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Abstract: A multilayer spline-based fuzzy neural network (MS-FNN) is proposed. It is based on the concept of 
multilayer perceptron (MLP) with B-spline receptive field functions (Spline Net). In this paper, B-splines 
are considered in the framework of fuzzy set theory as membership functions such that the entire network 
can be represented in form of fuzzy rules. MS-FNN does not rely on tensor-product construction of basis 
functions. Instead, it is constructed as a multilayered superposition of univariate synaptic functions and thus 
avoids the curse of dimensionality similarly to MLP, yet with improved local properties. Additionally, a 
fully deterministic initialization procedure based on principal component analysis is proposed for MS-FNN, 
in contrast to the usual random initialization of multilayer networks. Excellent performance of MS-FNN 
with one and two hidden layers, different activation functions, and B-splines of different orders is 
demonstrated for time series prediction and classification problems. 

1 INTRODUCTION 

Multilayer perceptron (MLP) (Haykin, 1998) has 
been perhaps the most popular neural network 
architecture for more than two decades already due 
to its universal approximation properties and ease of 
practical implementation. 

MLPs construct global approximations of 
multivariate function data and are capable of 
generalizing their response to regions of the input 
space where little or no training data is present (Lane 
et al., 1990). In such a way, MLP also avoids the 
curse of dimensionality since the number of the 
neurons of MLP depends only on the geometric 
properties of the target function but not on the 
dimension of the input space (Xiang et al., 2005; 
Barron, 1992; Barron, 1993). However, the global 
nature of the weight updating can be a disadvantage 
for data with complex local structure. Furthermore, 
the random initialization of MLP leads to quite 
different results of training depending on the initial 
weights, even with improved initialization 
techniques (Nguyen and Widrow, 1990; 
Lehtokangas et al., 1995; Erdogmus et al., 2005). 

To add local properties to MLP approximations, 
the Spline Net architecture was proposed (Lane et 
al., 1990) in which the synaptic connections in form 

of simple gains are replaced with nonlinear functions 
constructed using B-splines. The authors of the 
Spline Net presented the general concept of this 
model and an example of a network with two layers, 
linear B-splines, random initialization, and a 
standard backpropagation algorithm. 

In the present paper, we propose a generalized 
model called ‘Multi-layer Spline-based Fuzzy 
Neural Network’ (MS-FNN) with fully deterministic 
initialization and more efficient training. 

2 ARCHITECTURE 

A Spline Net model (Lane et al., 1990) with D  
inputs, L  layers, and P  outputs can be defined as 
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where lnh ,,1…= , Ll ,,1…= , Dn ≡0 , PnL ≡ , 
],[ hlo  is the output of neuron h in layer l, h

hL yo ˆ],[ ≡  
is the hth network output, i

i xo ≡],0[  is the ith 

network input, 1]0,[ ≡lo , ][lσ  is the sigmoid 
activation  function  for  layer l, ln  is  the number of 
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neurons in layer l, and ],[ hl
if  is the nonlinear 

synaptic connection function of input i of the hth 
neuron in layer l: 
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In (2), ][
,
l
jiμ  is the jth receptive field function of 

input i of layer l, ],[
,

hl
jiw  is its synaptic weight in 

neuron h, and lm  is the number of receptive field 
functions for each input of layer l. All receptive field 
functions of a layer are shared between all neurons 
of that layer. 

Taking into account (2), we can re-write (1) 
using a more compact vector-matrix notation: 
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In (3), Tnlll loo ),,( ],[]1,[][ …=o  is the vector of 

outputs of layer l , ][lσ  is a vector activation 
function of vector argument, ][lW  is a matrix  of 
synaptic weights in layer l  sized )( 1 lll mnn −× , and 
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A convenient choice for the receptive field 
functions is B-splines due to their nice local 
properties (Lane et al., 1990). To maintain a 
partition of unity for any value of x, additional 
marginal functions should be added at both ends of 
the universe of discourse of x for splines of order>2 
(see Fig. 1). As in (Lane et al., 1990, Bodyanskiy et 
al., 2005, Kolodyazhniy, 2009, Kolodyazhniy et al., 
2007), we assume that the positions of knots of B-
splines are not optimized and are chosen 
equidistantly. 

