Ranze et al.,
2002), the knowledge of a certain domain is repre-
sented with a knowledge-modeling language which
again is interpreted, because of a defined semantic,
through a knowledge-based system or configurator.
Examples for knowledge-modeling languages are the
Web-Ontology Language (OWL) or the Component
Description Language (CDL) (Hotz, 2009). Further
languages are e.g. described in (Harmelen et al.,
2007). Such languages typically provide concepts or
classes that gather all properties, a certain set of do-
main objects has, under a unique name. With con-
cepts and instances a strict separation into two layers
is made: a domain model (or ontology) which cov-
ers the knowledge of a certain domain (abbr. layerD)
and a system model (or configuration) which covers
the knowledge of a concrete system or product of the
domain (abbr. layerS).

Properties of a concept that map to primitive data
types, like intervals, values sets (enumerations), or
constant values, are called parameters or attributes.
Properties that map to other concepts or to instances
are called relations. Knowledge-modeling languages
provide structural, specialization, and instantiation as
typical relations. A specialization relation relates a
superconcept to a subconcept, where the later inherits
the properties of the first. This relation (also called

is-a relation) forms a specialization hierarchy or lat-
tice, if a concept has more than one superconcept.
The structural relation is given between a concept c
and several other concepts r, which are called rela-
tive concepts. With structural relations a composi-
tional hierarchy based on the has-parts relation can
be modeled as well as other structural relationships.
Instances are instantiations of concepts and represent
concrete domain objects (instance-of).

Additionally to concepts, instances, and their re-
lations, constraints provide model facilities to express
n-ary relationships between properties of concepts.
Constraints can represent restrictions between prop-
erties like arithmetic relations or restrictions on struc-
tural relations (e.g. ensuring existence of certain in-
stances).

In this paper, the use of structuralization, special-
ization, and instantiation is discussed. Even those re-
lations are quite well-known they are sometimes con-
founded. Furthermore, when used with more than
the two mentioned domain and system layers (see
(Asikainen and Männistö, 2009; Hotz, 2009)) the in-
stantiation relation is multiply applied, which leads to
new modeling layers and thus probably to modeling
difficulties. The creation of such multiple layers is
called metaization (Strahringer, 1998).

In the following, we first consider all relations in
more depth and give example of their use (Section 2
and Section 3). Afterwards, we discuss metaization
and its use for configuration (Section 4). We end with
a short discussion on related work and a conclusion.

457Hotz L. and von Riegen S..
THOUGHTS ABOUT STRUCTURALIZATION, SPECIALIZATION, INSTANTIATION, AND METAIZATION.
DOI: 10.5220/0003666504570460
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2011), pages 457-460
ISBN: 978-989-8425-80-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



Artefact

D

Software

Thing

ProductContext

Feature

Hardware

has-Realization

has-Context

has-Feature

has-Software

has-Hardware

instance-of

is-a

has

Figure 1: Extract from an upper-model for modeling
software-intensive systems.

2 STRUCTURALIZATION

As already elaborated in (Hotz, 2009) configuration
can be considered as model construction, because a
description of a certain system (a configuration) is
constructed by a configurator. Furthermore, (Hotz,
2009) emphasizes to consider the has-parts relation
as a has relation that may be used for diverse aspects
like has-Realizations or has-Features in software-
intensive systems. For the typical use, a structural
relation represents a compositional relation. In this
case, between c and its relatives r, c denotes the ag-
gregates and r denotes the parts. The underlying
structural relation is used by configurators to con-
struct the description and thus are the motor of con-
figuration. Depending on what instances (of c or r)
exist first, instances of the related concepts are cre-
ated; e.g. this enables reasoning from the aggregate to
the parts or contrariwise, from the parts to the aggre-
gate. This semantic holds for every structural relation.
Thus, introducing several structural relations enables
the use of adequate domain names like has-Features
or has-Realizations, and thus to facilitate mainte-
nance.