B-splines in nonlinear synapses (2) can be 
considered as membership functions of fuzzy sets 
(Zhang, Knoll, 1998, Kolodyazhniy, 2009). 
Therefore, the nonlinear synapses (2) can be 
interpreted as elementary fuzzy inference systems 
containing the following fuzzy rules: 
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In (4), ][
,
l
jiO  is a fuzzy label such as ‘LARGE’, 

‘MEDIUM’, ‘SMALL’, etc. determined by the 
respective membership function ][

,
l
jiμ . Note that the 

B-spline  membership  functions  of  order>2 are not 

normal, i.e. the maximum values of non-marginal 
functions are below one (see Fig. 1), such that the 
partition of unity is always preserved. 
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Figure 1: B-spline membership functions (MF) of order 1 
to 4 defined for variable ]1,0[∈x  such that 5 membership 
function are defined over the universe of discourse of x . 
Shaded areas correspond to the marginal B-functions. 

Denoting the sum of synaptic outputs of neuron 
h  in layer l  as 
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we can define the following activation functions that 
will be subsequently used: 
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The original Spline Net model (Lane et al., 1990) 
contained only sigmoid activation. A neuron with 
linear B-splines (triangular membership functions) 
and identity activation function coincides with the 
neo-fuzzy neuron proposed in (Yamakawa et al., 
1992) and is used in (Bodyanskiy et al., 2005; 
Kolodyazhniy et al., 2007) for constructing the two-
layered Neuro-Fuzzy Kolmogorov’s Network 
(NFKN). Due to the generalization of the previously 
developed NFKN model to multiple layers, we call 
the neural net described in this paper ‘Multilayer 
spline-based Fuzzy Neural Network’ (MS-FNN). 
The architecture of MS-FNN (Fig. 2) is similar to 
that of Spline Net except for the choice of activation 
functions but the initialization and training 
algorithms are different (see sections 3 and 4). 

In case of two layers and the identity activation 
functions, the MS-FNN architecture coincides with 
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the Neuro-Fuzzy Kolmogorov’s Network (NFKN) 
(Bodyanskiy et al., 2005; Kolodyazhniy, 2009). 

 
Figure 2: MS-FNN architecture with L  layers: dots ( • ) 
represent synaptic weights, sigmoids (σ ) are optional. 

In contrast to MLP or Spline Net, the hidden 
layers of MS-FNN may not contain sigmoid 
activation functions at all because the required 
nonlinear transformations can be performed by 
nonlinear synapses. The sigmoid function should be 
included in the output layer for binary classification 
with the cross-entropy error function.  

For multinomial classification with cross-
entropy, the softmax activation function in the output 
layer is used (Bishop, 1995). The use of the sigmoid 
in hidden layers is optional and should be decided 
based on performance in a particular problem. 

The MS-FNN model has a different structure 
from the known B-spline-based neural networks (see 
e.g. Coelho, Pessôa, 2009, Wang, Lei, 2001, Cheng 
et al., 2001) and fuzzy systems (Zhang and Knoll, 
1998) that are constructed of multidimensional basis 
functions being tensor products of univariate B-
splines. This approach is plagued by the curse of 
dimensionality: the number of basis functions and 

associated weights grows exponentially with 
increase of the input space dimension. 

In contrast, MS-FNN relies on multilayer 
superposition of univariate synaptic functions 
constructed using B-splines thus avoiding the curse 
of dimensionality similarly to MLP. 

3 DETERMINISTIC 
INITIALIZATION 

Let us assume that the number of neurons in a layer 
in MS-FNN does not exceed the total number of 
membership functions in that layer, i.e. 

lll mnn ⋅≤ −1  (9) 

This assumption is adequate for quite a wide 
range of problems. It implies that the number of 
neurons in a layer l can be between one and ll mn ⋅−1  
where 1−ln  is the number of inputs of layer l and 

Dn ≡0 . For instance, in a network with ten inputs 
and four membership functions per input the 
maximum number of neurons in the first hidden 
layer will be forty, which is sufficient in most cases. 
Based on (9), the initialization of hidden layer 
weights in MS-FNN can be performed 
deterministically via linear PCA as proposed in 
(Kolodyazhniy et al., 2007; Kolodyazhniy, 2009) for 
the hidden layer of NFKN, such that all neurons in a 
layer are initialized with mutually orthogonal weight 
vectors. Here we generalize this approach to more 
than one hidden layer. 