Figure 1 pictures an upper-model for software-
intensive systems (UMSiS, (Hotz et al., 2006)). It
defines four asset types (features, context, hardware
and software artefacts) which are common to most
application domains of software-intensive systems. A
product, i.e. the result of the product derivation, con-
tains software and hardware artefacts as parts, these
together realize particular features. Several struc-
tural relations are depicted, like has-Realizations
and has-Feature. When using the upper-model for a
specific domain, the UMSiS is extended with domain-
specific knowledge about hardware and software arte-
facts, the existing features, relevant context aspects,
etc. In the example above, the concepts are orga-
nized in different spaces. Each space represents a spe-
cific aspect of the domain and thus each configured

product should have those aspects. Figure 1 provides
the example of the feature and artefact aspects in the
domain of software-intensive systems. Thus, spaces
separate concepts of one layer. Through this group-
ing of concepts of one layer the configuration model
is easier to manage for a knowledge engineer. Fur-
thermore, concepts of different spaces are connected
by a structural relation. This ensures that a config-
ured product finally contains all modeled aspects. In
contrast to this, in Section 3 we will see, how the in-
stantiation relation separates concepts and instances
on different layers.

3 SPECIALIZATION VS.
INSTANTIATION

A concept describes a set of instances. The special-
ization relation (or subsumption or is-a relation) be-
tween two concepts c and s describes a subset rela-
tion, i.e. the set of instances of concept c is a subset
of the set of instances of its superconcept s (see also
(Brachman, 1983)). Or, as defined in ontogenesis.
knowledgeblog.org/699: “c is-a s if and only if:
given any i that instantiates c, i instantiates s”. An
instance of a class c is always an instance of each su-
perclass s of c. We consider this aspect as the hint-
ing characteristic for knowledge engineers: During
knowledge modeling one can try to make a special-
ization between two domain aspects and test this char-
acteristic. Thus, it is tested if an instance of c is also
reasonably an instance of s. If it is false the knowl-
edge engineer must not use a specialization but e.g.
instantiation, because c and s are probably on differ-
ent layers.

A Motion 
Detection 

Software.exe

instance-of

is-a

has

Compilable 
Concept

Artefact

M D S

Software

Compilable 
Concept

Motion 
Detection 
Software

A Motion 
Detection 

Software.exe

Software

Motion 
Detection 
Software

Artefact

Figure 2: Good and bad use of specialization and instantia-
tion in software-intensive systems.

An example for this situation is shown in Fig-

KEOD 2011 - International Conference on Knowledge Engineering and Ontology Development

458



ure 2; it presents the confounded usage of specializa-
tion and instantiation relations in the aforesaid model-
ing of software-intensive systems domain (SiS). The
system model layer (SiSS) is covering specific in-
dividuals, here for instance the A Motion Detection
Software.exe. This object is an instance of the
Motion Detection Software (SiSD) but no instance of
Compilable Concept. Compilable Concept denotes a
specific kind of concept. A concept typically spec-
ifies the description of the property structure of its
instances. A Compilable Concept additionally can
take this description and compile it to an executable
file. Thus, in the “bad” use, A Motion Detection
Software.exe is incorrectly considered as a concept,
i.e. as a description of instances that can be com-
piled. Instead it is an instance of Motion Detection
Software, thus a specific domain object not a concept
and, of course, it is already compiled.

When a concept s is specialized to c all proper-
ties of s are inherited by c. By the time a concept is
instantiated, properties of the created instance are ini-
tialized by values or value ranges specified in the con-
cept. Thus, the concept determines the structure of the
instance (i.e. the properties). In this sense, a concept
says something about its instances, i.e. a concept is
on a different layer than its instances. By reducing the
value ranges according to user decisions or constraint
computations the configurator subsequently creates a
specific description consisting of instances, i.e. the
configuration.