Given a training data set containing N patterns, 
the PCA procedure is applied to the matrices of 
membership degrees 

[ ]Tlllll N ))((,)),1(( ]1[][]1[][][ −−= oμoμM …  for all 
hidden layers 1,,1 −= Ll …  successively, starting 
from the first hidden layer with 

T
Dxx ),,( 1

]0[ …== xo . The vector of weights of the 
hth hidden neuron in layer l corresponding to the hth 
row of matrix ][lW  in (3) is assigned the transposed 
hth loading (transposed hth column) from the matrix 
V  found as a result of singular value decomposition 

Tl VΣUM =][  (10) 

where ][lM  is equal to ][lM  with mean values 
subtracted column-wise. 

After the lth layer has been initialized, the input 
data is propagated through layer l, and the matrix of 
membership degrees ]1[ +lM  is computed followed 
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by weight initialization for layer 1+l  using PCA as 
described above. The output layer weights are 
initialized with zeros. 

If there is only one neuron in a layer, its initial 
weights for each nonlinear synapse (2) can be 
chosen as linearly increasing, e.g. from zero to one. 

During initialization of MS-FNN the knots of B-
spline functions in the first hidden layer are set such 
that the centers of the leftmost and the rightmost 
non-marginal B-splines are assigned the minimum 
and the maximum values of the corresponding 
network input. The centers of B-splines between the 
leftmost and the rightmost non-marginal functions 
are distributed equally between them. The centers of 
the marginal functions are set to the left and to the 
right of the leftmost and the rightmost nonmarginal 
functions, respectively, at the same distance as 
between all the non-marginal functions. 

If a further hidden layer 1−l  has sigmoidal 
activation, then the centers of the non-marginal 
membership functions of layer l are distributed 
equidistantly in the interval of ]1,0[ . Otherwise, the 
minimum and maximum output values of all neurons 
in layer 1−l  are computed and used for setting the 
centers of membership functions in layers l in the 
same way as in the first layer. In such a way, 
undesired saturations leading to neuron 
underutilization and network paralysis during 
training are avoided and the training is accelerated. 
In case of sigmoid activation functions in layer 1−l , 
the knots of layer l should be positioned only once 
during initialization such that the centers of the non-
marginal functions are distributed equidistantly in 
the interval [0,1]. No knot re-positioning in layer l 
during training is required because the preceding 
neuron outputs are always in [0,1]. 

The entire initialization procedure is performed 
layer by layer starting from the first hidden layer. 

4 TRAINING 

For regression, the error function is sum of squared 
errors, and cross-entropy for classification. 

For the both error functions described above, we 
use resilient propagation (RPROP) which is a very 
fast learning scheme (Riedmiller and Braun, 1993). 
The weight update rule is without weight 
backtracking (Rprop–, see Igel, C., Hüsken, M., 
2003) with the following parameters for MS-FNN: 

5.0=−η , 2.1=+η , 6min 10−=Δ , 1.0max =Δ , 
1.00 =Δ . 

To speed up batch training, the values of 
membership functions in the first hidden layer of 
MS-FNN are computed only once and then stored 
throughout training because they do not change. 

For layer l with identity activation in the 
preceding layer 1−l , the B-spline knots are re-
positioned after each weight update with the RPROP 
algorithm as in the initialization phase. This is done 
to avoid saturations in synapses of the layer l, 
because the outputs of layer 1−l  are not limited to 
the range of ]1,0[  in absence of a sigmoid activation 
function. This knot re-positioning leads to a gradual 
‘inflation’ of the distances between spline knots in 
layer l following an approximately linear trend. 
After training, the spline knots in each layer with 
preceding identity activation can be re-set to their 
initial positions with centers of non-marginal 
functions between ]1,0[ , and the synaptic weights in 
the preceding layer can be re-scaled to map the 
respective neuron outputs onto ]1,0[  without 
affecting the overall input-output mapping of the 
MS-FNN model (Wang et al., 2009). 

5 EXPERIMENTS 

The MS-FNN model and the RPROP algorithm were 
implemented in MATLAB v. 6.5 under Windows 
XP on a PC with 2 GB of RAM and an Intel Core 
Duo T2500 CPU with a 2.0 GHz clock. For 
comparison, an MLP was implemented using the 
MATLAB Neural Networks Toolbox with 
modifications by the author for classification 
problems which included the cross-entropy error 
function. The MLP contained the hyperbolic tangent 
activation function in hidden layers designated 
below as ‘tanh’ in contrast to the ‘sigmoid’ (7) and 
was trained with the same RPROP algorithm except 
for two parameters: 50max =Δ  and 07.00 =Δ  
(standard values of the MATLAB Toolbox). 

The PCA initialization technique was used for 
MS-FNN (except for the N-parity problem where 
linear initialization was used, see section 3), while 
the MLP was initialized randomly via the Nguyen-
Widrow algorithm (Nguyen and Widrow, 1990). 