4 METAIZATION

For structuralization and specialization, the involved
concepts are on one layer. However, for instantiation
and metaization they are on different layers. By in-
stantiating a concept one instance is created, i.e. a
step from a set of instances to an individual element
of this set is performed. If this step is cascadized,
a concept c can be considered as an instance of an-
other concept cm, i.e. a step from a set of concepts to
one specific concept is performed. The concept cm is
on a further layer. Figure 3 demonstrates this situa-
tion. The concept Feature is an instance of Abstract
Concept which is a specialization of concept-m. The
concepts on the metalayer CDLM represent the mod-
eling facilities of CDL, describing the concepts and
relations of CDL. Concept Artefact is a typical CDL
concept (it is an instance of concept-m). Beside con-
cepts, also relations have a concept on CDLM for rep-
resenting them (not depicted in the Figure, see (Hotz,
2009)). Thus, CDLM represents all what is known
about CDLD, i.e. concepts and relations.

Figure 3 presents the enhancement of Figure
1 by the additional layer SiSM . SiSM describes
the SiSD layer concepts Feature, Software, and
Hardware as Abstract Concept, Compilable Concept,
and Manufacturable Concept, respectively. Thus, it
is a domain dependent extensions of CDLM .

By doing so, constraints on concepts of SiSD can
be expressed. For example, a constraint represents
that each feature should be realizable by an artefact.
Such a constraint can check that each feature (a sub-
concept of Feature) should have a structural relation
has-Realization to a subconcept of Artefact. These
kinds of constraints may be hard to define, because
typically they are not related to one specific concept
but to several. Still, such constraints are usually part
of some knowledge modeling guidelines.

D

Motion 
Detection 
Software

Short Range 
Radar Sensor

Pre Crash
Detection

A Motion Detection 
Software.exe

A Short Range 
Radar Sensor

S

A Car

A Pre Crash
Detection

instance-of

is-a

has

Manufacturable 
Concept

Feature

Artefact

Software

Hardware

Compilable
Concept

Product

Abstract 
Concept

has-
R

eali-
zation

has-
Feature

has-
H

ardw
are

has-
S

oftw
are

concept-
m

has-
supercon-

cept-m

Realizable 
Concept

M

Figure 3: Modeling software-intensive systems.

In (Hotz and von Riegen, 2010), we introduce
the Reasoning Driven Architecture (RDA) that al-
lows the implementation of metalayers by using a
configuration system on each layer. By doing so,
each layer can be seen as a knowledge-based sys-
tem that says something about the layer below. In
the case of RDA, SiSD contains the knowledge of do-
main objects, which again are represented on SiSS.
By introducing the metalayer SiSM , knowledge about
knowledge is made explicit, i.e. knowledge about the
knowledge of domain objects. This enables the use
of reasoning techniques for each layer, not only for
the domain and system layers as it is typically the
case in knowledge-based systems. The central point
of such an implementation is a mapping between in-
stances on one layer to concepts on the next lower
layer (see (Hotz and von Riegen, 2010) for a map-
ping for CDL and (Tran et al., 2008) for a mapping
for OWL or (Bateman et al., 2009)). Metalayers al-
low for handling (meta) tasks and services. For ex-
ample, (Tran et al., 2008) proposes to provide statis-
tics about the model (e.g. retrieve all knowledge ele-
ments about Pre Crash Detection). With a metalayer

THOUGHTS ABOUT STRUCTURALIZATION, SPECIALIZATION, INSTANTIATION, AND METAIZATION

459



like provided in Figure 3, during configuration of a
software-intensive system one can call different ex-
ternal mechanisms for each specific metaconcept. For
example, if an instance of an instance of Compilable
Concept (e.g. an instance of Software) is config-
ured, an external compiler mechanism can be called
to realize the software. If an instance of an instance
of Manufacturable Concept is configured, the ware-
house can be contacted to check if the needed parts
for the manufacturing are present. Thus, through the
metalayer the actual configuration of a product can be
monitored and reasoning on the configuration process
can be processed.

5 RELATED WORK

The modeling approach, especially metaization
(Strahringer, 1998), has similarities to the Model-
Driven Architecture (Kühne, 2006; Atkinson and
Kühne, 2003; Hotz and von Riegen, 2010), because
of the explicitation of several layers. However, the in-
troduction of reasoning systems for each layer allows
the direct usage of existing reasoners for inferring on
metalayers.

(Asikainen and Männistö, 2009) and (Haase et al.,
2009) present also approaches that include semantics
on the metalayer, similar to our approach. By do-
ing so, reasoning methods on each layer as well as
the capability to define domain-specific extensions on
the metalayer is in principle enabled. Metaization as
such is less considered in knowledge-based configu-
ration. However, especially when learning methods,
i.e. automated knowledge engineering, has to be used
in changing environments, the automated monitoring
of knowledge bases becomes crucial and is conceiv-
able with the presented techniques.

6 CONCLUSIONS

In this paper, we state the differences of the main
relations for modeling configuration knowledge, i.e.
specialization, instantiation, and structuralization. By
introducing and clarifying the use of instantiation on
several metalayers, we open up a further modeling fa-
cility and sketch first usage of this metaization tech-
nique for knowledge-based configuration. In upcom-
ing work, we will apply these techniques in learning
environments in the field of robot vision.

REFERENCES

Asikainen, T. and Männistö, T. (2009). Nivel: a metamod-
elling language with a formal semantics. Software and
Systems Modeling.

Atkinson, C. and Kühne, T. (2003). Model-Driven Devel-
opment: A Metamodeling Foundation. IEEE Softw.,
20(5):36–41.

Bateman, J., Castro, A., Normann, I., Pera, O., Garcia, L.,
and Villaveces, J. (2009). OASIS common hyper-
ontological framework (COF), Deliverable D1.2.1.
Technical report, University of Bremen.

Brachman, R. J. (1983). What is-a is and isn’t: An anal-
ysis of taxonomic links in semantic networks. IEEE
Computer, 16(10):30–36.

Haase, P., Palma, R., and d’Aquin M. (2009). Up-
dated Version of the Networked Ontology Model.
Project Deliverable D1.1.5, Neon Project. www.neon-
project.org.

Harmelen, F. V., Lifschitz, V., and Porter, B., editors (2007).
Handbook of Knowledge Representation (Founda-
tions of Artificial Intelligence). Elsevier Science.

Hotz, L. (2009). Construction of Configuration Models.
In Stumptner, M. and Albert, P., editors, Configura-
tion Workshop, 2009, Workshop Proceedings IJCAI,
Pasadena.

Hotz, L. and von Riegen, S. (2010). Knowledge-based Im-
plementation of Metalayers - The Reasoning-Driven
Architecture. In Felfernig, A. and Wotawa, F., editors,
Proceedings of the ECAI 2010 Workshop on Intel-
ligent Engineering Techniques for Knowledge Bases
(IKBET).

Hotz, L., Wolter, K., Krebs, T., Deelstra, S., Sinnema, M.,
Nijhuis, J., and MacGregor, J. (2006). Configuration
in Industrial Product Families - The ConIPF Method-
ology. IOS Press, Berlin.

Kühne, T. (2006). Matters of (Meta-)Modeling. Journal on
Software and Systems Modeling, 5(4):369–385.

Ranze, K., Scholz, T., Wagner, T., Günter, A., Herzog, O.,
Hollmann, O., Schlieder, C., and Arlt, V. (2002). A
Structure-Based Configuration Tool: Drive Solution
Designer DSD. 14. Conf. Innovative Applications of
AI.

Strahringer, S. (1998). Ein sprachbasierter Metamodellbe-
griff und seine Verallgemeinerung durch das Konzept
des Metaisierungsprinzips. In Proceedings of the
Modellierung 1998. Astronomical Society of Aus-
tralia.

Tran, T., Haase, P., Motik, B., Grau, B. C., and Horrocks,
I. (2008). Metalevel Information in Ontology-Based
Applications. In Fox, D. and Gomes, C. P., editors,
Proc. of the 23rd AAAI Conf. on Artificial Intelligence
(AAAI 2008), pages 1237–1242, Chicago, IL, USA.
AAAI Press.

KEOD 2011 - International Conference on Knowledge Engineering and Ontology Development

460