We report the best results and the training time, 
although the latter might be biased in favor of the 
MLP model because of the extensive code 
optimization in the MATLAB Neural Network 
Toolbox. It is expected that the training time for 
MS-FNN can also be reduced via code optimization. 

For  MLP,  the  input  data were standardized by 
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subtracting the mean value of the respective input 
and dividing by its standard deviation which in all 
cases resulted in a better performance of the MLP 
compared to scaling onto the hypercube D]1,1[− . For 
MS-FNN, the data were not transformed because the 
membership functions of the input layer always 
scale the data onto the unit hypercube. 

5.1 Time Series	Prediction 

We compared the performance of MS-FNN and 
MLP models in the forecasting of the well-known 
Mackey-Glass (MG) time series (Mackey and Glass, 
1977) for 17=τ . The error function was sum of 
squared errors. The task was to predict the value of 
the time series )85( +tx  using values )(tx , )6( −tx , 

)12( −tx , and )18( −tx  as inputs for 3117...118=t  
for training and 4117...3118=t  for testing. 

First, an MS-FNN model with 2 hidden layers 
with 10 neurons in each and one output neuron was 
created and trained for 4000 epochs. For network 
configuration and achieved prediction accuracy see 
Table 1, where ‘W’ is the number of weights, ‘n’ 
and ‘m’ represent the number of neurons and 
membership functions in the respective layers, and 
‘Hid.Act’ and ‘Out.Act.’ stand for the activation 
functions in the hidden and output layers, 
respectively. 

Then an MLP with two hidden layers with 30 
neurons in each and one output neuron with a 
number of parameters approximately equal to that of 
MS-FNN was trained ten times for 10000 epochs 
which took approximately the same time as the 
training of MS-FNN. In Table 1 the best result out of 
the ten runs is given (NRMSE Test=0.019) and is by 
ca. 28% worse than that of MS-FNN (NRMSE 
Test=0.0148). 

5.2 Classification 

For classification problems, all neural networks were 
trained using the cross-entropy error functions. A 
description of the data used for classification can be 
found in Table 2. The target class variables had 
values of 0 or 1 for both MS-FNN and MLP. 

The N-Parity problem was solved for 20...2=N  
with MS-FNN and for 13...2=N  with MLP. The 
MS-FNN classifier contained two layers, each with 
one neuron. In the hidden layer neuron all 
membership functions were of first order, and of 
second order in the output neuron. The number of 
membership functions in the first layer neuron was 
two per input, and 1+N  in the output neuron. With 

this configuration, the network was able to solve the 
N-parity problem without errors after only seven 
epoch of training for any N between 2 and 20 (see 
Table 3). Apparently, the scaling behavior of MS-
FNN would be the same also in higher dimensions. 

For comparison, the N-parity problem was 
solved for 13...2=N  using MLP with one hidden 
layer containing N neurons which is the minimum 
required for an MLP to converge in this problem 
(Rummelhart and McClelland, 1986). The MLP was 
trained for 1000 epochs. If no classification errors 
were reached earlier, the training was stopped. For 
each N, there were 10 runs, each with a different 
random initialization. The results of the 10 runs were 
averaged (see Table 4). For each N between 2 and 
13, in at least 2 runs the training converged with no 
classification errors. For 13=N , the MLP’s shortest 
training time (61.8s) was greater than that for MS-
FNN for 20=N  while the training set contained 
128 times fewer patterns (8192 instead of 1048576) 
and the number of inputs was 13 instead of 20. 

To the author’s knowledge, this result for MS-
FNN is one of the very best reported so far in the 
neural network community for the N-parity problem 
in the dimension of the solved problem, network 
size, and training time for a general-purpose neural 
network, including (Wilamowski and Yu, 2010) 
where N=16 was solved with a 9% success rate with 
a fully connected MLP. 

In the two spirals problem, the task was to find 
the smallest network capable of classifying points 
belonging to one of two intertwined spirals without 
errors. Each of the two spirals had 97 points 
(Wieland, 1988). For MS-FNN, exhaustive search 
was performed for networks with one hidden layer 
with one to eight neurons and 11...41 =m  and 

17...52 =m  until a network able to classify the two 
spirals without errors after up to 1000 epochs of 
training was found. The search was done for linear, 
quadratic, and cubic B-splines. As can be seen from 
Table 3, the smallest MS-FNN had only two hidden 
layer neurons with sigmoid activation, quadratic 
splines in their synapses, and reached zero 
classification errors after 384 epochs of training. 

For MLP, a search for the smallest architecture 
capable of classifying the two spirals without errors 
was done for architectures with two hidden layers 
each containing n neurons for 10...6=n  and 100 
runs of up to 10000 epochs of training for each n. As 
can be seen from Tables 3 and 4, the MS-FNN 
model had approximately three times fewer 
parameters (48 vs. 151) and converged much faster 
than MLP. 
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For the same data with 194 points training with 
RPROP 1500 to 15000 epochs were reported for a 
four-layered perceptron-like network with additional 
shortcut connections (Riedmiller and Braun, 1993). 

The UCI Letter data set (see UCI) is a larger-
sized multinomial classification problem. The MS-
FNN model providing the highest classification 
accuracy had one hidden layer with identity 
activation and 38 neurons, and 26 neurons in the 
output layer. The search was done among 
architectures with one hidden layer with 16 to 40 
neurons with cubic splines in their synapses with 
and without sigmoid activation in the hidden layer. 
For comparison, MLPs with two hidden layers 
containing 70, 80, 90, and 100 neurons in each of the 
hidden layers were tested 10 times for each 
configuration with different random initializations. 
Both the MS-FNN and MLP models were trained for 
500 epochs. The training was stopped earlier if all 
patterns in the training set were classified correctly. 
As can be seen from Tables 3 and 4, the MS-FNN 
model provided a slightly lower error for the test 
data (4.1% vs. 4.225%) with fewer weitghts. Both of 
these results rank among the very best achieved for a 

single neural network. E.g., in (Schwenk and 
Bengio, 2000) a testing error of 6.1% is reported for 
a single MLP on the same dataset, and for ensembles 
it was 4.3% for bagging and 1.5% for boosting, the 
latter being the best result known to the author. 

6 Conclusions 

A practical implementation of a multilayer spline- 
based fuzzy neural network (MS-FNN) with 
improved local properties and deterministic 
initialization was presented and improved 
performance of the proposed model was 
demonstrated in comparison with a conventional 
multilayer perceptron. 

The deterministic initialization of the MS-FNN 
model, among other advantages, makes a direct 
structure optimization of the neural network 
possible, even using a straightforward exhaustive 
search approach, because the number of parameters 
determining the structure (the number of neurons 
and membership functions) is small and the possible 

Table 1: Results of prediction of the Mackey-Glass time series 85 steps ahead. 

Model NRMSE Train, 
Test W Hid. act. Out. act. n m Spline order Epochs Training 

time, s 

MS-FNN 0.0142, 
0.0148 1090 sigmoid identity 10, 10, 1 7, 7, 11 4, 4, 4 4000 910.2 

MLP 0.0181, 0.019 1111 tanh identity 30, 30, 1 – – 10000 902.6 

Table 2: Datasets used for classification. 

Dataset 
Number of patterns 

Number of attributes Number of classes 
Training Testing 

N-parity 4...1048576 – 2...20 2 

Spirals 194 – 2 2 

Letter 16000 4000 16 26 

Table 3: Classification results with MS-FNN. For N-parity, results for 20...2=N  are shown. 

Dataset Error, % 
Train, Test W Hid. act. Out. act. n m Spline order Epochs Training time, 

s 

N-parity 0, – 7...61 identity sigmoid 1, 1 2, 3...21 1, 2 7 0.16...44.4 
Spirals 0, – 48 sigmoid sigmoid 2, 1 4, 16 3, 3 384 7.07 
Letter 0.13, 4.1 12540 identity softmax 38, 26 6, 9 4, 4 500 2123.3 

Table 4: Classification results with MLP. For N-parity, results are average of 10 runs for 13...2=N . 

Dataset Error, % Train, Test W Hid. act. Out. act. n Epochs Training 
time, s 

N-parity 0.078...12.5, – 9...196 tanh sigmoid 2...13, 1 148.9...941.2 0.5...61.8 
Spirals 0, – 151 tanh sigmoid 10, 10, 1 5743 28.4 
Letter 0, 4.225 14426 tanh softmax 100, 100, 1 303 792.5 
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values of these parameters are natural numbers with 
quite a limited range. For a particular combination of 
these parameters the mapping realized by the neural 
network is deterministic for the given training 
algorithm and the number of training epochs. 

Future research of the author would include the 
development of more efficient algorithms for 
structure optimization, as well as the improvement 
of interpretability of fuzzy rules for knowledge 
extraction from the trained net. 
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